COMPACTNESS OF ISO-RESONANT POTENTIALS FOR
SCHRÖDINGER OPERATORS ON \(\mathbb{R}^d \)

PETER D. HISLOP

Abstract. In joint work with R. Wolf, we prove compactness of a restricted set of real-valued, compactly supported potentials \(V \) for which the corresponding Schrödinger operators \(H_V \) have the same resonances, including multiplicities. More specifically, let \(B_R(0) \) be the ball of radius \(R > 0 \) about the origin in \(\mathbb{R}^d \), for \(d = 1, 3 \). Let \(\mathcal{I}_R(V_0) \) be the set of real-valued potentials in \(C_0^\infty(\overline{B}_R(0); \mathbb{R}) \) so that the corresponding Schrödinger operators have the same resonances, including multiplicities, as \(H_{V_0} \). We prove that the set \(\mathcal{I}_R(V_0) \) is a compact subset of \(C_0^\infty(\overline{B}_R(0)) \) in the \(C^\infty \)-topology.