Homework 4 - Solutions

1. Prove or disprove: If Z a, is convergent and Z b,, is divergent, then Z (an + by) is
n=1 n=1 n=1
divergent.
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Proof: Given two sequences Zan, which is convergent to L, and an, which is
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divergent, suppose that Z (an + by) is convergent to L'. Then, we have
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is convergent. This contradicts the assumption that an is divergent. Hence, if
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Z a, is convergent and Z b, is divergent, then Z (an + by) is divergent.
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2. Find a value of ¢ such that Z (1+c)™"=2.
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If the geometric series converges, then
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To check, if ¢ = % then —— = %, the geometric series does converge.
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3. Determine whether the series is convergent or divergent.
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o (n+1)?
Notice that 2 o
n< 4+
lim —— =1#0.
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Thus, the series diverges by the Divergence Test.
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First, observe that this series is E 57 This is a p-series with p = % > 1, so the
n

series converges.
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Observe that

[e.o] o0
DRTEIIF
/2"
:6 n=6 n n=~6 n
Since the latter series is a divergent p-series (p = 1/2 < 1), the first series diverges

by the Comparison Test.
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(In(z))?

is positive, decreasing, and continuous on [2,00). We have
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via u- substitution with © = In(z). Since the improper integral converges, the

Consider the function f(z) = . Observe that f(n) = a, and that f(z)

series Z 1 5 converges by the Integral Test.
(In(n



Consider the partial sums of this series:
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Therefore, ; ( /n W) converges to 3
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First, compare Z n3 + and n_3 using the Limit Comparison Test.
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We also have that Z n_3 = Z — diverges. Then, by the Limit Comparison Test,
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g mt also diverges.
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4. Can you find a sequence {a,} converging to 0 such that the series Z a, diverges?
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5. Find the Maclaurin series representation for each of the following series.
(Hint: It is unnecessary to take any derivatives.)
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6. Evaluate the indefinite integral as a power series.
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/n dt
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7. Find the Taylor series for each of the following functions at the indicated center.



(a) cos(z), c=mn/4
For f(x) = cos(z), we have

cos(x) ifn=0 mod4
Fo gy =4~ sin(x) ifn=1 mod4

—cos(z) ifn=2 mod4

sin(x) ifn=3 mod4

and hence

—‘/75 ifn=1,2 mod4

) (g) _ {7 ifn=0,3 mod 4

Therefore, the Taylor Series expansion for cos(z) centered at 7 is
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(b) e +e*, ¢=0
We have that e* = Y °° 2> and hence e® = >_°° (lﬁ Therefore,
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