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We study dispersive properties for the wave equation in the Kerr space–time with

small angular momentum. The main result of this paper is to establish uniform energy

bounds and local energy decay for such backgrounds. This follows similar results for

the Schwarzschild space–time proved earlier in [3], [8], and [16] and extended in earlier

work [29] of the authors and collaborators.

1 Introduction

The Schwarzschild space–times are the unique spherically symmetric solutions to the

vacuum Einstein equations, modeling stationary black holes. This family of solutions is

parametrized by the mass M > 0, which can be viewed as a scaling parameter. In the

limit M → 0, one obtains the Minkowski space–time.

The Kerr space–times are stationary axisymmetric solutions to the vacuum

Einstein equation, modeling rotating black holes. They are parametrized by the mass

M, which is again a scaling parameter, and by the angular momentum per unit mass

a. When a = 0, one recovers the Schwarzschild space–time. If a is small, |a| � M, then

one can formally think of the Kerr metric as a small perturbation of the Schwarzschild

metric.
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2 D. Tataru and M. Tohaneanu

There are also other related models which correspond to the vacuum Einstein

equation with a nonzero cosmological constant, namely the Schwarzschild–de Sitter

and Kerr–de Sitter space–times (with positive cosmological constant), respectively the

Schwarzschild–anti-de Sitter and Kerr–anti-de Sitter space–times (with negative cosmo-

logical constant).

Geometrically, in each of these models one can identify an exterior region, which

is bounded by the event horizon. The event horizon is a null surface, which in suitable

coordinates can be viewed as the union of two half infinite cylinders originating on a

common sphere called the bifurcate sphere. These two cylinders separate the exterior

region from a white hole in the past and the black hole in the future. Null geodesics can

travel from the white hole into the exterior region and from the exterior region into the

black hole, but not the other way around.

Another common geometric feature is the existence of a family of trapped null

geodesics within the exterior region. In the Schwarzschild case this family consists of

all geodesics tangent to a stationary sphere called the photon sphere. Thus, the fam-

ily of trapped null geodesics has dimension 3. In the Kerr case one still has a three-

dimensional family of trapped null geodesics, but this family is no longer located on a

single sphere. However, if the angular momentum is small, |a| � M, then the trapped

set stays close to a sphere. Its geometry is more complicated but, due to the complete

integrability of the null geodesic flow (see [10]), it is still analytic and can be explicitly

described.

The last geometric feature of these space–times is their geometry at spatial in-

finity. Both Schwarzschild and Kerr are asymptotically flat, so in many respects they

behave like small perturbations of the Minkowski space–time. However, in the de Sitter

and anti-de Sitter cases one encounters a different geometry, which is beyond the scope

of the present paper.

For general information about the geometry of the Schwarzschild/Kerr type

space–times, we refer the reader to [11] and [21].

The decay properties of solutions to the linear wave equation in Schwarzschild

or Kerr space–times are interesting both intrinsically and as a stepping stone toward

the understanding of the stability of the Schwarzschild/Kerr space–time as solutions to

the vacuum Einstein equation. There are several useful ways of measuring the decay.

Perhaps the most robust one is the local energy decay, that is, the averaged decay of

the energy in a compact set in space. Another type of averaged decay is provided by the

Strichartz type estimates. Both the local energy decay and the Strichartz estimates are

translation invariant in time, and only require finite energy initial data. On the other
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Local Energy Decay in Kerr 3

hand, if one assumes that the initial data have some stronger decay at infinity then one

can look for uniform pointwise decay of the solutions in a compact set.

Local energy decay estimates in the Minkowski space–time originate in the work

of Morawetz [33]. There are many similar results obtained in the case of perturbations

of the Minkowski space–time; see, for example, [33], [24], [25], [37],[39], [40], [1], and [31].

Relevant to us is the case of small long range perturbations of the Minkowski space–

time, considered in [32].

Strichartz estimates are well understood in the Minkowski space–time; we refer

the reader to the survey paper [20]. However, the case of small perturbations of the

Minkowski space–time turned out to be considerably more difficult, and was settled

only recently in [32].

Pointwise decay estimates in the Minkowski space–time mirror the decay prop-

erties of the fundamental solution. For certain small perturbations of Minkowski, a very

useful idea turned out to be the vector field method, introduced by Klainerman and col-

laborators (see, e.g., [26]). For further references we refer the reader to the monographs

[38] and [22].

Let us turn our attention now to the Schwarzschild and Kerr space–times. Near

infinity they are small perturbations of the Minkowski space–time, therefore one would

expect a similar behavior. However, within a compact spatial region one needs to deal

with a new phenomenon, namely trapping; the definition of “compact” here is related to

the choice of coordinates. The trapping occurs in two separate ways:

i) Near the event horizon. Indeed, since the event horizon is a null surface, it

follows that null geodesics originating on the event horizon and traveling in a

tangent direction will remain on the event horizon. This is a two-dimensional

family of trapped rays.

ii) Near the photon sphere. This is a four-dimensional family of trapped rays

that stay away from the event horizon.

In general, trapping can completely destroy the decay properties for solu-

tions to the wave equation. However, heuristically this is not expected to occur in the

Schwarzschild and Kerr cases. This happens for different reasons for the two trapped

families of null geodesics. On the one hand, near the event horizon waves are subject to

what in the physics literature is called the red shift effect, and decay exponentially in

the high-frequency approximation. On the other hand, the trapped null geodesics near

the photon sphere are hyperbolic, therefore in the high-frequency limit the energy can
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4 D. Tataru and M. Tohaneanu

stay trapped there only up to logarithmic time scales (the so-called Ehrenfest time). Un-

derstanding how exactly to take advantage of these features took a bit of time.

The first results regarding the solution of the wave equation on Schwarzschild

backgrounds were obtained in [44] and [23] which proved uniform boundedness in the

exterior region. The first pointwise decay result (without, however, a rate of decay) was

obtained in [43]. Heuristics from [35] suggest that solutions to the wave equation in the

Schwarzschild case should decay like v−3 in a compact spatial region. Here v, defined

later in (3.2), is the so-called advanced time and plays the role of a time variable. For

spherically symmetric data, a v−3+ε decay rate was obtained in [12], and under the ad-

ditional assumption of the initial data vanishing near the event horizon, the t−3 decay

rate was proved away from the event horizon in [27].

Local energy estimates were first proved in [28] for radially symmetric

Schrödinger equations on Schwarzschild backgrounds. In [3–5], those estimates are ex-

tended to allow for general data for the wave equation. The same authors, in [6, 7], have

provided studies that give certain improved estimates near the photon sphere r = 3M.

Variants of these bounds have played an important role in [8] and [16] which

use a spherical harmonics decomposition and Morawetz type estimates to prove certain

local energy decay estimates as well as analogs of the Morawetz conformal estimates

on Schwarzschild backgrounds. This allows one to deduce a v−2 uniform decay rate for

the local energy away from the event horizon. An additional insight in [16] is that, by

energy estimates with respect to a suitably chosen vector field, one can extend these

decay estimates in a uniform way up to the event horizon. This provides a quantitative

way of exploiting the red shift effect.

The article [29] of the authors and collaborators further contributes to the under-

standing of the local energy decay estimates in the Schwarzschild space–time in several

ways: (1) by providing a simpler global formulation of the decay estimates, (2) by proving

the result directly, using a single Morawetz type multiplier without a spherical harmon-

ics decomposition (see also the independent work [13]), (3) by observing that it is pos-

sible and indeed natural to extend the decay estimates to a neighborhood of the event

horizon inside the black hole, and (4) by providing a refined analysis near the photon

sphere, leading to a stronger estimate with only log losses (see also the related articles

[6,7]). It is also observed in [29] that the frequency decays exponentially along the null

geodesics which are trapped on the event horizon, which leads to a high-frequency mi-

crolocal energy decay near these rays; this seems to be a well-known fact in the physics

literature, but less so in the mathematics literature. This can be viewed as a microlocal
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Local Energy Decay in Kerr 5

interpretation of the red shift effect and improves the understanding of the earlier ideas

in [16].

Further work has been carried out toward establishing Price’s law in various

contexts, see for instance [27] and [36]; this is outside the scope of the present paper.

Finally, we note that stronger decay (both for the energy and pointwise) have been es-

tablished on de Sitter–Schwarzschild space; see, for example, [9], [17], and [30].

We now turn our attention to the wave equation on the Kerr space–time, which

is the focus of the present article. Until recently, even the question of obtaining uniform

energy bounds was open. Away from the event horizon this was partially addressed

in [19] for individual azimuthal modes; however, these bounds cannot be summed to

yield bounds for the general solution. More recently, uniform energy bounds up to the

event horizon were established in [14] not only for the Kerr space–time but also for

a larger family of perturbations of the Schwarzschild space–time. Some uniform local

decay estimates were also obtained in [18].

The aim of this article, see Theorem 4.1, is to establish local energy decay esti-

mates in the Kerr space–time. As an easy corollary, we provide an alternate proof for the

uniform energy bounds in [14]. These estimates apply in the full region outside the event

horizon, as well as in a small neighborhood on the inside of the event horizon. We re-

mark that some similar local energy decay estimates (but with weights that vanish on a

neighborhood of r = 3M) were independently proved in [15] using related (but different)

methods.

The starting point in our analysis is the earlier work [29] of the authors and col-

laborators, which establishes similar bounds for the wave equation in the Schwarzschild

space–time. The idea is to treat the Kerr geometry as a small perturbation of the

Schwarzschild geometry, and then adapt the methods in [29]. Consequently in this ar-

ticle, we are only considering Kerr black hole backgrounds with small angular momen-

tum, which are close to the Schwarzschild space–time. Nevertheless, we are confident

that our methods will carry over also to the case of large angular momentum.

Another goal of the earlier article [29] was to establish Strichartz estimates in

the Schwarzschild space–time. A further goal of this work is to open the way toward

similar bounds in Kerr. Indeed, this has been accomplished in the second author’s Ph.D.

Thesis [42] and will be published as a separate article.

The local energy estimate in [29] is proved using the multiplier method; the deli-

cate issue there is to show that a suitable multiplier can be found. This method is quite

robust under small perturbations of the metric, and for the most part it easily carries

over to the Kerr backgrounds with small angular momentum. There is however one re-
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6 D. Tataru and M. Tohaneanu

gion where this does not apply, precisely near the photon sphere r = 3M (which contains

all the trapped spatially periodic geodesics in the Schwarzschild space–time, except for

the rays along the event horizon, which are not relevant to this discussion). Hence, most

of the new analysis here is devoted to understanding what happens there. In effect, as

proved in [2], there is no differential multiplier that will achieve the desired goal. We are

able to bypass this difficulty by constructing a suitable pseudodifferential multiplier.

