Homework 4 - Solutions

1. Prove or disprove: If $\sum_{n=1}^{\infty} a_{n}$ is convergent and $\sum_{n=1}^{\infty} b_{n}$ is divergent, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is divergent.
Proof: Given two sequences $\sum_{n=1}^{\infty} a_{n}$, which is convergent to L, and $\sum_{n=1}^{\infty} b_{n}$, which is divergent, suppose that $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is convergent to L^{\prime}. Then, we have

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)-\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty}\left(a_{n}+b_{n}-a_{n}\right)=\sum_{n=1}^{\infty} b_{n}=L-L^{\prime}
$$

is convergent. This contradicts the assumption that $\sum_{n=1}^{\infty} b_{n}$ is divergent. Hence, if $\sum_{n=1}^{\infty} a_{n}$ is convergent and $\sum_{n=1}^{\infty} b_{n}$ is divergent, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ is divergent.
2. Find a value of c such that $\sum_{n=1}^{\infty}(1+c)^{-n}=2$.

If the geometric series converges, then

$$
\begin{aligned}
\sum_{n=1}^{\infty}(1+c)^{-n} & =\sum_{n=1}^{\infty}\left(\frac{1}{1+c}\right)^{n} \\
& =\frac{1}{1-\frac{1}{1+c}}-1 \\
2 & =\frac{1}{1-\frac{1}{1+c}}-1 \\
3 & =\frac{1}{1-\frac{1}{1+c}} \\
1-\frac{1}{1+c} & =\frac{1}{3} \\
\frac{2}{3} & =\frac{1}{1+c} \\
1+c & =\frac{3}{2} \\
c & =\frac{1}{2}
\end{aligned}
$$

To check, if $c=\frac{1}{2}$, then $\frac{1}{1+c}=\frac{2}{3}$, the geometric series does converge.
3. Determine whether the series is convergent or divergent.
(a) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{(n+1)^{2}}$

Notice that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+2}{(n+1)^{2}}=1 \neq 0
$$

Thus, the series diverges by the Divergence Test.
(b) $\frac{1}{1}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}+\frac{1}{4 \sqrt{4}}+\cdots$

First, observe that this series is $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. This is a p-series with $p=\frac{3}{2}>1$, so the series converges.
(c) $\sum_{n=6}^{\infty} \frac{\sqrt{n}}{n-5}$

Observe that

$$
\sum_{n=6}^{\infty} \frac{\sqrt{n}}{n-5}>\sum_{n=6}^{\infty} \frac{\sqrt{n}}{n}=\sum_{n=6}^{\infty} \frac{1}{n^{1 / 2}}
$$

Since the latter series is a divergent p-series $(p=1 / 2<1)$, the first series diverges by the Comparison Test.
(d) $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$

Consider the function $f(x)=\frac{1}{x(\ln (x))^{2}}$. Observe that $f(n)=a_{n}$ and that $f(x)$ is positive, decreasing, and continuous on $[2, \infty)$. We have

$$
\int_{2}^{\infty} \frac{1}{x(\ln (x))^{2}} d x=\frac{1}{\ln (2)}
$$

via u-substitution with $u=\ln (x)$. Since the improper integral converges, the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ converges by the Integral Test.
(e) $\sum_{n=1}^{\infty}\left(\int_{n}^{n+1} \frac{d x}{x^{5 / 3}}\right)$

Consider the partial sums of this series:

$$
\begin{aligned}
S_{n} & =\sum_{k=1}^{n}\left(\int_{k}^{k+1} \frac{d x}{x^{5 / 3}}\right) \\
& =\int_{1}^{n+1} \frac{d x}{x^{5 / 3}} \\
& =\frac{3}{8}\left(1-\frac{1}{(n+1)^{8 / 3}}\right) \\
\lim _{n \rightarrow \infty} S_{n} & =\frac{3}{8}
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty}\left(\int_{n}^{n+1} \frac{d x}{x^{5 / 3}}\right)$ converges to $\frac{3}{8}$.
(f) $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$

First, compare $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$ and $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}}$ using the Limit Comparison Test.

