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Abstract

We use the empirical likelihood approach to parameterize the full likelihood
function of the Cox model via baseline distribution F0 instead of the usual baseline
hazard parameterization. After explicitly profiling out nuisance parameter F0, the
profile likelihood function for regression parameter β0 is obtained, and the maximum
likelihood estimator (MLE) for (β0, F0) is derived. The relation between the MLE
and Cox’s partial likelihood estimator for β0 is made clear by showing that Taylor’s
expansion gives Cox’s partial likelihood estimating function as the leading term of
the profile estimating function induced by the full likelihood function. We show
that the log full-likelihood ratio has an asymptotic chi-squared distribution, while
the simulation studies indicate that for small or moderate sample sizes, the MLE
performs favorably over Cox’s partial likelihood estimator. Moreover, we present a
real dataset example, where our full-likelihood ratio test and Cox’s partial likelihood
ratio test lead to statistically different conclusions.

1 Introduction

Since Cox (1972), the following Cox’s regression model has become one of the most
widely used tools in analyzing survival data:

(1) λ(t; z) = λ0(t) exp(zTβ),

where Z is a p -dimensional vector of covariates, β is the regression parameter, and
λ(t; z) is the conditional hazard function of random variable (r.v.) X given Z = z with
λ0(t) as an arbitrary baseline hazard function. Suppose that (X1, Z1), · · · , (Xn, Zn) is
a random sample of (X,Z), and the actually observed censored survival data are

(2) (V1, δ1, Z1), (V2, δ2, Z2), · · · , (Vn, δn, Zn),

where Vi = min{Xi, Yi}, δi = I{Xi ≤ Yi}, and Yi is the right censoring variable that
has a distribution function (d.f.) FY and is independent of (Xi, Zi) or independent of
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Xi given Z = Zi. Then, letting β0 be the true value of β in (1), Cox’s partial likelihood
estimator β̂c for β0 is given by the solution of equations (Tsiatis, 1981):

(3) ϕn(β) ≡ n−1
n∑

i=1

δi

(
Zi −

∑n
j=1 I{Vj ≥ Vi}Zj exp(ZT

j β)∑n
j=1 I{Vj ≥ Vi} exp(ZT

j β)

)
= 0.

In the past few decades, β̂c has been considered as the standard estimate for β0 in
statistical literature. Efficiency properties of β̂c were discussed by Efron (1977) and
Oakes (1977). In particular, Efron (1977) examined the complete likelihood function
that is parameterized through baseline hazard function λ0(t) in (1), and showed that
Cox’s partial likelihood function contains nearly all of the information about β0, and β̂c

is asymptotically efficient. Using the counting process approach, the books by Fleming
and Harrington (1991), and Andersen, Borgan, Gill and Keiding (1993) give a complete
treatment of asymptotic theory and include many relevant references. We also refer to
Cox and Oakes (1984), Therneau and Grambsch (2000), Kalbfleisch and Prentice (2002)
for discussions and references on developments of the Cox model.

However, as pointed out in Cox and Oakes (1984; page 123), the efficiency results
on β̂c are only asymptotic, and for finite samples the loss in precision from using the
partial likelihood can be rather substantial. It is well known and confirmed clearly
by our simulation results (some of which are presented in Section 3) that the loss of
efficiency can occur when, among other possible situations, the sample size is small or
moderate, or β0 is far from 0. It is also well known that in medical clinical trials, the
sample size of survival data is often small or moderate. With these in mind, a natural
question would be: Does the actual maximum likelihood estimator (MLE) for β0 (i.e.,
the MLE based on the complete or full likelihood) perform better for small or moderate
samples? We do not know the answer to this question because up to now the actual
MLE has not been given in the literature.

Using Poisson process arguments and parameterizing via baseline hazard λ0(t), Efron
(1977) showed that the complete or full likelihood function can be expressed as the
product of Cox’s partial likelihood function and a factor which involves both β and
observed data; see equation (3.10) of Efron (1977). This means that for finite samples,
the inference based on the partial likelihood is not based on all the observed data in
the sense that the partial likelihood is not the likelihood of observed sample (2); see
discussions on page 559 of Efron (1977). But, in Efron’s formula it is not obvious how
to profile out nuisance parameter λ0(t) in order to obtain the actual MLE for β0.

