Homework 3 - Solutions

Sequence Practice

Make sure to justify your solution for each problem. Determine wheter the sequence
converges or diverges. If it converges, fint its limit.
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This sequence converges to zero since it is a gemetric sequence with r < 1.
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Since f(x) = /x is continuous on its domain, we have
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This sequence converges to zero by L’Hopital’s rule.
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Notice that when n is odd, a, = n%l and when n is even, a, = n%z;' Since both of

these sequences converge to zero, the entire sequence converges to zero by the
squeeze theorem.
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Recall that 1 +2+3+ ...+ (n—1) = @ So we can rewrite the series as
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ay = This sequence converges to zero.
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This converges to zero by the squeeze theorem.
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Double Integral Practice
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Change of Variables

10 . Prove that the change of variables formula from rectangular to polar
coordinates is dx dy = r dr d#.

The change of coordinates is determined by x = r cos(#) and y = rsin(f). The

Jacobian is
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