Homework 2 - Due 10:00 AM on Wednesday August 7
Solutions should be clear and organized. Make sure you justify your work.

1. Find the partial derivatives of $f(x, y, z)=x^{2} y^{3} z^{4} \cos (x)$

$$
\begin{gathered}
f_{x}(x, y, z)=y^{3} z^{4}\left(2 x \cos (x)-x^{2} \sin (x)\right) \\
f_{y}(x, y, z)=3 x^{2} y^{2} z^{4} \cos (x) \\
f_{z}(x, y, z)=4 x^{2} y^{3} z^{3} \cos (x)
\end{gathered}
$$

2. Evaluate

$$
\lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}}
$$

This limit meets the requirement of L'Hopitals rule. Therefore,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{x}-x-1}{x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x} \\
& =\lim _{x \rightarrow 0} \frac{e^{x}}{2}=\frac{1}{2}
\end{aligned}
$$

3. Let $F(x)=\int_{2}^{x^{2}} t^{2}+1 d t$, find $F^{\prime}(x)$. (Hint: Use the fundamental theorem of calculus)
Using the chain rule and the fundamental theorem of calculus gives

$$
F^{\prime}(x)=\left(x^{2}+1\right)(2 x)
$$

4. Evaluate $\int \frac{x}{x^{2}+1} d x$

Let $u=x^{2}+1$, then $\frac{d u}{d x}=2 x$. We can rewrite the integral as

$$
\int \frac{x}{x^{2}+1} d x=\int \frac{x}{u} \frac{d u}{2 x}=\int \frac{1}{2 u} d u=\frac{1}{2} \ln (u)+C=\frac{1}{2} \ln \left(x^{2}+1\right)
$$

5. Evaluate $\int e^{x} \sin (x) d x$

Use integration by parts letting $u=e^{x}$ and $d v=\sin (x) d x$ to get

$$
\int e^{x} \sin (x) d x=-e^{x} \cos (x)+\int e^{x} \cos (x) d x
$$

Use integration by parts again letting $u=e^{x}$ and $d v=\cos (x) d x$ to get

$$
\int e^{x} \sin (x) d x=-e^{x} \cos (x)+e^{x} \sin (x)-\int e^{x} \sin (x) d x
$$

Now move all the integrals to the left side to get

$$
2 \int e^{x} \sin (x) d x=-e^{x} \cos (x)+e^{x} \sin (x)+C
$$

Equivalently,

$$
\int e^{x} \sin (x) d x=\frac{1}{2}\left(-e^{x} \cos (x)+e^{x} \sin (x)\right)+C
$$

6. Evaluate $\int \frac{3 x+11}{x^{2}-x-6} d x$

Apply partial fraction decomposition to get

$$
\frac{3 x+11}{x^{2}-x-6}=\frac{A}{x-3}+\frac{B}{x+2}
$$

Equivalently,

$$
3 x+11=A(x+2)+B(x-3)
$$

Let $x=-2$ to get $5=B(-5) \Longrightarrow B=-1$.

Let $x=3$ to get $20=5 A \Longrightarrow A=4$. Therefore,

$$
\int \frac{3 x+11}{x^{2}-x-6} d x=\int \frac{4}{x-3}-\frac{1}{x+2} d x=4 \ln |x-3|-\ln |x+2|+C
$$

7. Suppose that f is a function with the property that $|f(x)| \leq x^{2}$ for all x. Show that $f(0)=0$. Then show that $f^{\prime}(0)=0$.

Proof: Since f has the property $|f(x)| \leq x^{2}$ for all x, it follows that $0 \leq|f(0)| \leq 0^{2}=0$, hence $f(0)=0$. We also have that

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h}
\end{aligned}
$$

From the defining property, we have $-x^{2} \leq f(x) \leq x^{2}$, and hence $-|x| \leq \frac{f(x)}{x} \leq|x|$. We know that

$$
\lim _{x \rightarrow 0}-|x|=\lim _{x \rightarrow 0}|x|=0 .
$$

By the Squeeze Theorem, $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ exists and is equal to 0 . Thus, $f^{\prime}(0)=0$.

