Linear Independence and Bases

August 12th-AM
Definition: A finite set of vectors $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}$ in a real vector space V is said to be linearly dependent if there exists $c_{1}, c_{2}, c_{3}, \ldots c_{k} \in \mathbb{R}$, not all of which are 0 , such that $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{k} x_{k}=0$.

Examples:

1. The vectors

$$
x_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad x_{2}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad x_{3}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right)
$$

are linearly dependent since $2 x_{1}+x_{2}-x_{3}=0$.
2. Any set containing the zero vector is linearly dependent.

Definition: The set $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}$ is linearly independent if the only choice of $c_{1}, c_{2} \ldots c_{k} \in \mathbb{R}$ such that $c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{k} x_{k}=0$ are $c_{1}=c_{2}=\cdots=c_{k}=0$.

Examples:

1. A set consisting of two different vectors is linearly dependent \Longleftrightarrow one vector is a nonzero multiple of the other.
2. Find two linearly independent vectors belonging to the null space of

$$
A=\left(\begin{array}{cccc}
3 & 2 & -1 & 4 \\
1 & 0 & 2 & 3 \\
-2 & -2 & 3 & -1
\end{array}\right)
$$

3. Are the columns of A linearly independent in \mathbb{R}^{3} ?

Definition: A set of vectors $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}$ with $v_{i} \in \mathbb{R}^{n}$ and $\operatorname{span}(S)=V$ is a basis of V if S forms a linearly independent set.

Definition: Let $V \neq\{0\}$ be a subspace of \mathbb{R}^{n}. The dimension of V is the number of elements in any basis of V.

Example: Find the dimension of the null space of

$$
A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 3 & 2 \\
0 & 1 & 0 & 1 & -1 \\
0 & 0 & 1 & 2 & 3
\end{array}\right)
$$

