THE DISCRETE MATHIEU EQUATION AT NON REAL COUPLING

FRÉDÉRIC KLOPP

We study the eigenvalues of the discrete Mathieu equation at non real coupling i.e. the eigenvalues of the finite difference operator

$$(H_{N,\lambda}u)_n = \frac{1}{2}(u_{n+1} + u_{n-1}) + \lambda\cos(2\pi n/N)u_n$$

acting on $\ell^2(\{0, \dots, N-1\})$ with periodic boundary conditions. The complex parameter λ is assumed not to be real.

When $\lambda = i$, the operator has been dubbed "the Scottish flag operator" because of its spectrum (see figure to the right).

For general non real λ , the spectrum is similar to the one depicted in the figure below.

We will explain how this spectrum can be computed for arbitrary non real λ when N is large. The main tool is a complex WKB method developed for finite difference operators with analytic coefficients that we will present during the talk.

The results were obtained in collaboration with Izak Oltman (Northwestern University).