The paper is organized as follows. In the next section, we discuss the classi-

cal local energy decay estimates in the Minkowski space–time and small perturbation

thereof. Then we provide a brief overview of the local energy estimates proved in [29]

for the Schwarzschild space–time, along with a discussion of the relevant geometrical

issues. Finally, the last section contains the description of the Kerr space–time and all

the new results. Our main local energy estimate is contained in Theorem 4.1. This is

complemented by higher order bounds in Theorem 4.5.

2 Local Energy Decay in the Minkowski Space–Time

In the Minkowski space–time R
3+1, consider the wave equation with constant

coefficients

�u = f, u(0) = u0, ∂tu(0) = u1. (2.1)

Here � = −∂2
t + �. More generally, let

�g = 1√−g
∂i(

√−ggij∂ j)

be the usual d’Alembertian associated to a Lorentzian metric g.

The seminal estimate of Morawetz [33] asserts that for solutions to the homoge-

neous equation �u = 0 we have the estimate

∫
R

∫
R3

1

|x| |�∇u|2(t, x) dx dt +
∫

R

|u(t, 0)|2dt � ‖∇u0‖2
L2 + ‖u1‖2

L2 (2.2)

where �∇ denotes the angular derivative. This is obtained combining energy estimates

with the multiplier method. The radial multiplier Qu = (∂r + 1/r)u is used, where r de-

notes the radial variable.

Within dyadic spatial regions, one can control the full gradient ∇u, but the

square summability with respect to dyadic scales is lost. Precisely, we define the
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Local Energy Decay in Kerr 7

Minkowski local energy norm L EM by

‖u‖L EM = sup
j∈Z

2− j
2 ‖u‖L2(R×{|x|∈[2 j−1,2 j ]}) (2.3)

and its H1 counterpart

‖u‖L E1
M

= ‖∇x,tu‖L EM + ‖|x|−1u‖L EM . (2.4)

For the inhomogeneous term, we use the dual norm

‖ f‖L E∗
M

=
∑
k∈Z

2
k
2 ‖ f‖L2(R×{|x|∈[2k−1,2k]}). (2.5)

Then we have the following scale invariant local energy estimate for solutions u

to the inhomogeneous equation (2.1):

‖∇u‖L∞
t L2

x
+ ‖u‖L E1

M
� ‖∇u0‖L2 + ‖u1‖L2 + ‖ f‖L E∗

M+L1
t L2

x
. (2.6)

This is proved using a small variation of Morawetz’s method, with multipliers of the

form a(r)∂r + b(r) where a is positive, bounded and increasing.

The case of small long range perturbations of the Minkowski space–time was

considered in [32]. The metrics g in R
3+1 considered there satisfy

∑
k∈Z

sup
|x|∈[2k−1,2k]

|g(t, x) − gM| + |x||∇x,tg(t, x)| + |x|2|∇2
x,tg(t, x)| ≤ ε (2.7)

where gM stands for the Minkowski metric. Then as a special case of the results in [32]

we have

Theorem 2.1. [32] Let g be a Lorentzian metric in R
3+1 which satisfies (2.7) with ε small

enough. Then the solution u to the inhomogeneous problem

�u = f, u(0) = u0, ∂tu(0) = u1 (2.8)

satisfies the estimate (2.6). �

No general such results are known for large perturbations, where on one hand

trapping for large frequencies and on the other hand eigenvalues and resonances for
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8 D. Tataru and M. Tohaneanu

small frequencies create major difficulties. The Schwarzschild and Kerr metrics are such

large perturbations where trapping plays a major role.

3 Local Energy Decay in the Schwarzschild Space–Time

In the original coordinates, the Schwarzschild space–time is given as a metric whose

line element is (for I = R × (2M,∞) × S
2)

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dω2 (3.1)

where dω2 is the measure on the sphere S
2, and t and r are the time and the radius of

the S
2 spheres, respectively. This metric is well defined in two regions,

I = R × (2M,∞) × S
2, I I = R × (0, 2M) × S

2

Let �S denote the associated d’Alembertian.

The singularity at r = 0 is a true metric singularity. However, the singularity at

the event horizon r = 2M is an apparent singularity that can be removed by a different

choice of coordinates. Following [21], let

r∗ = r + 2M log(r − 2M) − 3M − 2M log M, v = t + r∗. (3.2)

In the new coordinates (v, r, ω), the metric becomes

ds2 = −
(
1 − 2M

r

)
dv2 + 2dvdr + r2dω2

and can be extended to a larger manifold N = R × (0,∞) × S
2 that consists of copies of

the regions I and I I and the part of the event horizon separating them. Moreover, if

w = t − r∗, one can introduce global nonsingular coordinates by rewriting the metric in

the Kruskal–Szekeres coordinate system,

v′ = e
v

4M , w′ = −e− w
4M .

Returning to the r, v coordinates, we define the notion of trapped null geodesics

as follows:
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Local Energy Decay in Kerr 9

Definition 3.1. We say that a null geodesic in the subset N of the Schwarzschild space–

time is trapped if its maximal extension remains in a bounded region

0 < rmin < r(v) < rmax < ∞. �

There are two families of trapped null geodesics on the Schwarzschild manifold.

The first is at the event horizon r = 2M, where the trapped geodesics are the vertical ones

in the (r, v, ω) coordinates. However, this family of trapped rays turns out to cause no dif-

ficulty in the decay estimates. This is due to the so-called red shift effect, whose microlo-

cal interpretation is that the frequency decays exponentially along these trapped rays

as v → ∞, causing microlocal exponential decay in the high-frequency limit (see also

the discussion following the formula (4.51)). The second family of trapped rays consists

of null geodesics approaching the surface r = 3M (called the photon sphere) asymptoti-

cally; in particular, null geodesics which are initially tangent to the photon sphere will

remain on the surface for all times. Unlike the previous case, the energy is conserved for

waves localized along such rays. However, what makes local energy decay estimates at

all possible is the fact that the trapped rays on the photon sphere are hyperbolic within

the family of null geodesics in the Schwarzschild space–time.

We remark that the family of geodesics described by this definition differs

slightly from the one in the introduction in the sense that here we include not only the

null geodesics lying on photon sphere, but also the ones approaching it as their affine

time goes to ∞.

The (r, v, ω) coordinates are nonsingular on the event horizon, but have the dis-

advantage that the level sets of v are null surfaces. This is why it is more convenient to

introduce

ṽ = v − μ(r)

where μ is a smooth function of r. In the (ṽ, r, ω) coordinates, the metric has the form

ds2 = −
(
1 − 2M

r

)
dṽ2 + 2

(
1 −

(
1 − 2M

r

)
μ′(r)

)
dṽdr

+
(
2μ′(r) −

(
1 − 2M

r

)
(μ′(r))2

)
dr2 + r2dω2.

On the function μ, we impose the following two conditions:

(i) μ(r) ≥ r∗ for r > 2M, with equality for r > 5M/2.
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10 D. Tataru and M. Tohaneanu

(ii) The surfaces ṽ = const are space-like, that is,

μ′(r) > 0, 2 −
(
1 − 2M

r

)
μ′(r) > 0.

The first condition (i) ensures that the (r, ṽ, ω) coordinates coincide with the (r, t, ω) coor-

dinates in r > 5M/2. This is convenient but not required for any of our results. What

is important is that in these coordinates the metric is asymptotically flat as r → ∞
according to (2.7).

Given 0 < re < 2M, we consider the wave equation

�Su = f (3.3)

in the cylindrical region

MR = {ṽ ≥ 0, r ≥ re} (3.4)

with initial data on the space-like surface

�−
R = MR ∩ {ṽ = 0}. (3.5)

The lateral boundary of MR,

�+
R = MR ∩ {r = re} (3.6)

is also space-like, and can be thought of as the exit surface for all waves which cross
the event horizon.

We define the initial (incoming) energy on �−
R as

E[u](�−
R) =

∫
�−

R

(
|∂ru|2 + |∂ṽu|2 + |�∇u|2

)
r2drdω (3.7)

the outgoing energy on �+
R as

E[u](�+
R) =

∫
�+

R

(
|∂ru|2 + |∂ṽu|2 + |�∇u|2

)
r2
e dṽdω (3.8)

and the energy on an arbitrary ṽ slice as

E[u](ṽ0) =
∫
MR∩{ṽ=ṽ0}

(
|∂ru|2 + |∂ṽu|2 + |�∇u|2

)
r2drdω. (3.9)
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Local Energy Decay in Kerr 11

The choice of the local energy norm L ES is inspired from (2.3). However, there is

a loss along the trapped geodesics on the photon sphere. Consequently, we introduce a

modified1 L2 local energy space

‖u‖L ES =
∥∥∥∥
(

1 − 3M

r

)
u

∥∥∥∥
L EM

. (3.10)

We remark that notations are slightly changed compared to [29] in order to ensure some

uniformity across the three models (Minkowski, Schwarzchild, and Kerr) described in

the present paper. Here and below, we implicitly assume that all norms are restricted to

the set MR where we study the wave equation (3.3). Correspondingly, we define the H1

local energy space

‖u‖L E1
S

= ‖∂ru‖L EM + ‖∂ṽu‖L ES + ‖�∇u‖L ES + ‖r−1u‖L EM . (3.11)

For the inhomogeneous term, we use the norm

‖ f‖L E∗
S

=
∥∥∥∥∥
(

1 − 3M

r

)−1

u

∥∥∥∥∥
L EM

. (3.12)

Then we have the following result:

Theorem 3.2. [29] Let u be so that �Su = f . Then we have

E[u](�+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
L E1

S
� E[u](�−

R) + ‖ f‖2
L E∗

S
. (3.13)

�

Note that, compared to the norms L EM, L E∗
M, the weights have an additional

polynomial singularity at r = 3M, but there are no additional losses at the event horizon

or near ∞. Furthermore, by more refined results in [29], this polynomial loss can be

relaxed to a logarithmic loss, that is, the factor 1 − (3M/r) can be improved to | ln(r −
3M)|−1 near r = 3M. This is related to the fact that the (spatially periodic) trapped rays

on the photon sphere are hyperbolic.