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{2}+1}{n^{3}+1}}{\frac{n^{2}}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{n^{3}+n}{n^{3}+1}=1
$$

We also have that $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Then, by the Limit Comparison Test, $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$ also diverges.
4. Can you find a sequence $\left\{a_{n}\right\}$ converging to 0 such that the series $\sum_{n=1}^{\infty} a_{n}$ diverges? Consider $\sum_{n=1}^{\infty} \frac{1}{n}$.
5. Find the Maclaurin series representation for each of the following series. (Hint: It is unnecessary to take any derivatives.)
(a) $f(x)=\frac{1}{x+10}$

$$
\begin{aligned}
\frac{1}{x+10} & =\frac{1}{10\left(1-\left(-\frac{x}{10}\right)\right)} \\
& =\frac{1}{10} \sum_{n=0}^{\infty}\left(\frac{-x}{10}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{10^{n+1}}
\end{aligned}
$$

(b) $f(x)=\frac{x}{2 x^{2}+1}$

$$
\begin{aligned}
\frac{x}{2 x^{2}+1} & =x \frac{1}{1-\left(-2 x^{2}\right)} \\
& =x \sum_{n=0}^{\infty}\left(-2 x^{2}\right)^{n} \\
& =\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{2 n+1}
\end{aligned}
$$

6. Evaluate the indefinite integral as a power series.

$$
\begin{gathered}
\int \frac{\ln 1-t}{t} d t \\
\begin{aligned}
\int \frac{\ln (1-t)}{t} d t & =\int \frac{1}{t} \sum_{n=1}^{\infty}-\frac{t^{n}}{n} d t \\
& =\int \sum_{n=1}^{\infty}-\frac{t^{n-1}}{n} d t \\
& =\sum_{n=1}^{\infty}-\int \frac{t^{n-1}}{n} d t \\
& =\sum_{n=1}^{\infty}\left(-\frac{x^{n}}{n^{2}}+C_{n}\right) \\
& =\sum_{n=1}^{\infty}-\frac{x^{n}}{n^{2}}+C
\end{aligned}
\end{gathered}
$$

7. Find the Taylor series for each of the following functions at the indicated center.
(a) $\cos (x), \quad c=\pi / 4$

For $f(x)=\cos (x)$, we have

$$
f^{(n)}(x)=\left\{\begin{array}{lll}
\cos (x) & \text { if } n \equiv 0 & \bmod 4 \\
-\sin (x) & \text { if } n \equiv 1 & \bmod 4 \\
-\cos (x) & \text { if } n \equiv 2 & \bmod 4 \\
\sin (x) & \text { if } n \equiv 3 & \bmod 4
\end{array}\right.
$$

and hence

$$
f^{(n)}\left(\frac{\pi}{4}\right)=\left\{\begin{array}{lll}
\frac{\sqrt{2}}{2} & \text { if } n \equiv 0,3 \quad \bmod 4 \\
-\frac{\sqrt{2}}{2} & \text { if } n \equiv 1,2 \quad \bmod 4
\end{array}\right.
$$

Therefore, the Taylor Series expansion for $\cos (x)$ centered at $\frac{\pi}{4}$ is

$$
\begin{aligned}
\cos (x) & =\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(x-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2} \frac{\left(x-\frac{\pi}{4}\right)^{2}}{2!}+\frac{\sqrt{2}}{2} \frac{\left(x-\frac{\pi}{4}\right)^{3}}{3!}+--+\cdots \\
& =\frac{\sqrt{2}}{2}\left(1-\left(x-\frac{\pi}{4}\right)-\frac{1}{2!}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}+\frac{1}{4!}\left(x-\frac{\pi}{4}\right)^{4}--++\cdots\right) \\
& =\frac{\sqrt{2}}{2}\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{4}\right)^{2 n}}{(2 n)!}-\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{4}\right)^{2 n+1}}{(2 n+1)!}\right) \\
& =\frac{\sqrt{2}}{2}\left(\sum_{n=0}^{\infty}(-1)^{\left\lceil\frac{n}{2}\right\rceil} \frac{\left(x-\frac{\pi}{4}\right)^{n}}{n!}\right)
\end{aligned}
$$

(b) $e^{x}+e^{-x}, \quad c=0$

We have that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ and hence $e^{x}=\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!}$. Therefore,

$$
\begin{aligned}
e^{x}+e^{-x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(-x)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}+(-x)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}\left(1+(-1)^{n}\right.}{n!} \\
& =\sum_{n=0}^{\infty} \frac{2 x^{2 n}}{(2 n)!} \\
& =2 \sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

