Due | Assignment | Reading (Pages from Lee) |
---|---|---|
2/3 | 7-1, 7-2a, 7-3, 7-2b, 7-6 | 183-191, 192-195, 197-199, 200-203 |
2/10 | 7-4, 7-10, 7-5, 7-9 | 204-208, 217-220, 221-224 |
2/17 | (For these problems you can assume the fundamental group is non trivial) 8-1, 8-6, 8-4, 8-7, 8-8 | 224-227, 227-229, 277-280, 281-286 |
2/24 | 8-11, 11-3, 11-4, 11-7 (Some reminders for torus and klein bottle.) 11-2 | 287-289, 290-291, 292-294 |
3/3 | 11-12, 11-13, 11-14, 11-15 | 295-297, 298-301 |
3/10 | 11-18, 11-19, 11-20, 11-9 (remember to show evenly covered!) | 302, 307-308, 309-311 |
3/17 | 11-10, 11-11, 11-21 (you can use cor 10.17 without proof for now.) | 311-314, 315-317 |
3/24 | 12-2, 12-3, 12-4, 12-8, 12-12 | 318-322, 233-235, 236-239 |
3/31 | 9-1, 9-2, 9-4a | 240-244, 251-253, 253-264 |
4/7 | 10-1, 10-2, 10-5, 10-6, 10-9 | 268-273, 265-267 |
4/14 | 6-1, 6-3, 6-6, 10-11, 10-13 | 159-172, 264-268, 173-180 |
4/21 | 10-3, 9-8 (rank and basis are defined on p. 245), 13-1, 13-2 (You can assume that the ith homology of the n sphere is isomorphic to the integers if i is 0 or n and zero otherwise) | 339-343, 344-347, 348-352 |
4/28 | 13-6, 13-7 (You can assume that the nth homology of the n sphere is isomorphic to the integers), 13-5 | 353-356, 356-360, 361-364 |
5/5 | Homology of spaces |