We also remark that in the expression of L E1
S it was sufficient to measure ∂ru.

This is due to the implicit cancelation caused by the fact that the symbol of the operator

∂r vanishes on the trapped set.

The choice of re ∈ (0, 2M) is unimportant since the r slices r = const ∈ (0, 2M)

are space-like. Hence, moving from one such r slice to another is equivalent to solving a
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12 D. Tataru and M. Tohaneanu

local hyperbolic problem. The existence of the Killing vector field ∂t ensures uniformity

for this local problem, therefore no global considerations are involved. Thus, in the proof

of the theorem one can assume without any restriction in generality that re is close

to 2M.

4 Local Energy Decay in the Kerr Space–Time

The Kerr geometry in Boyer–Lindquist coordinates is given by

ds2 = gttdt2 + 2gtφdtdφ + grrdr2 + gφφdφ2 + gθθdθ2

where t ∈ R, r > 0, (φ, θ) are the spherical coordinates on S
2 and

gtt = −� − a2 sin2 θ

ρ2 , gtφ = −a
2Mr sin2 θ

ρ2 , grr = ρ2

�

gφφ = (r2 + a2)2 − a2� sin2 θ

ρ2 sin2 θ, gθθ = ρ2

with
� = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ.

A straightforward computation gives us the inverse of the metric:

gtt = − (r2 + a2)2 − a2� sin2 θ

ρ2�
, gtφ = −a

2Mr

ρ2�
, grr = �

ρ2 ,

gφφ = � − a2 sin2 θ

ρ2� sin2 θ
, gθθ = 1

ρ2 .

The case a = 0 corresponds to the Schwarzschild space–time. We shall subse-

quently assume that a is small a � M, so that the Kerr metric is a small perturbation

of the Schwarzschild metric. We let �K denote the d’Alembertian associated to the Kerr

metric.

In the above coordinates, the Kerr metric has singularities at r = 0 on the equa-

tor θ = π/2 and at the roots of �, namely r± = M ± √
M2 − a2. As in the case of the

Schwarzschild space, the singularity at r = r+ is just a coordinate singularity, and cor-

responds to the event horizon. The singularity at r = r− is also a coordinate singularity;

for a further discussion of its nature, which is not relevant for our results, we refer the
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Local Energy Decay in Kerr 13

reader to [11, 21]. To remove the singularities at r = r±, we introduce functions r∗, v+,

and φ+ so that (see [21])

dr∗ = (r2 + a2)�−1dr, dv+ = dt + dr∗, dφ+ = dφ + a�−1dr.

The metric then becomes

ds2 = −(1 − 2Mr

ρ2 )dv2+ + 2drdv+ − 4aρ−2Mr sin2 θdv+dφ+ − 2asin2 θdrdφ+ + ρ2dθ2

+ρ−2[(r2 + a2)2 − �a2 sin2 θ ] sin2 θdφ2+

which is smooth and nondegenerate across the event horizon up to but not including

r = 0. Just like in [29], we introduce the function

ṽ = v+ − μ(r)

where μ is a smooth function of r. In the (ṽ, r, φ+, θ) coordinates, the metric has the form

ds2 = (1 − 2Mr

ρ2 )dṽ2 + 2
(

1 − (1 − 2Mr

ρ2 )μ′(r)

)
dṽdr

−4aρ−2Mr sin2 θdṽdφ+ +
(
2μ′(r) − (1 − 2Mr

ρ2 )(μ′(r))2
)
dr2

−2aθ(1 + 2ρ−2Mrμ′(r)) sin2 drdφ+ + ρ2dθ2

+ρ−2[(r2 + a2)2 − �a2 sin2 θ ] sin2 θdφ2+.

On the function μ, we impose the following two conditions:

(i) μ(r) ≥ r∗ for r > 2M, with equality for r > 5M/2.

(ii) The surfaces ṽ = const are space-like, that is,

μ′(r) > 0, 2 − (1 − 2Mr

ρ2 )μ′(r) > 0.

As long as a is small, we can work with the same function μ as in the case of the

Schwarzschild space–time.

For convenience, we also introduce

φ̃ = ζ(r)φ+ + (1 − ζ(r))φ
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14 D. Tataru and M. Tohaneanu

where ζ is a cutoff function supported near the event horizon and work in the (ṽ, r, φ̃, θ)

coordinates which are identical to (t, r, φ, θ) outside of a small neighborhood of the event

horizon.

Carter [10] showed that the Hamiltonian flow is completely integrable by finding

a fourth constant of motion K that is preserved along geodesics. If E and L are the two

constants of motion associated with the Killing vector fields ∂t and ∂φ , the equations for

the null geodesics can be reduced to the following (see, e.g., [11] or [34])

ρ2ṫ = a(L − Easin2 θ) + (r2 + a2)((r2 + a2)E − aL)

�
,

ρ2φ̇ = L − Easin2 θ

sin2 θ
+ (r2 + a2)aE − a2L

�
,

ρ4θ̇2 = K − (L − Easin2 θ)2

sin2 θ
,

ρ4ṙ2 = − K� + ((r2 + a2)E − aL)2

(4.1)

where the overdot denotes differentiation with respect to an affine parameter s. This

parametrization of the null geodesics is nondegenerate away from the surfaces r = r±.

Next we discuss the geometry of the trapped null geodesics. Here by trapped null

geodesic we mean a null geodesic which remains for all times in a bounded r region, say

r− < re < inf r(t) ≤ sup r(t) < ∞. The level sets r = r0 of r are time-like for r0 > r+, null

for r = r+ and space-like for r− < r0 < r+. The latter implies that there are no trapped

null geodesics inside the region {r− < r < r+}. On the null surfaces r = r±, through each

point there is a unique null vector which is tangent and which generates a trapped null

geodesic.

To find the trapped null geodesics in the region r > r+, it suffices to consider the

behavior of the fourth degree polynomial

P (r) = −K� + ((r2 + a2)E − aL)2

in the last equation in (4.1). At least one of the parameters E , K, and L should be nonzero,

and the third equation shows that K ≥ 0 and that we cannot simultaneously have E =
K = 0. Thus, P is always nondegenerate. The key observation is that the simple zeroes

of P correspond to turning points in the last equation, and only the double zeroes are

steady states. There are several cases to consider.
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Local Energy Decay in Kerr 15

a) If E = 0, then K > 0. Thus, P has at most one positive root, where it changes

sign from + to −. This root is a right turning point for the ode, and there are

no trapped null geodesics.

b) E �= 0. Then P has degree 4 and P ≥ 0 in [r−, r+]. If P has any zero in [r−, r+],
then the square expression must vanish, and this zero must be a double zero.

We claim that in (r+,∞) P has either no root or two roots (counted with

multiplicity); this is easily seen, as P must have either (at least) two complex

conjugate roots or a negative root (the sum of the roots equals 0) and (at least)

another one smaller than r− (since P (r−) ≥ 0). There are three subcases:

b1) P has no roots larger than r+. Then r is monotone along null geodesics,

and there are no trapped null geodesics.

b2) P has two distinct positive roots r+ < r1 < r2. There it must change sign

from + to −, respectively from − to +. Hence, r1 is a right turning point

and r2 is a left turning point for the ode. Thus, no trapped null geodesics

exist.

b3) P has a double positive real root r0. Then this root is a steady state, and

all other solutions converge to the steady state at one end, and escape

to 0 or infinity at the other end.

This analysis shows that the trapped null geodesics in the region r > r+ must

converge to the family of geodesics along which r is constant (the equivalent of the pho-

ton sphere from the Schwarzschild space–time), which we now proceed to characterize

in greater detail. The polynomial P has a double root if the following two relations hold,

((r2 + a2)E − aL)2 = K�, 2rE((r2 + a2)E − aL) = K(r − M)

which we rewrite in the form

K = r2E2�

(r − M)2 , aL = E
(

r2 + a2 − 2r�

r − M

)
.

The right-hand side in the θ̇ equation must be nonnegative. Substituting in the above

two relations, we obtain a necessary condition for the existence of trapped geodesics,

namely the inequality

(2r� − (r − M)ρ2)2 ≤ 4a2r2� sin2 θ. (4.2)
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16 D. Tataru and M. Tohaneanu

One can show that this condition is also sufficient. The expression on the left has the

form

2r� − (r − M)ρ2 = r2(r − 3M) + 2ra2 − (r − M)a2 cos2 θ.

If a = 0, then it has a single positive nondegenerate zero at r = 3M, which is the photon

sphere in the Schwarzschild metric. Hence, if 0 < a � M it will still have a single zero

which is close to 3M. A rough computation leads to a bound of the form

|r − 3M| ≤ 2a, a � 2M. (4.3)

Thus, all trapped null geodesics lie within O(a) of the r = 3M sphere.

We would like a characterization of the aforementioned trapped geodesics in the

phase space. Let τ , ξ , �, and � be the Fourier variables corresponding to t, r, φ, and θ ,

and

pK(r, θ, τ, ξ,�,�) = gttτ2 + 2gtφτ� + gφφ�2 + grrξ2 + gθθ�2

be the principal symbol of �K. On any null geodesic, one has

pK(r, θ, τ, ξ,�,�) = 0. (4.4)

Moreover, the Hamilton flow equations give us

ṙ = −∂pK

∂ξ
= −2�

ρ2 ξ (4.5)

ξ̇ = ∂pK

∂r
= gtt

,rτ
2 + 2gtφ

,r τ� + gφφ
,r �2 + grr

,r ξ2 + gθθ
,r �2. (4.6)

We rewrite the latter in the form

ρ2ξ̇ = ρ2 ∂pK

∂r
= −2Ra(r, τ,�)�−2 + ρ2∂r(ρ

−2)pK + 2(r − M)ξ2 (4.7)

where

Ra(r, τ,�) = (r2 + a2)(r3 − 3Mr2 + a2r + a2M)τ2 − 2aM(r2 − a2)τ� − a2(r − M)�2.
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Local Energy Decay in Kerr 17

For geodesics with constant r, one needs to impose the additional condition ṙ = 0.

Hence, from (4.5) either r = r±, which corresponds to the geodesics at r = 2M in the

Schwarzschild case, or ξ = 0. In the latter case from (4.7), we obtain a polynomial

equation for r, namely

Ra(r, τ,�) = 0. (4.8)

Furthermore, due to (4.4) we must also have the inequality

−((r2 + a2)2 − a2� sin2 θ)τ2 − 2aMrτ� + � − a2 sin2 θ

sin2 θ
�2 ≤ 0.