In this article, we use the empirical likelihood approach (Owen, 1988) to parameter-
ize the full likelihood function of the Cox model (1) through F0, which is the baseline d.f.
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corresponding to baseline hazard function λ0(t). After explicitly profiling out nuisance
parameter F0, the (profile) likelihood function for β0 is obtained and is not too much
more complicated than the partial likelihood function; thus the actual MLE for β0 can
easily be computed. Note that the key to achieving our results here is the combina-
tion of utilizing the Lehmann family properties and our current understanding of the
empirical likelihood techniques. Although Cox’s partial likelihood has been carefully
studied in the past 35 years, the Lehmann family properties, which are equivalent to
the Cox model assumption (1), have not been used in the literature to parameterize the
full likelihood function for the Cox model.

Based on our full likelihood function for (β0, F0) under the Cox model (1) with ob-
served sample (2), Section 2 derives the MLE (β̂n, F̂n) for (β0, F0), where the relation
between β̂n and β̂c is made clear by showing that Taylor’s expansion gives Cox’s par-
tial likelihood estimating function ϕn(β) as the leading term of the profile estimating
function ψn(β) induced by the full likelihood function. Section 2 also shows that the
log full-likelihood ratio has an asymptotic chi-squared distribution. Section 3 discusses
computational issues and treatment of ties, and presents some simulation results which
show that the MLE β̂n performs favorably over β̂c for small or moderate sample sizes,
especially when β0 is away from 0. In Section 4, we discuss a real dataset example, where
our full-likelihood ratio test and Cox’s partial likelihood ratio test lead to statistically
different conclusions.

The findings in this article suggest that the MLE is preferred over Cox’s partial
likelihood estimator when sample size n is small or moderate. While this should not be
a surprise since the MLE is based on all the observed data in the sense that it is based
on the likelihood of observed sample (2), further studies can help better understand
the estimation bias for finite samples which will be considered in a separate paper.
Our other appealing findings here include: (a) Wilk’s theorem holds for the log full-
likelihood ratio of β0; (b) the full likelihood function leads to the MLE jointly for (β0, F0);
(c) the computation for the MLE β̂n is only slightly more complicated than Cox’s partial
likelihood estimator β̂c; (d) our method can be extended to deal with other types of
censored data. This last point is of particular interest because it is well known that
the counting process approach is applicable to right censored data, but not complicated
types of censored data, such as doubly censored data (Chang and Yang, 1987; Gu and
Zhang, 1993), interval censored data (Groeneboom and Wellner, 1992), etc.

While the main focus of this paper is the estimation of β0 with small or moderate
sample size n, it is worth noting that the MLE F̂n for baseline distribution F0 does not
require any extension or approximation of the continuous proportional hazard model
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to discrete data; rather it is based on a full likelihood function with possible candidate
d.f. that assigns all its probability mass to observations Vi’s and interval (V(n),∞).
In contrast, there have been several competing methods for estimation of F0(t) or the
cumulative baseline hazard function Λ0(t) that require the use of discrete logistic model
(Cox, 1972), or grouping continuous model (Kalbfleisch and Prentice, 1973), or dis-
cretizing continuous proportional hazard model to have approximated MLE (Breslow,
1974) in the context of counting process (Andersen and Gill, 1982), etc.. For detailed
discussions and more references, we refer to Andersen, Borgan, Gill and Keiding (1993;
Section IV.1.5) and Kalbfleisch and Prentice (2002; page 143).

2 Maximum Likelihood Estimators

For simplicity of presentation, in this section we consider the case when covariate Z
is a scaler rather than a vector, i.e., p = 1 in (1). Since the generalization of our results
to multivariate case is straightforward, the results for case with p > 1 are summarized
at the end of this section.

