## Sequence Practice

Make sure to justify your solution for each problem. Determine wheter the sequence converges or diverges. If it converges, fint its limit.

1. $a_{n}=\frac{7+15 n^{4}}{136-22 n^{3}+47 n^{4}}$

This sequence converges to $\frac{15}{47}$. This is because

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{7}{n^{4}}+15}{\frac{136}{n^{4}}-\frac{22}{n}+47}=\frac{15}{47}
$$

2. $a_{n}=\frac{3^{n+4}}{5^{n}}$

This sequence converges to zero since it is a gemetric sequence with $r<1$.
3. $a_{n}=\sqrt{\frac{n-14}{7 n+1}}$

Since $f(x)=\sqrt{x}$ is continuous on its domain, we have

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{n-14}{7 n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{n-14}{7 n+1}}=\sqrt{\frac{1}{7}}
$$

4. $a_{n}=n e^{-n}$

This sequence converges to zero by L'Hopital's rule.

$$
\lim _{n \rightarrow \infty} \frac{n}{e^{n}}=\lim _{n \rightarrow \infty} \frac{1}{e^{n}}=0
$$

5. $\left\{\frac{1}{1}, \frac{1}{3}, \frac{1}{2}, \frac{1}{4}, \frac{1}{3}, \frac{1}{5}, \frac{1}{4}, \frac{1}{6}, \ldots ..\right\}$

Notice that when $n$ is odd, $a_{n}=\frac{2}{n+1}$ and when $n$ is even, $a_{n}=\frac{2}{n+4}$. Since both of these sequences converge to zero, the entire sequence converges to zero by the squeeze theorem.
6. $a_{n}=\frac{1+2+3+\ldots+(n-1)}{n!}$

Recall that $1+2+3+\ldots+(n-1)=\frac{n(n-1)}{2}$. So we can rewrite the series as $a_{n}=\frac{n(n-1)}{2 n!}=\frac{1}{2(n-2)!}$. This sequence converges to zero.
7. $a_{n}=\frac{\cos (n)}{n^{2}}$

This converges to zero by the squeeze theorem.
8. $a_{n}=\frac{2+3^{n}}{2+3^{n+1}}$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{2}{3^{n}}+1}{\frac{2}{3^{n}}+3}=\frac{1}{3}
$$

## Double Integral Practice

9. $\int_{0}^{3} \int_{0}^{1}\left(16-x^{2}-3 y^{2}\right) d y d x$

$$
\begin{gathered}
\int_{0}^{3} \int_{0}^{1}\left(16-x^{2}-3 y^{2}\right) d y d x=\int_{0}^{3}\left[\int_{0}^{1}\left(16-x^{2}-3 y^{2}\right) d y\right] d x=\int_{0}^{3}\left[\left(16 y-x^{2} y-\left.y^{3}\right|_{0} ^{1}\right)\right] d x \\
=\int_{0}^{3}\left(15-x^{2}\right) d x=\left.\left(15 x-\frac{x^{3}}{3}\right)\right|_{0} ^{3}=15(3)-9=36
\end{gathered}
$$

## Change of Variables

10 . Prove that the change of variables formula from rectangular to polar coordinates is $d x d y=r d r d \theta$.

The change of coordinates is determined by $x=r \cos (\theta)$ and $y=r \sin (\theta)$. The Jacobian is

$$
\left|\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right|=r \cos ^{2}(x)+r \sin ^{2}(x)=r
$$