If a is small and r is as in (4.3), this allows us to bound � in terms of τ ,

|�| ≤ 4M|τ |. (4.9)

For � in this range and small a, the polynomial τ−2 Ra(r, τ,�) can be viewed as a small

perturbation of

τ−2 R0(r, τ,�) = r4(r − 3M)

which has a simple root at r = 3M. Hence, for small a the polynomial Ra has a simple

root close to 3M, which we denote by ra(τ,�). By homogeneity considerations and the

implicit function theorem, we can further express ra in the form

ra(τ,�) = 3Mr̃
(

a

M
,

�

Mτ

)
, r̃ ∈ C ∞([−ε, ε] × [−4, 4]).

Since r0(τ,�) = 3M, it follows that we can write ra(τ,�) in the form

ra(τ,�) = 3M + aF
(

a

M
,

�

Mτ

)
, F ∈ C ∞([−ε, ε] × [−4, 4]).

The above analysis shows that the trapped null geodesics corresponding to fre-

quencies (τ,�) are located at radial frequency ξ = 0 and position r = ra(τ,�). One would

be naively led to define the local smoothing spaces associated to the Kerr space–time

by replacing the factor r − 3M in (3.10) and (3.12) with the modified factor r − ra(τ,�).

Unfortunately, this is no longer a scalar function, but a symbol of a pseudodifferential

operator. In addition, this operator depends on the time Fourier variable τ , which is

inconvenient for energy estimates on time (ṽ) slabs.
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18 D. Tataru and M. Tohaneanu

Consequently, we replace the r − ra(τ,�) weight with a polynomial in τ which

has the same symbol on the characteristic set pK = 0. More precisely, for r close to 3M

we factor

pK(r, θ, τ, ξ,�,�) = gtt(τ − τ1(r, θ, ξ,�,�))(τ − τ2(r, θ, ξ,�,�))

where τ1, τ2 are real distinct smooth 1-homogeneous symbols. On the cone τ = τi, the

symbol r − ra(τ, φ) equals

ci(r, θ, ξ,�,�) = r − ra(τi,�) = r − 3M − aF
(

a

M
,

�

Mτi

)
, i = 1, 2.

If r is close to 3M and |a| � M, then on the characteristic set of p we have |φ| < 4M|τ |,
therefore the symbols ci are well defined, smooth, and homogeneous. They are also

nonzero outside an O(a) neighborhood of 3M.

In order to use ci as symbols of pseudodifferential operators, we need to remove

their singularity at frequency 0. Thus, we redefine

ci(r, θ, ξ,�,�) = r − 3M − aχ≥1F
(

a

M
,

�

Mτi

)

where χ≥1 is a smooth symbol which equals 1 for frequencies � 1 and 0 for frequencies

� 1.

We use the symbols ci to define associated microlocally weighted function spaces

L2
ci

in a neighborhood V × S
2 of 3M × S

2 which does not depend on a for small a. For

functions u supported in V × S
2, we set

‖u‖2
L2

ci
= ‖ci(D, x)u‖2

L2 + ‖u‖2
H−1 .

There is an ambiguity in this notation as we have not specified the coordinate frame

in which we view ci as a pseudodifferential operator. However, it is easy to see that

different frames lead to equivalent norms. The quantization that we use for ci becomes

unimportant as well. We also define a dual norm ci L2 for functions g supported in V × S
2,

namely

‖g‖2
ci L2 = inf

ci(x,D)g1+g2=g
(‖g1‖2

L2 + ‖g2‖2
H1).

Since the symbols ci are nonzero outside an O(a) neighborhood of 3M, it follows

that both norms L2
ci

and ci L2 are equivalent to L2 outside a similar neighborhood.
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Local Energy Decay in Kerr 19

Now we can define local energy norms associated to the Kerr space–time. Let χ(r)

be a smooth cutoff function which is supported in the above neighborhood V of 3M and

which equals 1 near 3M. Then we set

‖u‖L E1
K

= ‖χ(Dt − τ2(D, x))χu‖L2
c1

+ ‖χ(Dt − τ1(D, x))χu‖L2
c2

+ ‖(1 − χ2)∂tu‖L EM

+‖(1 − χ2)�∇u‖L EM + ‖∂ru‖L EM + ‖r−1u‖L EM . (4.10)

We remark that this norm is degenerate on the trapped set and is equivalent to

the Schwarzschild norm L E1
S when a = 0. Indeed, when a = 0 we have at the symbol level

c1 = c2 = r − 3M, τ1 = −τ2 ≈
√

ξ2 + λ2

and

(τ − τ1)2 + (τ − τ2)2 ≈ τ2 + ξ2 + λ2

while the errors are controlled by the L2 norm of u.

For the nonhomogeneous term in the equation, we define a dual structure,

‖ f‖L E∗
K

= ‖(1 − χ) f‖L E∗
M

+ ‖χ f‖c1L2+c2L2 .

To state the main result of this paper, we use the notations in (3.4)–(3.9), with the

parameter re chosen so that r− < re < r+:

Theorem 4.1. Let u solve �Ku = f in MR. Then

‖u‖2
L E1

K
+ sup

ṽ≥0
E[u](ṽ) + E[u](�+

R) � E[u](�−
R) + ‖ f‖2

L E∗
K
. (4.11)

in the sense that the left-hand side is finite and the inequality holds whenever the right-

hand side is finite. �

The proof of the result uses the multiplier method. Part of the difficulty is caused

by the fact that, as shown in [2], there is no differential multiplier that provides us with

a positive local energy norm. What we do instead is find a suitable pseudodifferential

operator that does the job. This is chosen so that its symbol vanishes on trapped rays,

which leads to a local energy norm which is degenerate there.
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20 D. Tataru and M. Tohaneanu

As in the Schwarzschild case, the choice of re ∈ (r−, r+) is unimportant since the r

slices r = const ∈ (r−, r+) are space-like, therefore one can pass from a slice to another by

solving a uniform family of local hyperbolic problems. Hence, in the proof of the theorem

one can assume without any restriction in generality that re is close to r+. However, the

implicit constant in (4.11) may explode as re → r−, as the uniformity is lost in the local

problems mentioned above.

Proof. The theorem is proved using a modification of the arguments in [29]. Let us first

quickly recall the key steps in the proof of Theorem 3.2 as in [29]. We begin with the

energy–momentum tensor

Qαβ [u] = ∂αu∂βu− 1

2
gαβ∂γ u∂γ u.

Its contraction with respect to a vector field X is denoted by

Pα[u, X] = Qαβ [u]Xβ

and its divergence is

∇α Pα[u, X] = �gu · Xu+ 1

2
Qαβ [u]παβ

where παβ is the deformation tensor of X, given by

παβ = ∇α Xβ + ∇β Xα.

A special role is played by the Killing vector field

K = ∂ṽ

whose deformation tensor is zero.

Integrating the above divergence relation for a suitable choice of X does not

suffice in order to prove the local energy estimates, as in general the deformation tensor

can only be made positive modulo a Lagrangian term of the form q∂αu∂αu. Hence, some

lower order corrections are required. For a vector field X, a scalar function q and a 1-

form mwe define

Pα[u, X, q, m] = Pα[u, X] + qu∂αu− 1

2
∂αqu2 + 1

2
mαu2.
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Local Energy Decay in Kerr 21

The divergence formula gives

∇α Pα[u, X, q, m] = �gu
(

Xu+ qu
)

+ Q[u, X, q, m], (4.12)

where

Q[u, X, q, m] = 1

2
Qαβ [u]παβ + q∂αu∂αu+ mαu∂αu+ (∇αmα − 1

2
∇α∂αq) u2.

So far, these computations apply both for the Schwarzschild and the Kerr metrics. From

here on, we will use the bold sub(super)scripts S, respectively K to indicate when a

computation is performed with respect to one metric or another.

To prove the local energy decay in the Schwarzschild space–time, X, q, and mare

chosen as in the following lemma:

Lemma 4.2. In the exterior region r ≥ 2M, there exist a smooth vector field

X = b(r)(1 − 3M

r
)∂r + c(r)K

with c supported near the event horizon and b > 0 bounded so that

|∂α
r b| ≤ cαr−α,

a smooth function q(r) with

|∂α
r q| ≤ cαr−1−α,

and a smooth 1-form msupported near the event horizon r = 2M so that

(i) The quadratic form QS[u, X, q, m] is positive definite,

QS[u, X, q, m] � r−2|∂ru|2 +
(

1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|�∇u|2) + r−4u2. (4.13)

(ii) X(2M) points toward the black hole, X(dr)(2M) < 0, and 〈m, dr〉(2M) > 0. �

We remark that by extending smoothly the functions b, c, r, q, and m to r < 2M

one can ensure that (i) above holds for r > re and (ii) holds at r = re, provided re < 2M is

close enough to 2M. We fix re with this property. Then for small enough a, namely |a| �
M, we still have re < r+, therefore this re is still suitable for the proof of Theorem 4.1.

 at A
cquisitions D

ept.,Serials/ M
ilton S. E

isenhow
er L

ibrary/T
he Johns H

opkins on N
ovem

ber 25, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


22 D. Tataru and M. Tohaneanu

The local energy estimate is obtained by integrating the divergence relation (4.12)

with X + C K instead of X, where C is a large constant, on the domain

M[0,ṽ0] = {0 < ṽ < ṽ0, r > re}

with respect to the measure induced by the metric, dVS = r2drdṽdω. This yields

∫
M[0,ṽ0]

QS[u, X, q, m]dVS = −
∫
M[0,ṽ0]

�Su
(
(X + C K)u+ qu

)
dVS + BDRS[u] (4.14)

where BDRS[u] denotes the boundary terms

BDRS[u] =
∫

〈dṽ, P [u, X + C K, q, m]〉r2drdω

∣∣∣∣
ṽ=ṽ0

ṽ=0
−

∫
〈dr, P [u, X + C K, q, m]〉r2

e dṽdω.

