AN OVERVIEW OF RANDOM BAND MATRICES

PETER D. HISLOP

ABSTRACT. I’ll describe the local eigenvalue statistics (LES) problem for random band matrices (RBM). RBM are real symmetric matrices with nonzero entries in a band about the diagonal. The entries are independent, identically distributed random variables. One studies properties in the large N limit when the width of the band increases like N^α, for $0 \leq \alpha \leq 1$. It is conjectured that for $0 \leq \alpha < \frac{1}{2}$, the LES is a Poisson point process whereas for $\frac{1}{2} < \alpha \leq 1$, the LES is the same as that for the Gaussian Orthogonal Ensemble. This corresponds to a phase transition from a localized to a delocalized state as α passes through $\frac{1}{2}$. In recent works with Ben Brodie and with M. Krishna, we have made progress in proving this conjecture for $0 \leq \alpha < \frac{1}{2}$. Results by others for $\frac{1}{2} \leq \alpha \leq 1$ will also be described.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY 40506-0027, USA

Email address: peter.hislop@uky.edu