MA533 Partial Differential Equations
 Fall 2011

Problem Set 2

September 12, 2011

DUE: Wednesday, 21 September

(1) Let $U \subset \mathbb{R}^{n}$ have a smooth boundary (we only need C^{1}). Use Green's Theorem to prove that if u is harmonic in $U \subset \mathbb{R}^{n}$ and $u \in C^{1}(\bar{U})$, then for any $x \in U$, we have the representation

$$
u(x)=\int_{\partial U}\left[u(y) \nu \cdot \nabla_{y} \Phi(x-y)-\Phi(x-y) \nu \cdot \nabla_{y} u(y)\right] d S(y)
$$

where Φ is the fundamental solution for the Laplacian.
(2) Evans, pg. 85, \#3. Prove a modified mean value formula for the solution to Poisson's PDE. HINT: use the formulas for $\phi^{\prime}(r)$ involving the integral over the surface of a ball and the representation of $\phi^{\prime}(r)$ involving the Laplacian on the top of page 26. The fundamental theorem of calculus and integration by parts will be useful. You will also need Theorem 3 in C.3.
(3) Use the Mean Value Theorem to prove that if u is a bounded harmonic function on \mathbb{R}^{n}, then u is a constant on \mathbb{R}^{n}. (There is a different proof on page 30 in Evans.)