Using the condition (ii) in the lemma and Hardy type inequalities, it is shown in [29] that

for large C and re close to 2M the boundary terms have the correct sign,

BDRS[u] ≤ c1E[u](�−
R) − c2(E[u](ṽ0) + E[u](�+

R)), c1, c2 > 0. (4.15)

Consequently, by applying the Cauchy–Schwarz inequality for the first term on the right

of (4.14) we obtain a slightly weaker form of the local energy estimate (3.13), namely

E[u](�+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
L EW1

S
� E[u](�−

R) + ‖ f‖2
L EW∗

S
. (4.16)

where the weaker norm L EW1
S and the stronger norm L EW∗

S are defined by

‖u‖2
L EW1

S
=

∫
MR

(
r−2|∂ru|2 +

(
1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|�∇u|2) + r−4u2

)
r2drdṽdω,

respectively

‖ f‖2
L EW∗

S
=

∫
MR

r2
(

1 − 3M

r

)−2

f2r2drdṽdω.

These norms are equivalent with the stronger norms L E1
S, respectively L E∗

S for r in a

bounded set. On the other hand for large r, the Schwarzschild space can be viewed as

a small perturbation of the Minkowski space. Thus, the transition from (4.16) to (3.13)

is achieved in [29] by cutting away a bounded region and then using a perturbation of
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Local Energy Decay in Kerr 23

a Minkowski space estimate. This part of the proof translates without any changes to

the case of the Kerr space–time. Our goal in what follows will be to establish the Kerr

counterpart of (4.16), namely

E[u](�+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
L EW1

K
� E[u](�−

R) + ‖ f‖2
L EW∗

K
. (4.17)

where the norms L EW1
K, respectively L EW∗

K coincide with L E1
K, respectively L E∗

K for

bounded r, and with L EW1
S , respectively L EW∗

S for large r. More precisely, if χ(r) is a

smooth compactly supported cutoff function which equals 1 say for r < 4M then we set

‖u‖2
L EW1

K
= ‖χu‖2

L E1
K

+ ‖(1 − χ)u‖2
L EW1

S
,

respectively

‖u‖2
L EW∗

K
= ‖χu‖2

L E∗
K

+ ‖(1 − χ)u‖2
L EW∗

S
.

Different choices for χ lead to different but equivalent norms.

It is useful to first consider the effect of the same multiplier in the Kerr metric.

The two metrics are close when measured in the same Euclidean frame x = rω with

r ≥ re. Precisely, with ∂ standing for ∂t and ∂x, x = rω,

|∂α[(gK)i j − (gS)i j]| ≤ cα

a

r2+|α| , |∂α[(gK)i j − (gS)i j]| ≤ cα

a

r2+|α| . (4.18)

From this and the size and regularity properties of X, q, and m, it follows that

|P S
α [u, X, q, m] − P K

α [u, X, q, m]| � a

r2 |∇u|2, (4.19)

respectively

|QS[u, X, q, m] − QK[u, X, q, m]| � a
(

1

r2 |∇u|2 + 1

r4 |u|2
)

. (4.20)

Hence, integrating the divergence relation (4.12) in the Kerr space–time over the same

domain M[0,ṽ0] but with respect to the Kerr induced measure dVK = ρ2drdṽdω we obtain

∫
M[0,ṽ0]

QK[u, X, q, m]dVK = −
∫
M[0,ṽ0]

�Ku
(
(X + C K)u+ qu

)
dVK + BDRK[u]. (4.21)
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24 D. Tataru and M. Tohaneanu

The bound (4.19) shows that for small a the boundary terms retain their positivity prop-

erties in (4.15), namely

BDRK[u] ≤ c1E[u](�−
R) − c2(E[u](ṽ0) + E[u](�+

R)), c1, c2 > 0. (4.22)

However, (4.20) merely shows that

QK[u, X, q, m] � r−2|∂ru|2 +
[(

1 − 3M

r

)2

− C a

]
(r−2|∂ṽu|2 + r−1|�∇u|2) + r−4u2 (4.23)

and the right-hand side is no longer positive definite near r = 3M. Thus, we cannot close

the argument as in the Schwarzschild case. As shown in [2], changing the vector field X

near r = 3M would not help.

To remedy this, we need to use a pseudodifferential modification S of the vec-

tor field X. We will choose S so that its kernel is supported in a small neighborhood of

(3M, 3M); this ensures that there will be no additional contributions at r = re. Further-

more, in order to be able to carry out the computations near the initial and final surfaces

ṽ = 0, ṽ0 we take S to be a first order differential operator with respect to ṽ. Similarly, we

modify the Lagrangian factor q using a pseudodifferential correction E , which is also a

first order differential operator with respect to ṽ.

We also need to choose a quantization which is consistent with the Kerr mea-

sure. Here we have a few choices which have equivalent results. For our selection, we

use Euclidean-like coordinates x = ωr. Given a real symbol s, its Euclidean Weyl quan-

tization sw is self-adjoint with respect to the Euclidean measure dV = r2drdω. However,

in our case we need to work with the Kerr induced measure dVK = ρ2drdω. Hence, we

slightly abuse the notation and redefine the Weyl quantization as

sw := r

ρ
sw ρ

r
.

If s is a real symbol, then sw (re)defined above is a self-adjoint operator in L2(dVK).

Another issue which does not affect our analysis but needs to be addressed is

that we are using pseudodifferential operators in an exterior domain {r > re} and some

care must be given to what happens near r = re. To keep things simple, in what follows

all pseudodifferential operators we work with are compactly supported in the sense that

their kernels are supported away from re and infinity; even better, supported in a small

neighborhood of 3M.
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Local Energy Decay in Kerr 25

In what follows, we consider a skew-adjoint pseudodifferential operator S and a

self-adjoint pseudodifferential operator E of the form (since we are away from the event

horizon, the variable tv coincides with t, and we make this substitution here and later)

S = isw
1 + sw

0 ∂t, E = ew
0 + 1

i
e−1∂t

where s1 ∈ S1, s0, e0 ∈ S0, and e−1 ∈ S−1 are real symbols, homogeneous outside a neigh-

borhood of 0. We further assume that their kernels are supported close to 3M.

For a function u with compact support in M[0,ṽ0], we use the fact that �K and E

are self-adjoint while S is skew-adjoint to compute

�
∫
M[0,ṽ0]

�Ku · (S + E)u dVK =
∫
M[0,ṽ0]

Qu · u dVK (4.24)

where

Q = 1

2
([�K, S] + �KE + E�K).

In general, the operator Q is a third order differential operator in t, which by the

pseudodifferential calculus has the form

Q = Qw
2 + 2Qw

1 Dt + Qw
0 D2

t + Qw−1 D3
t

where Qw
j ∈ O P Sj are self-adjoint pseudodifferential operators. In our case, the opera-

tors S and E will be chosen later so that the coefficient D3
t vanishes,

Qw−1 = 0. (4.25)

By analogy with (4.21), this leads us to define the bilinear form

I QK[u, S, E] =
∫
M[0,ṽ0]

Qw
2 u · u+ 2�Qw

1 u · Dtu+ Qw
0 DtuDtu dVK. (4.26)

In view of (4.24) and (4.25), for u with compact support in M[0,ṽ0] we have the relation

I QK[u, S, E] = �
∫
M[0,ṽ0]

�Ku · (S + E)udVK. (4.27)
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26 D. Tataru and M. Tohaneanu

We define the principal symbol of the quadratic form I QK[u, S, E] as

qK[S, E] = q2 + 2q1τ + q0τ2.

The previous relation shows that it satisfies

qK[S, E] = 1

2i
{pK, s} + pKe mod S0 + τ S−1 + τ2S−2.

Suppose we now remove the compact support condition on u. Due to the kernel

localization near 3M for both operators S and E , there are no contributions on the lateral

boundary r = re. Since both S and E are differential operators in t, the computation

leading to (4.27) can be carried out using only integration by parts with respect to the

time variable. This leads us to the full counterpart of (4.21), namely

I QK[u, S, E] = �
∫
M[0,ṽ0]

�Ku · (S + E)udVK + BDRK[u, S, E] (4.28)

where BDRK[u, S, E] represents the boundary terms at times 0 and ṽ0 obtained in the

integration by parts with respect to t. It has the form

BDRK[u, S, E] = �
∫

�t

Bw
0 Dtu · Dtu+ Bw

1 u · Dtu+ Bw
2 u · udAK

∣∣∣t=ṽ0

t=0

where Bw
j ∈ O P Sj and dAK is the induced volume element on time sections. The exact

expressions of the operators Bw
j are not important, as all we need to use here is the

bound

|BDRK[u, S, E]| � E[u](0) + E[u](ṽ0). (4.29)

We add (4.21) with a times (4.28). The boundary terms are estimated by (4.22) and

(4.29). Using the duality between the spaces ci L2 and L2
ci

, we can also estimate

∣∣∣∣∣
∫
M[0,ṽ0]

f · (X + C K + q + a(S + E))u dVK

∣∣∣∣∣ � ‖ f‖L EW∗
K
‖u‖L EW1

K
.

Hence, in order to prove (4.17) it would suffice to show that the symbols s and e can be

chosen so that

∫
M[0,ṽ0]

QK[u, X, q, m]dVK + aI QK[u, S, E] � ‖u‖2
L EW1

K
. (4.30)
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Local Energy Decay in Kerr 27

Here we aim to choose S and E uniformly with respect to small a. In effect, our construc-

tion below yields symbols s and e which are analytic with respect to a. We remark that

the choice of S and E is only important in the region where r is close to 3M. Outside this

region, QK[u, X, q, m] is already positive definite and the contribution of aI QK[u, S, E] is

negligible.

We consider first the expression QK[u, X, q, m]. Near r = 3M, it has the form

QK[u, X, q, m] =
∑

qK,αβ∂αu∂βu+ qK,0u2 (4.31)

where its principal symbol qK = qK,αβηαηβ and the lower order coefficient qK,0 are given

by the relation

qK = 1

2i
{pK, X} + qpK, qK,0 = −1

2
∇α∂αq.

We do not need to exactly compute the above expression in the Kerr case, but it is useful

to perform the computation in the simpler case of the Schwarzschild space. There we

have

pS = −
(

1 − 2M

r

)−1

τ2 +
(

1 − 2M

r

)
ξ2 + 1

r2 λ2, X = ib(r)

(
1 − 3M

r

)
ξ

where λ stands for the spherical Fourier variable. Hence, we obtain

r2qS = 1

2i
{r2 pS, X} + (q − r−1b(r)(r − 3M))(r2 pS)

= α2
S(r)τ2 + β2

S(r)ξ2 + q̃S(r)(r2 p) (4.32)

where, near r = 3M,

α2
S(r) = rb(r)(r − 3M)2

(r − 2M)2 ,

β2
S(r) = 3M

r2 b(r2 − 2Mr) +
(

1 − 3M

r

)
(b′(r2 − 2Mr) − b(r − M)),

respectively

q̃S(r) = q − r−1b(r)(r − 3M).
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28 D. Tataru and M. Tohaneanu

Here we have used the fact that b > 0 to write the first two coefficients as squares.