To parameterize the full likelihood function via F0, we notice that under the as-
sumption of the Cox model (1), each Xi has a d.f. that satisfies

(4) F̄ (t |Zi) = [F̄0(t)]ci ⇔ f(t |Zi) = cif0
(t)[F̄0(t)]ci−1,

where ci = exp(Ziβ), F̄0(t) = [1 − F0(t)] and F (t |Zi) is the conditional d.f. of Xi

given Z = Zi, while f(t |Zi) and f
0
(t) are the density functions of F (t |Zi) and F0(t),

respectively. As the usual empirical likelihood treatment for continuous d.f.’s, we let

P{X = t |Z = z} = dF (t | z) = F (t | z)− F (t− | z),

P{Y = t} = dFY (t) = FY (t)− FY (t−),

dF 0(t) = F0(t)− F0(t−),

and treat f(t | z) dt = dF (t | z) and f
0
(t) dt = dF0(t). Then, under the Cox model (1)

with data (2), the likelihood function of (Vi, δi) given Z = Zi is given by

n∏
i=1

P{V = Vi, δ = δi |Z = Zi} =
n∏

i=1

(
F̄Y (Vi) dF (Vi |Zi)

)δi
(
dFY (Vi)F̄ (Vi |Zi)

)1−δi

,

which under (4) is proportional to

n∏
i=1

[F (Vi |Zi)−F (Vi− |Zi)]δi [F̄ (Vi |Zi)]1−δi =
n∏

i=1

(
ci[F0(Vi)−F0(Vi−)]

)δi
(
F̄0(Vi)

)ci−δi

.
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Hence, if, without loss of generality, we assume that there are no ties among Vi’s and
assume that V1 < · · · < Vn with p

i
= F (Vi) − F (Vi−), the full likelihood function for

(β0, F0) in Cox model (1) with right censored data (2) is given by

(5) L(β, F ) =
n∏

i=1

(cipi
)δi(

∑n+1
j=i+1pj

)ci−δi ,

where F (x) =
∑n

i=1 pi
I{Vi ≤ x} satisfying

∑n+1
i=1 pi

= 1 with 0 ≤ p
n + 1

≤ 1.
Denoting di = ci + · · · + cn, we show in the Appendix that for any fixed value β

satisfying cn ≥ 1, likelihood function L(β, F ) is maximized by:

(6) 1− F̂n(t) =
∏
Vi≤t

di − δi
di

.

In (5), we replace F by F̂n, then from the proof of (6) given in the Appendix (see (A.1)),
we obtain the following profile likelihood function for β0:

(7) l(β) =
n∏

i=1

( ci
di

)δi
(di − δi

di

)di−δi

.

Thus, the MLE for β0 is given by the solution β̂n which maximizes the value of l(β),
and consequently F̂n in (6) with β replaced by β̂n is the MLE for F0.

Differentiating log l(β), algebra shows that β̂n should be a solution of equation

(8) ψn(β) ≡ n−1
n∑

i=1

δi

(
Zi + ei log

di − 1
di

)
= 0,

where ei = Zici + · · · + Zncn, and due to (7), log 0 is set to 0 whenever it occurs. The
Newton-Raphson method can be used to compute β̂n.

Remark 1. On Condition cn ≥ 1: Throughout this section so far, all arguments
require cn ≥ 1 for any fixed β, which ensures a well-defined (6) (i.e., all terms on the
right-hand side of equation are between 0 and 1) because di > cn ≥ 1 for all 1 ≤ i < n.
Note that the requirement of cn ≥ 1 for any positive or negative β is equivalent to
requiring Zn = 0. Thus, in practice and for the rest of this paper, the natural way
to handle this is to adjust Zi to Z̃i = Zi − Zn, 1 ≤ i ≤ n, which rewrites model (1)
as λ(t; Zi) = λβ,n(t) exp(Z̃iβ) with λβ,n(t) = λ0(t) exp(Znβ). In (5)-(8), we replace Zi

and ci by Z̃i and c̃i = exp(Z̃iβ), respectively, then we have that c̃n ≡ 1 for any β; the
solution of (8) gives the MLE for β0, still denoted as β̂n; and the resulting estimator in
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(6), still denoted by ¯̂
Fn, is the MLE for [F̄0(t)]e

Znβ
, thus the MLE for F̄0(t) is given by

[ ¯̂
Fn(t)]e

−Znβ̂n . Our extensive simulation studies show that such a treatment on condition
cn ≥ 1 gives excellent performance on the resulting MLE β̂n and the Newton-Raphson
algorithm. Finally, it should be noted that adjusting Zi to Z̃i = Zi − Zn, 1 ≤ i ≤ n,
does not change the Cox’s partial likelihood function, thus does not affect β̂c.

Interestingly, by Taylor’s expansion we show in the Appendix that the MLE β̂n is
linked with Cox’s partial likelihood estimator β̂c by the following:

(9) ψn(β) = ϕn(β) +Op

( log n
n

)
,

where ϕn(β) is the partial likelihood estimating function in (3). Further, Wilk’s theorem
on the log full-likelihood ratio is established below with proof given in the Appendix.

