Homework 6 - Solutions

1. Determine if the columns of A form a linearly independent set.

$$
A=\left[\begin{array}{ccc}
-4 & -3 & 0 \\
0 & -1 & 4 \\
1 & 0 & 3 \\
5 & 4 & 6
\end{array}\right]
$$

Solution: A is row-equivalent to $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Since every column has a pivot, the columns of A form a linearly independent set.
2. Prove that if $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is a linearly dependent set of vectors in \mathbb{R}^{n}, then there exists $\mathbf{v}_{\mathbf{k}}$ in S such that $\operatorname{Span}\left(S \backslash\left\{\mathbf{v}_{\mathbf{k}}\right\}\right)=\operatorname{Span}(S)$.
Proof: S is linearly dependent; therefore, there exists some solution to

$$
x_{1} \mathbf{v}_{\mathbf{1}}+\cdots+x_{p} \mathbf{v}_{\mathbf{p}}=\mathbf{0}
$$

with some k such that $x_{k} \neq 0$. Then,

$$
-x_{k} \mathbf{v}_{\mathbf{k}}=x_{1} \mathbf{v}_{\mathbf{1}}+\cdots+x_{k-1} \mathbf{v}_{\mathbf{k}-\mathbf{1}}+x_{k+1} \mathbf{v}_{\mathbf{k}+\mathbf{1}}+\cdots+x_{p} \mathbf{v}_{\mathbf{p}}
$$

and hence

$$
\mathbf{v}_{\mathbf{k}}=-\frac{x_{1}}{x_{k}} \mathbf{v}_{\mathbf{1}}-\cdots-\frac{x_{k-1}}{x_{k}} \mathbf{v}_{\mathbf{k}-\mathbf{1}}-\frac{x_{k+1}}{x_{k}} \mathbf{v}_{\mathbf{k}+\mathbf{1}}-\cdots-\frac{x_{p}}{x_{k}} \mathbf{v}_{\mathbf{p}}
$$

For any $\mathbf{w} \in \operatorname{Span}(S)$, we have

$$
\begin{gathered}
\mathbf{w}=w_{1} \mathbf{v}_{\mathbf{1}}+\cdots+w_{p} \mathbf{v}_{\mathbf{p}} \\
=w_{1} \mathbf{v}_{\mathbf{1}}+\cdots+w_{k}\left(-\frac{x_{1}}{x_{k}} \mathbf{v}_{\mathbf{1}}-\cdots-\frac{x_{k-1}}{x_{k}} \mathbf{v}_{\mathbf{k}-\mathbf{1}}-\frac{x_{k+1}}{x_{k}} \mathbf{v}_{\mathbf{k}+\mathbf{1}}-\cdots-\frac{x_{p}}{x_{k}} \mathbf{v}_{\mathbf{p}}\right)+\cdots+w_{p} \mathbf{v}_{\mathbf{p}}
\end{gathered}
$$

Hence, it is also true that $\mathbf{w} \in \operatorname{Span}\left(S \backslash\left\{\mathbf{v}_{\mathbf{k}}\right\}\right)$. Thus, $\operatorname{Span}\left(S \backslash\left\{\mathbf{v}_{\mathbf{k}}\right\}\right)=\operatorname{Span}(S)$.
3. Find a basis for each of the following subspaces of \mathbb{R}^{n}.
(a) All vectors whose components are equal in \mathbb{R}^{4}.

Solution: This is the set

$$
\left\{\left[\begin{array}{l}
a \\
a \\
a \\
a
\end{array}\right]\right\}=\left\{a\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right\}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right)
$$

. The set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$ is linearly independent and therefore a basis.
(b) All vectors whose components add up to zero in \mathbb{R}^{4}.

Solution: This is the set
$\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]: x_{1}+x_{2}+x_{3}+x_{4}=0\right\}=\left\{\left[\begin{array}{c}-x_{2}-x_{3}-x_{4} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]\right\}=\operatorname{Span}\left(\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\right)$.
The set $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$ is linearly independent and therefore a basis for the space.
4. Consider the matrix $A=\left[\begin{array}{cccc}2 & 5 & -8 & 7 \\ -1 & 5 & 4 & 7 \\ 0 & 5 & 0 & 7\end{array}\right]$.
(a) Find two different bases for $\operatorname{Col} A$.

Solution: Row-reduce A to locate the pivot columns, which will form one basis for $\operatorname{Col} A$. Reorder the columns of A to get a matrix A^{\prime}, and then row-reduce A^{\prime} to locate the pivot columns, which will form a different basis for $\operatorname{Col} A$.
(b) Find two different bases for NulA.

Solution: Row-reducing A produces the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & -4 & 0 \\
0 & 1 & 0 & 1.4 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It is straightforward to show that

$$
N u l A=\operatorname{Span}\left(\left[\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1.4 \\
0 \\
1
\end{array}\right]\right)
$$

and that $\left\{\left[\begin{array}{l}4 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1.4 \\ 0 \\ 1\end{array}\right]\right\}$ is a linearly independent set and hence a basis for
$N u l A$. Replace at least one of the basis vectors with a scalar multiple of itself to obtain a different basis for $N u l A$.
5. Suppose S is a 5 -dimensional subspace of \mathbb{R}^{6}. Prove that every basis for S can be extended to a basis for \mathbb{R}^{6} by adding one more vector.
Proof: Suppose $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{5}}\right\}$ is a basis for S, and let \mathbf{w} be a vector in \mathbb{R}^{6} that is not in $\operatorname{Span}(S)$. Then, w cannot be written as a linear combination of the vectors in S. Since S is already a linearly independent set, $S \cup\{\mathbf{w}\}$ is also linearly independent. The set $S \cup\{\mathbf{w}\}$ is a linearly independent set of 6 vectors in a 6 -dimensional vector space, thus it is a basis for \mathbb{R}^{6}.
6. Find the eigenvalues of

$$
B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Solution: It is straightforward to show that the characteristic polynomial of B is $\lambda^{3}(4-\lambda)$, so the eigenvalues of B are 0 (with algebraic multiplicity 3) and 4 (with algebraic multiplicity 1).
7. Prove that the eigenvalues of A are the same as the eigenvalues of A^{T} for any square matrix A.
Proof: Note that $(A-\lambda I)^{T}=A^{T}-\lambda I$. Expanding $\operatorname{det}\left((A-\lambda I)^{T}\right)$ along the first row and $\operatorname{det}\left(A^{T}-\lambda I\right)$ along the first column will lead to the same polynomial. Thus, both A and A^{T} have the same characteristic polynomial and, hence, the same eigenvalues.