For our choice of q and r, we know that the relation (4.13) holds. This implies

that the following two inequalities must hold:

qS � ξ2 + (r − 3M)2(τ2 + λ2), qS,0 > 0. (4.33)

Given the form of qS, the first relation implies that q̃S is a multiple of (r − 3M)2, and that

in addition there is a smooth function ν(r) so that

r3

r − 2M
q̃S = ν(r)α2

S(r), 0 < ν < 1.

This allows us to obtain the following sum of squares representation for qS:

r2qS = (1 − ν(r))α2
S(r)τ2 + β2

S(r)ξ2 + ν1(r)α2
S(r)(λ2 + (r2 − 2rM)ξ2), ν1 = r − 2M

r3 ν.

(4.34)

The symbol λ2 of the spherical Laplacian can also be written as sums of squares of

differential symbols,

λ2 = λ2
1 + λ2

2 + λ2
3

where in Euclidean coordinates we can write

{λ1, λ2, λ3} = {xiη j − xjηi, i �= j}

r2qS = (1 − ν(r))α2
S(r)τ2 + β2

S(r)ξ2 + ν1(r)α2
S(r)(λ2

1 + λ2
2 + λ2

3 + (r2 − 2rM)ξ2). (4.35)

We return now to the question of finding symbols s and e so that the bound (4.30)

holds. Near r = 3M, the principal symbol of the quadratic form on the left in (4.30) is

1

2i
{pK, X + as} + pK(q + ae).

In order to prove (4.30) at the very least, we would like the above symbol to be nonnega-

tive, and to satisfy the bound

1

2i
{pK, X + as} + pK(q + ae) � c2

2(τ − τ1)2 + c2
1(τ − τ2)2 + ξ2.

However, such a bound would not a priori suffice since translating it to operator bounds

would require using the Fefferman–Phong inequality, which does not hold in general
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Local Energy Decay in Kerr 29

for systems. Hence, we prove a more precise result, and show that the symbols s and e

can be chosen so that we have a favorable sum of squares representation for the above

expression, which extends the sum of squares (4.35) to a �= 0.

Lemma 4.3. Let a be sufficiently small. Then there exist smooth homogeneous symbols

s ∈ S1
hom + τ S0

hom, e ∈ S0
hom + τ S−1

hom, also depending smoothly on a, so that for r close to

3M we have the sum of squares representation (here X and q remain the ones given by

Lemma 4.2)

ρ2
(

1

2i
{pK, X + as} + pK(q + ae)

)
=

8∑
j=1

μ2
j (4.36)

where μ j ∈ S1
hom + τ S0

hom satisfies the following properties:

(i) The decomposition (4.36) extends the decomposition (4.35) in the sense that

(μ1, μ2, μ3, μ4, μ5, μ6) = ((1 − ν)
1
2 αSτ, βSξ, ν

1
2
1 αSλ1, ν

1
2
1 αSλ2, ν

1
2
1 αSλ3, ν

1
2
1 αSξ)

mod a(S1
hom + τ S0

hom)

and

(μ7, μ8) ∈ √
a(S1

hom + τ S0
hom).

(ii) The family of symbols {μ j} j=1,6 is elliptically equivalent with the family of

symbols (c2(τ − τ1), c1(τ − τ2), ξ) in the sense that we have a representation

of the form

μ = Mv, v =

⎛
⎜⎜⎝

c2(τ − τ1)

c1(τ − τ2)

ξ

⎞
⎟⎟⎠

where the symbol valued matrix M ∈ M8×3(S0
hom) has maximum rank 3 everywhere. �

Proof. Setting q̃K = q − 2{ln ρ, X}, respectively ẽ = e − 2{ln ρ, s} we compute

ρ2
(

1

2i
{pK, X + as} + (q + ae)pK

)
= 1

2i
{ρ2 pK, X + as} + (q̃K + aẽ)(ρ2 pK).
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30 D. Tataru and M. Tohaneanu

We first choose the symbol s so that the Poisson bracket {ρ2 pK, X + as} has the correct

behavior on the characteristic set pK = 0. Recall that the symbol of X is ir−1b(r)(r −
3M)ξ , where the vanishing coefficient at 3M corresponds exactly to the location of the

trapped rays. Its natural counterpart in the Kerr space–time is the symbol

s̃(r, τ, ξ,�) = ir−1b(r)(r − ra(τ,�))ξ.

This coincides with X in the Schwarzschild case a = 0, and it is well defined and smooth

in a for r near 3M and |�| < 4|τ |. In particular, it is well defined in a neighborhood of the

characteristic set pK = 0, which is all we use in the sequel.

We use (4.7) to compute the Poisson bracket on the characteristic set {pK = 0}:

1

i
{ρ2 pK, s̃} = −(ρ2 pK)rr−1b(r)(r − ra(τ,�)) + ξ(ρ2 pK)ξ ∂r

(
r−1b(r)(r − ra(τ,�))

)
= 2r−1b(r)R(r, τ,�)�−2(r − ra(τ,�))

+ [
2�∂r

(
r−1b(r)(r − ra(τ,�))

) − 2(r − M)r−1b(r)(r − ra(τ,�))
]
ξ2.

Since ra(τ,�) is the unique zero of R(r, τ,�) near r = 3M and is close to 3M, it follows

that we can write

1

2i
{ρ2 pK, s̃} = α2(r, τ,�)τ2(r − ra(τ,�))2 + β2(r, τ,�)ξ2 on {pK = 0} (4.37)

where α, β ∈ S0
hom are positive symbols. We note that in the Schwarzschild case the sym-

bols α and β are simply functions of r, see the first two terms in (4.32).

Unfortunately s̃ is not a polynomial in τ , which limits its direct usefulness. To

remedy that we first note that

s̃ − (ir−1b(r)(r − 3M)ξ) ∈ aS1
hom.

Hence, by (the simplest form of) the Malgrange preparation theorem we can write

1

i
s̃ = r−1(r − 3M)b(r)ξ + a(s1(r, ξ, θ,�,�) + s0(r, ξ, θ,�,�)τ) + ah(τ, r, ξ, θ,�,�)pK

with s1 ∈ S1
hom, s0 ∈ S0

hom, and h ∈ S−1
hom. Then we define the desired symbol s by

s = i(s1 + s0τ)
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Local Energy Decay in Kerr 31

thus ensuring that

s̃ = X + as on {pK = 0}.

The Poisson bracket 1
i {ρ2 pK, s} is a third degree polynomial in τ . Hence, after

division by pK = −gtt(τ − τ1)(τ − τ2), taking also (4.35) into account, we can write

1

2i
{ρ2 pK, X + as} + q̃K(ρ2 pK) = γ2 + γ1τ + [eS + a( f0 + f−1τ)](τ − τ1)(τ − τ2) (4.38)

where fi ∈ Si
hom and, by (4.35), the coefficient eS corresponding to the Schwarzschild case

is given by

eS = (1 − ν(r))α2(r).

It remains to show that the principal part γ2 + γ1τ + eS(τ − τ1)(τ − τ2) in the

right-hand side of (4.38) can be expressed as a sum of squares as in the lemma mod-

ulo an error a(S0
hom + τ S−1

hom)pK,

γ2 + γ1τ + eS(τ − τ1)(τ − τ2) =
∑

μ2
j + a(g0 + g−1τ)(τ − τ1)(τ − τ2).

Then the symbol e is chosen so that both a(S0
hom + τ S−1

hom)pK terms are canceled,

ẽ = −[ f0 + g0 + ( f−1 + g−1)τ ].

The coefficients γ1 and γ2 can be computed using the relation (4.37) and the fact

that {ρ2 pK, X + as} = {ρ2 pK, s̃} on pK = 0 (i.e., when τ = τi). This implies that

γ2 + γ1τ = α2(r, τ,�)τ2(r − ra(τ,�))2 + β2(r, τ,�)ξ2 when τ = τi .

We denote

αi = 2|τi|
τ1 − τ2

α(r, τi,�)(r − ra(τi,�)) ∈ S0
hom, βi = β(r, τi,�) ∈ S0

hom,

observing that αi can be used as substitutes for the ci’s in the lemma since they are

elliptic multiples of ci. Then we have the two-dimensional system

γ2 + γ1τi = 1

4
α2

i (τ1 − τ2)2 + β2
i ξ2
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32 D. Tataru and M. Tohaneanu

which gives the following expressions for γ1, γ2:

γ2 = 1

4
(τ1 − τ2)(α2

2τ1 − α2
1τ2) + τ1β2

2 − τ2β2
1

τ1 − τ2
ξ2,

γ1 = 1

4
(τ1 − τ2)(α2

1 − α2
2) + β2

1 − β2
2

τ1 − τ2
ξ2. (4.39)

We use the first components of γ1 and γ2 to obtain a sum of squares as follows:

(τ1 − τ2)(α2
2τ1 − α2

1τ2) + τ(τ1 − τ2)(α2
1 − α2

2) = ν(α1(τ − τ2) − α2(τ − τ1))2

+(1 − ν)(α1(τ − τ2) + α2(τ − τ1))2

−4eK(τ − τ1)(τ − τ2) (4.40)

where

eK = (α1 − α2)2

4
+ (1 − ν)α1α2.

We remark that in the Schwarzschild case we have τ2 = −τ1 and also α1 = α2 = αS and

β1 = β2 = βS. In particular, this shows that

eK − eS ∈ a(S0
hom + τ S−1

hom)

which accounts for the eS factor in (4.38). It remains to consider the ξ2 terms in (4.39).

This is easier since the coefficients β1, β2 are positive and have a small difference β1 −
β2 ∈ aS0

hom. Precisely, for a large C we can write

τ1β2
2 − τ2β2

1

τ1 − τ2
+ τ

β2
1 − β2

2

τ1 − τ2
= 1

2
(β2

1 + β2
2 − C a) + (C a − β2

2 + β2
1 )(τ − τ2)2

2(τ1 − τ2)2

+ (C a − β2
1 + β2

2 )(τ − τ1)2

2(τ1 − τ2)2 + O(a)p.

