next up previous contents index
Next: Models of Hyperbolic Geometry Up: Neutral and Non-Euclidean Geometries Previous: Strange New Triangles

Inversion in Euclidean Circles

  In order to define congruence in the Poincaré model and verify the axioms of congruence, we must study the operation of inversion in a Euclidean circle. This operation is the process of reflecting across a line in the Poincaré disk model of the hyperbolic plane.

Let tex2html_wrap_inline11276 be a circle of radius r and center O. For any point tex2html_wrap_inline17990 the inverse  P' of P with respect to the circle tex2html_wrap_inline11276 is the unique point tex2html_wrap_inline17998 so that tex2html_wrap_inline18000. In this case tex2html_wrap_inline11276 is called the circle of inversion. 

These are Euclidean geometry theorems about circles, so we may use the facts that we know about Euclidean geometry.

Proposition 15.1: For tex2html_wrap_inline18004 and tex2html_wrap_inline11276 as above,

  1. P=P' if and only if tex2html_wrap_inline18010.
  2. If tex2html_wrap_inline18012 then tex2html_wrap_inline18014, and vice versa.
  3. (P')'=P.

Proposition 15.2: Let tex2html_wrap_inline18012 and let TU be the chord through P perpendicular to tex2html_wrap_inline18024. Then P'=P(TU), the pole of TU, i.e., the intersection of the tangents to tex2html_wrap_inline11276 at T and U.  

figure5077

Proof: Suppose the tangent to tex2html_wrap_inline11276 at T cuts tex2html_wrap_inline18040 at the point P'. The right triangle tex2html_wrap_inline18044 is similar to right triangle OTP' (since they have tex2html_wrap_inline18048 in common and the angle sum is tex2html_wrap_inline11150). Hence corresponding sides are proportional. Since tex2html_wrap_inline18052, we get that
displaymath17980
which shows that P' is the inverse to P. Reflect across the line tex2html_wrap_inline18024, and we see that the tangent to tex2html_wrap_inline11276 at U also passes through P', so that P' is the pole of TU.

Proposition 15.3: If P is outside of tex2html_wrap_inline11276, let Q be the midpoint of OP. Let tex2html_wrap_inline18078 be the circle of radius QP centered at Q. Then

  1. tex2html_wrap_inline18084.
  2. tex2html_wrap_inline16520 and tex2html_wrap_inline18088 are tangent to tex2html_wrap_inline11276.
  3. tex2html_wrap_inline18092.

figure5091

Proof: By the circular continuity principle, tex2html_wrap_inline18078 and tex2html_wrap_inline11276 do intersect in two points T and U. Since tex2html_wrap_inline18102 and tex2html_wrap_inline18104 are inscribed in semicircles of tex2html_wrap_inline18078, they are right angles. Therefore tex2html_wrap_inline16520 and tex2html_wrap_inline18088 are tangent to tex2html_wrap_inline11276. If TU intersects OP in a point P', then P is the inverse of P', by the previous proposition. Thus, P' is the inverse of P in tex2html_wrap_inline11276.

The next proposition shows how to construct the Poincaré line joining two ideal points--the line of enclosure.  Its proof shows that tex2html_wrap_inline18130 in the previous figure is indeed a right angle, as we needed.

Proposition 15.4: Let T and U be points on tex2html_wrap_inline11276 that are not contained on a the same diameter, and let P be the pole of TU. Then

  1. tex2html_wrap_inline18142,
  2. tex2html_wrap_inline18144,
  3. tex2html_wrap_inline18146, and
  4. the circle tex2html_wrap_inline18148 with center P and radius PT cuts tex2html_wrap_inline11276 orthogonally at T and U.
n

figure5103

Proof: By definition of pole, tex2html_wrap_inline18102 and tex2html_wrap_inline18104 are right angles, so by the Hypotenuse-Leg criterion, tex2html_wrap_inline18164. Therefore, tex2html_wrap_inline18142 and tex2html_wrap_inline18168. The base angles tex2html_wrap_inline18170 and tex2html_wrap_inline18172 of the isosceles triangle tex2html_wrap_inline18174 are thus congruent, and the angle bisector tex2html_wrap_inline18176 is perpendicular to the base TU. The circle tex2html_wrap_inline18148 is then well-defined because tex2html_wrap_inline18182 and tex2html_wrap_inline18148 intersects tex2html_wrap_inline11276 orthogonally by the hypothesis that tex2html_wrap_inline16520 and tex2html_wrap_inline18088 are tangent to tex2html_wrap_inline11276.

