1. Prove the following statement by contradiction.

The sum of two even numbers is always even.
Let m and n be two even numbers and assume for contradiction that $m+n$ is not even. If $m+n$ is not even, then there exists $k \in \mathbb{N}$ such that $m+n=2 k+1$. Solve for m to get $m=2 k+1-n$. Since n is even, there exist $r \in \mathbb{N}$ such that $n=2 r$. But then $m=2 k+1-2 r$ which is an odd number contradicting m being even. Therefore, $m+n$ is even.
2. Prove the statement using the ϵ, δ definition of the limit.

$$
\lim _{x \rightarrow 2} x^{2}-5 x+3=-3
$$

Let $\epsilon>0$ be given. Let $\delta=\frac{\epsilon}{2}$. Then if $|x-2|<\delta$, we have

$$
|f(x)-L|=\left|x^{2}-5 x+3-(-3)\right|=\left|x^{2}-5 x+6\right|=|x-2||x-3|<\delta|x-3|
$$

Now, $|x-2|<\delta$. Specifically, we can assume $|x-2|<1$. This means that $|x-3|<2$. So we have

$$
|f(x)-L|=|x-2||x-3|<2 \delta=\epsilon
$$

3. Prove the statement using the ϵ, M definition of the limit.

$$
\lim _{x \rightarrow \infty} \frac{x-1}{2 x}=\frac{1}{2}
$$

Let $\epsilon>0$ be given. Let $M=\frac{2}{\epsilon}$. Then for $x>M$ we have

$$
|f(x)-L|=\left|\frac{x-1}{2 x}-\frac{1}{2}\right|=\left|\frac{-1}{2 x}\right|<\left|\frac{1}{2 M}\right|=\epsilon
$$

4. Evaluate

$$
\lim _{x \rightarrow \infty} \frac{12 x-13 x^{2}+5 x^{4}}{2 x^{4}-3 x+1}
$$

One way to rigorously approach evaluating this limit is to multiply the numerator and denominator by $\frac{1}{x^{4}}$. This gives

$$
\lim _{x \rightarrow \infty} \frac{12 x-13 x^{2}+5 x^{4}}{2 x^{4}-3 x+1}=\lim _{x \rightarrow \infty} \frac{\frac{12}{x^{3}}-\frac{13}{x^{2}}+5}{2-\frac{3}{x^{3}}+\frac{1}{x^{4}}}
$$

As x approaches infinity, all of the terms with x in the denominator go to zero. Using a combination of limit properties, we get

$$
\lim _{x \rightarrow \infty} \frac{\frac{12}{x^{3}}-\frac{13}{x^{2}}+5}{2-\frac{3}{x^{3}}+\frac{1}{x^{4}}}=\lim _{x \rightarrow \infty} \frac{5}{2}=\frac{5}{2}
$$

5. Evaluate

$$
\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}
$$

Here we use the squeeze theorem. For all $x \neq 0,\left|\sin \left(\frac{1}{x}\right)\right| \leq 1$. This means

$$
\lim _{x \rightarrow 0} x^{2} e^{-1} \leq \lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)} \leq \lim _{x \rightarrow 0} x^{2} e^{1}
$$

As x approaches zero, the left and rightmost limits go to zero. By the squeeze theorem,

$$
\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}=0
$$

