Assignment 9

1. Diagonalize the matrix

$$
\left[\begin{array}{ccc}
0 & -4 & -6 \\
-1 & 0 & -3 \\
1 & 2 & 5
\end{array}\right]
$$

if possible. (Hint: 1 and 2 are eigenvalues.)
2. Construct a nondiagonal 2×2 matrix that is diagonalizable but not invertible.
3. Let $A=\left[\begin{array}{ll}-1 & 4 \\ -2 & 3\end{array}\right], \vec{b}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \vec{b}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}$. Find matrix A so that $[T(\vec{v})]_{\mathcal{B}}=A[\vec{v}]_{\mathcal{B}}$.
4. Let $T(\vec{v})=\left[\begin{array}{cc}5 & -3 \\ -7 & 1\end{array}\right] \vec{v}$. Find a basis \mathcal{B} for \mathbb{R}^{2} so that the matrix of T is diagonal with respect to \mathcal{B}.
5. Find the eigenvalues and eigenvectors of $\left[\begin{array}{cc}5 & -5 \\ 1 & 1\end{array}\right]$.
6. Suppose A is an $n \times n$ real matrix and $A \vec{v}=\lambda \vec{v}$ for some complex number $\lambda=(a+i b)$.
(a) Write $A(\operatorname{Re}(\vec{v})+i \operatorname{Im}(\vec{v}))$ using $a, b, \operatorname{Re}(\vec{v})$, and $\operatorname{Im}(\vec{v})$.
(b) Show $A(\operatorname{Re}(\vec{v}))=a \operatorname{Re}(\vec{v})+b \operatorname{Im}(\vec{v})$ and $A(\operatorname{Im}(\vec{v}))=-b \operatorname{Re}(\vec{v})+a \operatorname{Im}(\vec{v})$.

