Suppose that R and S are rings. An abelian group M is an (S, R)-bimodule if M is a left S-module, a right R-module and s(mr) = (sm)r for all $s \in S$, $r \in R$, and $m \in M$.

• If $\phi\colon S\to R$ is a ring homomorphism let ${}_\phi R$ be R as an abelian group. Define a map

 $S\times \ _{\phi}R\times R \rightarrow \ _{\phi}R$

by $(s, r, r') \mapsto \phi(s)rr'$. Show this makes ${}_{\phi}R$ an (S, R)-bimodule.

If M is a (S, R)-bimodule and N is an (R, T)-bimodule for rings S, R, T then $M \otimes_R N$ is an (S, T)-bimodule.

- Identify the bimodule ${}_{\phi}R \otimes_R M$. (That is prove it is isomorphic to something else.)
- If $\phi: R' \to R$ is a ring homomorphism prove

$$M \otimes_R N \cong (M_\phi) \otimes_{R'} ({}_\phi N)$$