Homework 5 - Solutions

1. Let V be the set of all linear combinations of the vectors $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and $\left[\begin{array}{l}7 \\ 1\end{array}\right]$. Is V a vector space? Prove or disprove.
Proof: By definition, $V=\operatorname{Span}\left\{\left[\begin{array}{l}2 \\ 5\end{array}\right],\left[\begin{array}{l}7 \\ 1\end{array}\right]\right\}$. Every span is subspace of its ambient space and, hence, must be a vector space.
2. Let W be the set of points on the line $y=2 x+1$. That is, let

$$
W=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: y=2 x+1\right\}
$$

Is W a vector space? Prove or disprove.
Disproof: The zero vector $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is not in W, hence W cannot be a vector space. Alternatively, it is easy to show that W is not closed under vector addition nor under scalar multiplication.
3. Prove that the set of all differentiable functions on \mathbb{R} is a vector space over \mathbb{R}.

Proof: Let \mathbb{D} denote the set of all differentiable functions on \mathbb{R}. It is clear that \mathbb{D} inherits most of the required properties from the vector space of all functions on \mathbb{R}, so we only need to verify that \mathbb{D} is a subspace. Let $f(x)$ and $g(x)$ be in \mathbb{D}, and let c be an arbitrary real number. We know that

$$
\frac{d}{d x}(f+g)=\frac{d f}{d x}+\frac{d g}{d x}
$$

and

$$
\frac{d}{d x}(c f)=c \cdot \frac{d f}{d x}
$$

which means that \mathbb{D} is closed under vector addition and scalar multiplication. Since all constant functions are differentiable, we have that the zero function is also in \mathbb{D}. By the Subspace Criteria, \mathbb{D} is a subspace of the vector space of all functions on \mathbb{R} and, thus, is a vector space in its own right.
4. Prove that the set of all rational numbers is NOT a vector space over \mathbb{R}.

Proof: The number 1 is a rational number, and $\sqrt{2}$ is a irrational number. Since $\sqrt{2} \cdot 1=\sqrt{2}$ is irrational, the set of all rational numbers is not closed under scalar multiplication with scalars drawn from \mathbb{R}. Hence, the set of all rational numbers is not a vector space over \mathbb{R}.
5. Prove that the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ that maps a vector \mathbf{v} to the vector $\mathbf{0}$ is a linear transformation.

Proof: Let \mathbf{u} and \mathbf{v} be arbitrary vectors in \mathbb{R}^{2}, and let c be an arbitrary scalar from \mathbb{R}. Notice that

$$
T(\mathbf{u}+\mathbf{v})=0=0+0=T(\mathbf{u})+T(\mathbf{v})
$$

and

$$
T(c \mathbf{u})=0=c \cdot 0=c \cdot T(\mathbf{u})
$$

Since these two statements are true for all appropriate vectors and scalars, T must be a linear transformation by definition.
6. Suppose that T is the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ that maps a vector

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] \text { to }\left[\begin{array}{c}
-v_{1}-7 v_{3} \\
v_{2} \\
v_{1} \\
0 \\
v_{2}-v_{3}
\end{array}\right]
$$

Find a matrix A such that $T(\mathbf{v})=A \mathbf{v}$.
Solution: The required matrix is

$$
\left[\begin{array}{cccc}
-1 & 0 & -7 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

7. Suppose that T is the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{6}$ that takes the coefficient vector $\mathbf{v}=\left[\begin{array}{l}v_{0} \\ v_{1} \\ v_{2} \\ v_{3} \\ v_{4}\end{array}\right]$ of a polynomial $f(x)=v_{0}+v_{1} x+v_{2} x^{2}+v_{3} x^{3}+v_{4} x^{4}$ and maps it to the coefficient vector of $\int_{0}^{x} f(x) d x$. Find a matrix A such that $T(\mathbf{v})=A \mathbf{v}$.
Solution: The required matrix is

$$
\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0 & \frac{1}{5}
\end{array}\right]
$$

8. Is the vector $\mathbf{w}=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$ in $\operatorname{Span}\left\{\left[\begin{array}{c}-4 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$?

Solution: No. If we row-reduce the matrix

$$
\left[\begin{array}{cc|c}
-4 & 1 & 2 \\
7 & 2 & 3 \\
8 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{cc|c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

we see that the three vectors are linearly independent. Therefore, w cannot be in $\operatorname{Span}\left\{\left[\begin{array}{c}-4 \\ 7 \\ 8\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$.