Summing this with (4.40), we obtain the desired sums of squares representation,

1

2i
{ρ2 pK, X + as} + (ρ2 pK)q̃K ∈ ν

4
(α1(τ − τ2) − α2(τ − τ1))2

+ 1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))2 + 1

2
(β2

1 + β2
2 − C a)ξ2

+ (C a − β2
2 + β2

1 )(τ − τ2)2

2(τ1 − τ2)2 ξ2 + (C a − β2
1 + β2

2 )(τ − τ1)2

2(τ1 − τ2)2 ξ2

+ a(S0
hom + S−1

homτ)(τ − τ1)(τ − τ2).
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Local Energy Decay in Kerr 33

Then e is chosen so that the last term accounts for the contribution of ẽ.

Part (ii) of the lemma directly follows. For part (i), we still need to specify which

are the symbols μ j. Precisely, we set

μ2
1 = 1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))2, μ2

2 = 1

2
(β2

1 + β2
2 − C a)ξ2

μ2
7 = (C a − β2

2 + β2
1 )(τ − τ2)2

2(τ1 − τ2)2 ξ2, μ2
8 = (C a − β2

1 + β2
2 )(τ − τ1)2

2(τ1 − τ2)2 ξ2.

Finally for μ3,4,5 and μ6, we set

μ2
3,4,5 = λ2

1,2,3

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))2,

respectively

μ2
6 = (r2 − 2rM)ξ2

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))2.

It is easy to see that in the case a = 0 all these symbols coincide with the corresponding

Schwarzschild symbols. The proof of the lemma is concluded. �

In what follows, we use the above lemma to prove the bound (4.30) and conclude

the proof of the theorem. We begin with symbols s and e as in the lemma. These are

homogeneous symbols, and in order to use the pseudodifferential calculus we need to

remove the singularity at frequency 0. This is easily achieved by redefining

s := χ>1s, e := χ>1e

where χ>1 is a smooth symbol which equals 1 at frequencies � 1 and vanishes at fre-

quencies � 1. Since both s and e are only defined near r = 3M, some spatial truncation

is also necessary. Let χ be a smooth cutoff function supported near 3M which equals 1

in a neighborhood of 3M, chosen so that we have a smooth partition of unity in r,

1 = χ2(r) + χ2
o (r).
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34 D. Tataru and M. Tohaneanu

At first we define the truncated operators

S̃ = χswχ, Ẽ = χewχ.

This choice would yield an expression QK[u, S̃, Ẽ] with a principal symbol

qK
princ[S̃, Ẽ] = χ2

(
1

2i
{pK, s} + pKe

)
+ 1

i
χs{pK, χ}.

For these choices of S̃ and Ẽ we consider the expression I QK[u, S̃, Ẽ] which is

given by (4.26). For this we need to insure that (4.25) holds. By the Weyl calculus we can

write

1

2
([�K, S̃] + �K Ẽ + Ẽ�K) − (qK

princ[S̃, Ẽ])w ∈
3∑

j=0

O P S− j D j
t .

We note that the principal symbol qK
princ[S̃, Ẽ] for (1/2)([�K, S̃] + �K Ẽ + Ẽ�K) is only a

second order polynomial in τ . This shows that Qw−1 ∈ O P S−3. To eliminate this term we

slightly adjust our choice of Ẽ by adding a lower order term to it,

Ẽ = χewχ − ew
aux Dt

where the operator ew
aux is chosen so that

gttew
aux + ew

auxgtt = Qw−1.

This is possible since the coefficient gtt of τ2 in pK is a scalar function which is nonzero

near r = 3M. Also as defined ew
aux ∈ O P S−3 and has kernel supported near r = 3M. Note

that Lemma 1 still holds, since the principal symbols do not change.

Having ensured that the D3
t term does not appear, we divide I QK[u, S̃, Ẽ] into

two parts,

I QK[u, S̃, Ẽ] = I QK
princ[u, S̃, Ẽ] + I QK

aux[u, S̃, Ẽ]

where the main component is given by

I QK
princ[u, S̃, Ẽ] =

∫
M[0,ṽ0]

Qw
2,pu · u+ 2�Qw

1,pu · Dtu+ Qw
0,pDtuDtu dVK (4.41)
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Local Energy Decay in Kerr 35

with operators Qw
2,p, Qw

1,p and Qw
0,p defined by

Qw
2,p + 2Qw

1,pDt + Qw
0,pD2

t = χ

(
1

2i
{pK, s} + pKe

)w

χ

while the remainder is given by a similar expression with operators Qw
2,a, Qw

1,a, and Qw
0,a

whose principal symbols are supported away from r = 3M. More precisely, we have

Qw
2,a + 2Qw

1,aDt + Qw
0,aD2

t −
(

1

i
χs{pK, χ}

)w

∈ O P S0 + O P S−1 Dt + O P S−2 D2
t .

Hence, using the fact that the L EW1
K norm is nondegenerate outside an O(a) neighbor-

hood of 3M we can bound in an elliptic fashion

|I QK
aux[u, S̃, Ẽ]| � ‖u‖2

L EW1
K

+ ‖Dtu‖2
H−1

comp
(4.42)

where the last term on the right represents the H−1 norm of Dt u in a compact region in

r (precisely, a neighborhood of 3M).

In order to conclude the proof of the theorem, we turn our attention to the bound

(4.30), which we seek to establish with S and E replaced with S̃ and Ẽ , respectively. We

will show that

∫
M[0,ṽ0]

QK[u, X, q, m]dVK + aI QK
princ[u, S̃, Ẽ] � ‖u‖2

L EW1
K

− O(a)‖Dtu‖2
H−1

comp
. (4.43)

We decompose the left-hand side of (4.43) into an outer part and an inner part,

LHS(4.43) = LHS(4.43)out + LHS(4.43)in

where

LHS(4.43)out =
∫
M[0,ṽ0]

χ2
o QK[u, X, q, m]dVk

LHS(4.43)in =
∫
M[0,ṽ0]

χ2QK[u, X, q, m]dVk + aI QK
princ[u, S̃, Ẽ].

For the first part, we use the pointwise positivity of QK away from 3M (see (4.23))

to conclude that

LHS(4.43)out �
∫
M[0,ṽ0]

χ2
o (r−2|∇u|2 + r−4|u|2)dVK. (4.44)
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The second part is a quadratic form which for convenience we fully recall here (see (4.31)

and (4.41)):

LHS(4.43)in =
∫
M[0,ṽ0]

χ2(qK,αβ∂αu∂βu+ qK,0u2)dVK

+a
∫
M[0,ṽ0]

Qw
2,pu · u+ 2�Qw

1,pu · Dtu+ Qw
0,pDtuDtu dVK

where the coefficients qK,αβ , qK,0, and operators Qw
j,p satisfy

qK,αβηαηβ = 1

2i
{pK, X} + qpK, qK,0 > 0,

respectively

Qw
2,p + 2Qw

1,pDt + Qw
0,pD2

t = χ

(
1

2i
{pK, s} + pKe

)w

χ.

We carefully observe that in the two parts of the expression for LHS(4.43)in the cutoff

function χ appears in different places. In the first part, it is applied after the differen-

tiation, while in the second part it is applied before the pseudodifferential operator. It

does not make much sense to commute at this point. In the first part, we would produce

lower order terms which may significantly alter qK,0. In the second part, we would lose

the compact support of the kernels for the operators Qw
j,p.

Since s and e are chosen as in Lemma 1, it follows that the principal symbol

for LHS(4.43)in admits the sum of squares representation (4.36). We want to translate

this into a sum of squares decomposition for LHS(4.43)in. However, we want all the

lower order terms in the pseudodifferential calculus to have size O(a) (as opposed to

O(1)), therefore some care is required due to the different positions of the cutoff χ ,

as explained above. The symbols μk = μk(a) are in general of pseudodifferential type.

However, part (i) of the Lemma guarantees that in the Schwarzschild case they are of

differential type. Consequently, we write

μk(a) = μk(0) + μk(a) − μk(0)

and use this decomposition to define the pseudodifferential operators

Mk = χμk(0)(x, D) + (μk(a) − μk(0))wχ.

 at A
cquisitions D

ept.,Serials/ M
ilton S. E

isenhow
er L

ibrary/T
he Johns H

opkins on N
ovem

ber 25, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Local Energy Decay in Kerr 37

Then using the Weyl calculus, it follows that for LHS(4.43)in we have the representation

LHS(4.43)in =
∫
M[0,ṽ0]

∑
k

|Mku|2 + qK,0χ2u2dVk

+
∫
M[0,ṽ0]

Rw
2 u · ū+ 2�Rw

1 Dtu · ū+ Rw
0 Dtu · DtudVK.

To start with, the symbols for the remainder terms satisfy rj ∈ Sj−2 and depend

smoothly on a. In addition, our choice of the operators Mk guarantees that when a = 0

the remainder is zero. Hence, we obtain the better relation rj ∈ aSj−2.

Combining the last relation with (4.44), we obtain the bound

∫
M[0,ṽ0]

χ2
o r−2|∇u|2 + r−4|u|2 +

∑
k

|Mku|2dVK � LHS(4.43) + a(‖u‖2
L2

comp
+ ‖Dtu‖2

H−1
comp

)

where the last two terms on the right account for the remainder terms involving the

operators Rw
j , which can be bounded using norms of u and Dtu in a compact region in r,

away from r = 0 and r = ∞.

It is easy to see that the above left-hand side dominates ‖u‖L EW1
K
. For r away

from 3M, one uses only the first two terms. On the other hand, for r close to 3M we use

part (ii) of the lemma, which guarantees that the symbols c1(τ − τ2), c2(τ − τ1), and ξ can

be recovered in an elliptic fashion from the principal symbols μk of Mk. We can now use

[41, Corollary II.8], which says

Corollary 4.4. Let aj, b ∈ C 1,1S1 be real symbols with |b| ≤ ∑ |aj|. Then

‖B(x, D)u‖L2 �
∑

‖Aj(x, D)u‖L2 + ‖u‖L2 .

�
Thus, (4.43) is proved. Together with (4.42), this shows that

‖u‖2
L EW1

K
�

∫
M[0,ṽ0]

QK[u, X, q, m]dVK + aI QK[u, S̃, Ẽ] + O(a)‖Dtu‖2
H−1

comp
.