Let P be a point in the plane and tex2html_wrap_inline11276 a circle with center O. The power of P with respect to tex2html_wrap_inline11276 is defined to be
displaymath17981
 

Proposition 15.5: Assume tex2html_wrap_inline18204 and assume that two lines through P intersect tex2html_wrap_inline11276 in points tex2html_wrap_inline18210 and tex2html_wrap_inline18212. Then

  1. tex2html_wrap_inline18214.
  2. If one of these lines through P is tangent to tex2html_wrap_inline11276 at T, then tex2html_wrap_inline18222.

figure5115

Proposition 15.6: Let tex2html_wrap_inline18204 and tex2html_wrap_inline17990, the center of tex2html_wrap_inline11276. Let tex2html_wrap_inline18148 be a circle through P. tex2html_wrap_inline18148 is orthogonal to tex2html_wrap_inline11276 if and only if tex2html_wrap_inline18148 passes through P', the inverse of P with respect to tex2html_wrap_inline11276.  

Proposition 15.7: Let tex2html_wrap_inline11276 have radius r, tex2html_wrap_inline18148 have radius t and let P be the center of tex2html_wrap_inline18148. tex2html_wrap_inline18148 is orthogonal to tex2html_wrap_inline11276 if and only if tex2html_wrap_inline18262, where the power is computed with respect to tex2html_wrap_inline11276.  

Let O be a point and k>0. The dilation with center O and ratio k is a mapping of the Euclidean plane that fixes O and maps every point tex2html_wrap_inline17990 to a unique tex2html_wrap_inline18278 such that tex2html_wrap_inline18280. Call this map tex2html_wrap_inline18282. 

Proposition 15.8: Let tex2html_wrap_inline18148 be a circle with center tex2html_wrap_inline18286 and radius s. tex2html_wrap_inline18290 maps tex2html_wrap_inline18148 to a circle tex2html_wrap_inline18294 with center tex2html_wrap_inline18296 and radius tex2html_wrap_inline18298. If tex2html_wrap_inline18300, the tangent to tex2html_wrap_inline18294 at tex2html_wrap_inline18304 is parallel to the tangent to tex2html_wrap_inline18148 at Q.

Proof: Choose rectangular coordinates so that O is the origin. Then the dilation is given by the mapping tex2html_wrap_inline18312. The image of the line have equation ax+by=c is the line having equation tex2html_wrap_inline18316, so the image is parallel to the original line. In particular, tex2html_wrap_inline18318 is parallel to tex2html_wrap_inline18320, and their perpendiculars at Q and tex2html_wrap_inline18304, respectively, are also parallel. If tex2html_wrap_inline18148 has equation tex2html_wrap_inline18328, then tex2html_wrap_inline18294 has equation tex2html_wrap_inline18332.

Proposition 15.9: Let tex2html_wrap_inline11276 be the circle of radius r centered at O and let tex2html_wrap_inline18148 be the circle of radius s centered at C. Assume O lies outside tex2html_wrap_inline18148; let p=Pw(O) with respect to tex2html_wrap_inline18148 and let tex2html_wrap_inline18354. The image tex2html_wrap_inline18356 of tex2html_wrap_inline18148 under inversion in tex2html_wrap_inline11276 is the circle of radius tex2html_wrap_inline18298 whose center is tex2html_wrap_inline18296. If tex2html_wrap_inline18366 and P' is the inverse of P with respect to tex2html_wrap_inline11276, then the tangent t' to tex2html_wrap_inline18356 at P' is the reflection across the perpendicular bisector of PP' of the tangent to tex2html_wrap_inline18148 at P.

figure5136

Corollary tex2html_wrap_inline18148 is orthogonal to tex2html_wrap_inline11276 if and only if tex2html_wrap_inline18148 is mapped to itself by inversion in tex2html_wrap_inline11276.

Proposition 15.10: Let tex2html_wrap_inline11154 be a line so that tex2html_wrap_inline18396. The image of tex2html_wrap_inline11154 under inversion by tex2html_wrap_inline11276 is a punctured circle with missing point O. The diameter through O of the completed circle tex2html_wrap_inline18148 is perpendicular to tex2html_wrap_inline11154.

figure5144

Proposition 15.11: Let tex2html_wrap_inline18148 be a circle passing through the center O of tex2html_wrap_inline11276. The image of tex2html_wrap_inline18148 minus O under inversion in tex2html_wrap_inline11276 is a line tex2html_wrap_inline11154 so that tex2html_wrap_inline18396 and tex2html_wrap_inline11154 is parallel to the tangent to tex2html_wrap_inline18148 at O.

Proposition 15.12: A directed angle of intersection of two circles is preserved in magnitude by an inversion. The same applies to the angle of intersection of a circle and a line or the intersection of two lines.

Proposition 15.13: Let tex2html_wrap_inline18148 be orthogonal to tex2html_wrap_inline14778. Inversion in tex2html_wrap_inline18148 maps tex2html_wrap_inline14778 onto tex2html_wrap_inline14778 and the interior of tex2html_wrap_inline14778 onto itself. Inversion in tex2html_wrap_inline18148 preserves incidence, betweenness and congruence in the sense of the Poincaré disk model.


next up previous contents index
Next: Models of Hyperbolic Geometry Up: Neutral and Non-Euclidean Geometries Previous: Strange New Triangles

david.royster@uky.edu