THEOREM 1. Assume (9) and assume the regularity conditions on Cox model (1)
(Andersen and Gill, 1982). Then, R0 = −2 log[l(β0)/l(β̂n)] converges in distribution to
a chi-squared distribution with 1 degree of freedom as n→∞.

Remark 2. On p -Dimensional Covariate Zi: If Zi and β are p -dimensional vectors
with p > 1 in (1)-(2), with minor modifications on the derivations and the proofs we
have that (4)-(9) hold with ci = exp(Z>

i β) and ei as p -dimensional vectors, which imply
that (8) has p equations. Moreover, a minor modified proof of Theorem 1 shows that
R0 converges in distribution to a chi-squared distribution with p degree of freedom.

3 Simulations

This section first presents some simulation results to compare the MLE β̂n with Cox’s
partial likelihood estimator β̂c for the case without ties among Vi’s in (2). Then, we
discuss how to handle ties among Vi’s, and present some simulation results to compare
β̂n with Efron’s estimator β̂E . In all our simulation studies, β̂n is calculated using the
Newton-Raphson method with β̂c or β̂E as the initial value for the algorithm. Routines
in FORTRAN for computing β̂n are available from the authors.

Without Ties Among Vi’s in (2):

Let Exp(µ) represent the exponential distribution with mean µ, and U(0, 1) the
uniform distribution on (0, 1). In our simulation studies, we consider FY = Exp(2)
as the d.f. of the right censoring variable Yi, FZ = U(0, 1) as the d.f. of Z, and
FX|Z = Exp(e−Zβ0) as the conditional d.f. of X given Z; thus (X,Z) satisfies the Cox
model (1) with regression parameter β0 and baseline d.f. F0 =Exp(1). For each case of
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β0 = 1, 0,−1, we generate 1000 samples with sample size n = 15, 20, 30, 50, respectively,
and for each n Table 1 includes the simulation average of β̂c and β̂n with the simulation
standard deviation (s.d.) given in the parenthesis next to them, respectively. The
censoring percentage in each case is also reported in Table 1.

Table 1. Comparison between β̂c and β̂n

Parameter β0 = 1 β0 = 0 β0 = −1

Sample Size Ave. β̂c Ave. β̂n Ave. β̂c Ave. β̂n Ave. β̂c Ave. β̂n

n = 15 1.145 (1.42) 1.042 (1.36) 0.020 (1.47) 0.016 (1.41) -1.120 (1.72) -1.062 (1.66)

n = 20 1.116 (1.13) 1.035 (1.09) 0.052 (1.23) 0.047 (1.16) -1.112 (1.44) -1.060 (1.39)

n = 30 1.081 (0.85) 1.018 (0.83) 0.013 (0.93) 0.009 (0.89) -1.066 (1.04) -1.018 (1.02)

n = 50 1.036 (0.64) 0.988 (0.63) 0.003 (0.68) -0.001 (0.66) -1.020 (0.74) -0.986 (0.74)

Censoring % 23.7% 33.4% 45.4%

Table 1 clearly shows that the MLE β̂n performs better than Cox’s partial likelihood
estimator β̂c for small or moderate sample sizes when β0 is away from 0. For instance,
the loss in precision for β0 = ±1 with, say, n = 15 is reflected by the simulation Mean
Square Error (MSE). Simple calculation gives that when β0 = 1, the simulation MSE
is 2.037 and 1.851 for β̂c and β̂n, respectively, yielding 1.851/2.037 = 90.9% (such ratio
is 92.2% for n = 20), while when β0 = −1, the simulation MSE is 2.973 and 2.759 for
β̂c and β̂n, respectively, yielding 2.759/2.973 = 92.8% (such ratio is 92.7% for n = 20).
The loss in precision for β̂c shows even more obviously when we use β0 = ±2,±3, · · ·
in simulation studies of Table 1. To illustrate, we include results for β0 = −2 with
sample size n = 15 in Table 2, where Relative Bias is |(β̂ − β0)/β0|, Relative MSE
is E[(β̂ − β0)/β0]2 and the censoring variable is still Exp(2). Note that the ratio of
simulation relative MSE for β̂n and β̂c is 8.969/33.658 = 26.6% in Table 2.