The final step in the proof of (4.30) is to establish that the last error term above is negli-

gible. We can account for it in an elliptic manner. Precisely, for any compactly supported

self-adjoint operator Q ∈ O P S−1 we can use Q2 in a Lagrangian term and integrate by
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38 D. Tataru and M. Tohaneanu

parts (commute) to obtain

�
∫
M[0,ṽ0]

(gtt)−1�Ku · Q2u dVK =
∫
M[0,ṽ0]

−∂2
t Qu · Qu+ Q0∂tu · Qu dVK + O(‖u‖2

L2
comp

)

=
∫
M[0,ṽ0]

|Q∂tu|2 − Q0u · Q∂tu dVK +
∫

�t

−∂tQu · Qu+ Q0u · Qu dAK

∣∣∣t=ṽ0

t=0
+ O(‖u‖2

L2
comp

)

= ‖QDxu‖2
L2 + O(‖QDxu‖L2‖u‖L2

comp
+ ‖u‖2

L2
comp

+ E[u](0) + E[u](ṽ0))

where Q0 ∈ O P S0 and the (gtt)−1 factor is inserted in order to cancel the coefficient of

∂2
t in �K. This leads to the elliptic bound

‖QDtu‖2
L2 � ‖u‖2

L2
comp

+ ‖�Ku‖2
H−1

comp
+ E[u](0) + E[u](ṽ0)

and further to

‖Dtu‖2
H−1

comp
� ‖u‖2

L2
comp

+ ‖�Ku‖2
H−1

comp
+ E[u](0) + E[u](ṽ0).

Thus, (4.30) follows, and the proof of the theorem is concluded. �

Note that Theorem 4.1 tells us, in particular, that if we start with an initial data

(u0, u1) ∈ H1 × L2 then u(ṽ) ∈ H1 is uniformly bounded for all ṽ > 0. A natural question

to ask is if this is also true for higher Hn norms. For n ≥ 1, we define

‖u‖L En+1
K

=
∑
|α|≤n

‖∂αu‖L E1
K
,

respectively

‖ f‖L En∗
K

=
∑
|α|≤n

‖∂α f‖L E∗
K
.

The higher order energies are similarly defined,

En+1[u](�±
R) =

∑
|α|≤n

E[∂αu](�±
R), En+1[u](ṽ0) =

∑
|α|≤n

E[∂αu](ṽ0).

We then have the following

 at A
cquisitions D

ept.,Serials/ M
ilton S. E

isenhow
er L

ibrary/T
he Johns H

opkins on N
ovem

ber 25, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Local Energy Decay in Kerr 39

Theorem 4.5. Let n be a positive integer and u satisfy �Ku = f with initial data

(u0, u1) ∈ Hn+1 × Hn on �−
R and f ∈ L En∗

K (MR). Then

En+1[u](�+
R) + sup

ṽ>0
En+1[u](ṽ0) + ‖u‖2

L En+1
K

� ‖u0‖2
Hn+1 + ‖u1‖2

Hn + ‖ f‖2
L En∗

K
.

�

Proof. We remark that by trace regularity results, we have

∑
|α|≤n−1

‖∂α f‖L2(�−
R) � ‖ f‖L En∗

K
.

Since the initial surface �−
R is space-like, we can use the equation to derive all higher ṽ

derivatives of u in terms of the Cauchy data (u0, u1) and f ,

En+1[u](�−
R) � ‖u0‖2

Hn+1 + ‖u1‖2
Hn + ‖ f‖2

L En∗
K

.

Thus, it suffices to prove that for ṽ0 > 0 we have

En+1[u](�+
R) + En+1[u](ṽ0) + ‖u‖2

L En+1
K

� En+1[u](�−
R) + ‖ f‖2

L En∗
K

. (4.45)

We will prove this for n = 1, and the proof for the other cases will follow in a similar

manner by induction.

Since ∂ṽ is a Killing vector field, we have �K(∂ṽu) = ∂ṽ f . Then by Theorem 4.1, we

obtain

E[∂ṽu](�+
R) + E[∂ṽu](ṽ0) + ‖∂ṽu‖2

L E1
K

� E2[u](�−
R) + ‖ f‖2

L E1∗
K

. (4.46)

In order to control the rest of the second order derivatives, we take advantage of

the equation, which takes the form

(gṽṽ∂ṽṽ + 2gṽφ̃∂ṽφ̃ + L)u = f (4.47)

where L is a spatial partial differential operator of order 2. This is most useful in the

region where ∂ṽ is time-like. Given ε > 0, this happens in the region of the form r >

2M + ε provided that a is sufficiently small. The fact that ∂ṽ is time-like is equivalent to

 at A
cquisitions D

ept.,Serials/ M
ilton S. E

isenhow
er L

ibrary/T
he Johns H

opkins on N
ovem

ber 25, 2012
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


40 D. Tataru and M. Tohaneanu

the ellipticity of the spatial part L of �K. From (4.46), we obtain at ṽ = ṽ0

‖Lu‖2
L2(�ṽ0 )

� E[u](v0) + E[∂ṽu](ṽ0) + ‖ f‖2
L2(�ṽ0 )

.

The operator L on the left is elliptic in r ≥ 2M + ε, therefore by a standard elliptic esti-

mate we obtain

E[∇u](�ṽ0 ∩ {r > 2M + ε}) � E[u](ṽ0) + E[∂ṽu](ṽ0) + ‖ f‖2
L2(�ṽ0 )

.

A similar elliptic analysis leads to the corresponding local energy bound,

‖∇u‖2
L E1

K(MR∩{r>2M+2ε}) � ‖u‖2
L E1

K(MR)
+ ‖∂ṽu‖2

L E1
K(MR)

+ ‖ f‖2
L2(MR)

.

We are left to deal with the case r < 2M + 2ε, where grr is small and simply using

Equation (4.47) does not suffice. Let ζ(r) be a smooth cutoff function such that ζ = 1 on

[re, r+ + 2ε] and ζ = 0 when r > r+ + 3ε. Then we need bounds for the function w = ζu,

which solves

�Kw = ζ f + [�K, ζ ]u := g.

The commutator above is supported in the region {2M + 2ε ≤ r ≤ 2M + 3ε} where we

already have good estimates for u. Recall that in the region {r < 2M + 3ε} the L E1
K and

L E∗
K norms are equivalent with the H1, respectively L2 norm. Hence, it remains to prove

that for all functions w with support in {r < 2M + 3ε} which solve �Kw = g we have

E[∇w](�+
R) + E[∇w](ṽ0) + ‖∇w‖2

H1(MR)
� E2[u](�−

R) + ‖g‖2
H1(MR)

. (4.48)

This is an estimate which is localized near the event horizon, and we will prove it taking

advantage of the red shift effect.

Since ∂ṽ is a Killing vector field, this bound follows directly from Theorem 4.1 for

the ∂ṽw component of ∇w,

E[∂ṽw](�+
R) + E[∂ṽw](ṽ0) + ‖∂ṽw‖2

H1(M[0,ṽ0]) � E2[w](�−
R) + ‖g‖2

H1(M[0,ṽ0]). (4.49)

Consider now the angular derivatives of w, ∂ωw. We know that

[�S, ∂ω] = 0
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Local Energy Decay in Kerr 41

since the Schwarzschild metric is spherically symmetric. Hence, by (4.18) it follows that

[�K, ∂ω] is a second order operator whose coefficients have size O(a). Hence, by Theorem

4.1 we obtain

E[∂ωw](�+
R) +E[∂ωw](ṽ0) + ‖∂ωw‖2

H1(M[0,ṽ0]) � E2[w](�−
R) + ‖g‖2

H1(M[0,ṽ0])

+a‖∂ωw‖2
H1(M[0,ṽ0]). (4.50)

We still need to bound ∂rw. For that, we compute the commutator

[�K, ∂r]w = −(∂rgrr)∂rrw + Tw (4.51)

where T stands for a second order operator with no ∂2
r terms.

The key observation, which is equivalent to the red shift effect, is that the co-

efficient γ = ∂rgrr > 0 near r = 2M; a similar argument based on this observation was

previously made in [14]. This can be interpreted geometrically in terms of the Hamilton

flow for the Schwarzschild space–time, which on the trapped set on the event horizon

{r = 2M, τ = 0, λ = 0} has the form

ξ̇ = −1

2
γ ξ.

This shows that on this trapped set the frequency decreases exponentially, which

heuristically implies microlocal exponential energy decay near these geodesics in the

high-frequency limit. This property is stable with respect to small perturbations of the

metric, so it transfers to the Kerr space–time with small angular momentum.

Thus, for X, C , and q as in Lemma 4.2 we can write the equation for ∂rw in

the form

(�K − γ [(X + C K) + q])∂rw = ∂rg + Tw

with T as above and most importantly, a positive coefficient γ . Because of this, the

operator

B = �K − γ [(X + C K) + q]

satisfies the same estimate in Theorem 4.1 as �g for functions supported near the event

horizon. Indeed, the same proof goes through as in Theorem 3.2. Writing the integral
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42 D. Tataru and M. Tohaneanu

identity (4.21) for w, we see that the contribution of the term proportional to γ is

negative, therefore we obtain the inequality

∫
M[0,ṽ0]

QK[w, X, q, m]dVK ≤ −
∫
M[0,ṽ0]

(∂rg + Tw)
(
(X + C K)w + qw

)
dVK + BDRK[w].

By (4.23), the left-hand side is positive definite for r < 2M + 3ε. Using Cauchy–Schwarz

for the first term on the right and (4.22) for the second, we obtain

E[∂rw](�+
R) + E[∂rw](ṽ0) + ‖∂rw‖2

H1(M[0,ṽ0]) � E2[w](�−
R) + ‖∂rg + Tw‖2

L2(M[0,ṽ0]).

Since T contains no second order r derivatives, this leads to

E[∂rw](�+
R) + E[∂rw](ṽ0) + ‖∂rw‖2

H1(M[0,ṽ0]) � E2[w](�−
R) + ‖g‖H1(M[0,ṽ0])+

‖∇ω,ṽw‖2
H1(M[0,ṽ0]).

(4.52)

Then the desired bound (4.48) follows by combining (4.49), (4.50), and (4.52) with

appropriate coefficients. �

As an easy corollary, one obtains from Sobolev embeddings the pointwise bound-

edness result,

Corollary 4.5. If u satisfies �Ku = 0 in MR with initial data (u0, u1) ∈ H2 × H1 in �−
R,

then

‖u‖L∞ � ‖u0‖H2 + ‖u1‖H1 . �
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