Table 2. Comparison between β̂c and β̂n

β0 = −2, n = 15, [Censoring Percentage] = 57.0%

Estimator Simulation Mean (s.d.) Simulation Relative Bias Simulation Relative MSE

β̂c -3.403 (11.518) 0.702 33.658

β̂n -2.828 ( 5.932) 0.414 8.969

Finally, although not presented here, our simulation studies also show that according
to Remark 1, the MLE F̂n given in (6) provides a very good estimate for 1− [F̄0(t)]e

Znβ
.
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With Ties Among Vi’s in (2):

Let W1 < · · · < Wm be all the distinct observations of V1 ≤ · · · ≤ Vn, where m < n,
and for those tied Vj ’s, the uncensored Vj ’s are ranked ahead of the censored Vj ’s. If we
have, say, V1 = V2 = V3 = W1 with δ1 = δ2 = 1, δ3 = 0, then by Efron’s estimation (see
pages 48-49; Therneau and Grambsch, 2000) di’s in Cox’s partial likelihood function are
modified as d1 = c1 + c2 + · · ·+ cn, d2 = (c1 + c2)/2 + c3 + · · ·+ cn, d3 = c3 + · · ·+ cn,
etc., which give Efron’s estimator β̂E . Applying these modified di’s in (7)-(8), the MLE
for β0 when Vi’s have ties is given by the solution of (8), still denoted by β̂n.

Some simulation results are presented in Tables 3-4 to compare the MLE β̂n with β̂E .
In these simulation studies, we consider n = 15, FY =Exp(2), and FX|Z = Exp(e−Zβ0),
and we create ties among Vi’s as follows: compute tk = V1+ k

n(Vn−V1) for 0 ≤ k ≤ n+1,
and set Vi = tk+1 if Vi ∈ [tk, tk+1), which represents rounding errors in practice that
cause tied values among Vi’s. Table 3 includes the simulation results based on 1000
samples with FZ = U(0, 1) for β0 = −2 and β0 = 2, respectively, and reports the
average number m of distinct Vi’s. Table 4 includes results of the same simulation
studies with FZ =Exp(1) for β0 = −0.75 and β0 = 0.75, respectively.

Table 3. Comparison between β̂E and β̂n

FZ = U(0, 1) Estimator Simul. Mean (s.d.) Rel. Bias Rel. MSE Ave. m

β0 = −2 β̂E -3.025 (9.044) 0.513 20.711 8.3

Censoring: 57.0% β̂n -2.662 (5.541) 0.331 7.785 8.3

β0 = 2 β̂E 2.167 (1.349) 0.084 0.462 7.8

Censoring: 16.8% β̂n 2.013 (1.329) 0.007 0.442 7.8

Table 4. Comparison between β̂E and β̂n

FZ =Exp(1) Estimator Simul. Mean (s.d.) Rel. Bias Rel. MSE Ave. m

β0 = −0.75 β̂E -1.115 (2.490) 0.487 11.259 8.2

Censoring: 50.4% β̂n -1.029 (1.602) 0.372 4.701 8.2

β0 = 0.75 β̂E 0.749 (0.435) 0.001 0.336 7.9

Censoring: 20.9% β̂n 0.713 (0.428) 0.049 0.328 7.9

Overall, Tables 3-4 show that the MLE β̂n performs favorably. In particular, note
that the ratio of simulation relative MSE for β̂n and β̂E is 7.785/20.711 = 37.59% for
β0 = −2 in Table 3, while such ratio is 4.701/11.259 = 41.8% for β0 = −0.75 in Table 4.
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4 Data Example

We consider the Stanford Heart Transplant data set (Escobar and Meeker, 1992; it is
available in R library with file name ‘stanford2’), where Z is the age of a patient and X
is the survival time subject to right censoring. To see the smaller sample performance,
we use observations number 76 − 100 and observations number 50 − 100, respectively,
to test H0 : β = 0 vs. H1 : β 6= 0 using Wald test, the partial likelihood ratio (PLR)
test and our full likelihood ratio (FLR) test according to Theorem 1. The results are
summarized in Table 5, which show that PLR test and FLR test can lead to statistically
different conclusions for smaller sample size n.

Table 5. Stanford Heart Transplant Data

n Censored Obs. β̂c β̂n Wald Test PLR Test FLR Test

Obs. used: 76− 100 25 8 0.367 0.397 0.063 0.056 0.038

Obs. used: 50− 100 51 23 0.153 0.149 0.050 0.045 0.049

APPENDIX

Proof of (6): Let ai = p
i
/bi and bi =

∑n+1
j=i pj

. Then, we have that b1 = 1,
bn+1 = p

n + 1
, bi+1 = (bi − pi), (1− ai) = bi+1/bi, and algebra can rewrite (5) as

(A.1) L(β, F ) =
n∏

i=1

(cipi
)δi(bi − p

i
)ci−δi =

n∏
i=1

(ciai)δi(1− ai)di−δi .

From the 1st and 2nd partial derivatives of logL with respect to ai’s, we know that
the solution of equations ∂(logL)/∂ai = 0 is given by âi = 1/di, 1 ≤ i ≤ n, and
it maximizes L(β, F ) under condition cn ≥ 1. Hence, (6) follows from noting that
¯̂
Fn(t) =

∏
Vi≤t(1− âi) and that condition cn ≥ 1 implies all 0 ≤ âi ≤ 1. �

Proof of (9): We give the proof assuming that cn = 1 (based on Remark 1),
|β| ≤Mβ <∞ and Z has a finite support. From Taylor’s expansion, we have in (8),

ψn(β) = n−1
n∑

i=1

δiZi − n−1
n−1∑
i=1

δiei

( 1
di

+
1

2ξ2i

)
+
en
n

log
cn − δn
cn

= ϕn(β) + n−1δnZn − 1
2
Rn = ϕn(β) +Op(n−1)− 1

2
Rn,(A.2)
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where Rn = n−1
∑n−1

i=1 (δiei)/ξ2i with ξi being between di and (di − δi), and we have

|Rn| ≤
1
n

n−1∑
i=1

|ei|
(di − 1)2

=
1
n

n−1∑
i=1

|ei|
d2

i (1− 1/di)2
≤ 1
n

n−1∑
i=1

|ei|
d2

i

(
1 +

1
cn−1

)2

≤ Op(n−1) max
1≤i≤n

|Zi|
n−1∑
i=1

exp(−mi(β))
exp(Ziβ −mi(β)) + · · ·+ exp(Znβ −mi(β))

≤ Op(n−1)
n−1∑
i=1

1
n− i+ 1

= Op

( log n
n

)
(A.3)

for mi(β) = min{Zjβ | i ≤ j ≤ n}. The proof follows from (A.2)-(A.3). �

Proof of Theorem 1: Applying Taylor’s expansion on log l(β0) at point β̂n, we
have that from ψn(β) = n−1 d

dβ log l(β) in (8) and ψn(β̂n) = 0,

(A.4) R0 = −nψ′n(ξ)(β0 − β̂n)2 = −ψ′n(ξ)[
√
n(β̂n − β0)]2,

where ξ is between β̂n and β0. From (9), we know that
√
n(β̂n − β0) and

√
n(β̂c − β0)

have the same limiting distribution N(0, σ2) for some constant 0 < σ2 <∞. It suffices
to show that −ψ′n(ξ) converges to 1/σ2 in probability as n→∞.

From Taylor’s expansion and cn = 1, we have that in (9)

−ψ′n(β) =− n−1
n−1∑
i=1

(
e′i log

di − δi
di

+
δie

2
i

di(di − δi)

)
=− n−1

n−1∑
i=1

{
e′i

(
− δi
di
− δi

2ξ2i

)
+
δie

2
i

di

( 1
di

+
δi
η2

i

)}
=− ϕ′n(β) + 1

2
R1,n −R2,n,(A.5)

where R1,n = n−1
∑n−1

i=1 δie
′
i/ξ

2
i and R2,n = n−1

∑n−1
i=1 δie

2
i /(diη

2
i ) with ξi and ηi being

between di and (di−δi). Applying the argument in (A.3) to R1,n and R2,n, respectively,
we obtain −ψ′n(β) = −ϕ′n(β) + Op((log n)/n). The proof follows from the fact that
−ϕ′n(β) is the negative second derivative of the log of Cox’s partial likelihood, and
−ϕn(β0) converges to 1/σ2 in probability as n→∞; see Andersen and Gill (1982). �
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