Linear Independence and Bases August 12th-AM

Definition: A finite set of vectors $\{v_1, v_2, v_3, \ldots, v_k\}$ in a real vector space V is said to be *linearly dependent* if there exists $c_1, c_2, c_3, \ldots, c_k \in \mathbb{R}$, not all of which are 0, such that $c_1x_1 + c_2x_2 + \cdots + c_kx_k = 0$.

Examples:

1. The vectors

$$x_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \qquad x_2 = \begin{pmatrix} 1\\-1\\2 \end{pmatrix}, \qquad x_3 = \begin{pmatrix} 3\\1\\4 \end{pmatrix}$$

are linearly dependent since $2x_1 + x_2 - x_3 = 0$.

2. Any set containing the zero vector is linearly dependent.

Definition: The set $S = \{v_1, v_2, v_3, \dots, v_k\}$ is *linearly independent* if the only choice of $c_1, c_2 \dots c_k \in \mathbb{R}$ such that $c_1x_1 + c_2x_2 + \dots + c_kx_k = 0$ are $c_1 = c_2 = \dots = c_k = 0$.

Examples:

- 1. A set consisting of two different vectors is linearly dependent \iff one vector is a nonzero multiple of the other.
- 2. Find two linearly independent vectors belonging to the null space of

$$A = \begin{pmatrix} 3 & 2 & -1 & 4 \\ 1 & 0 & 2 & 3 \\ -2 & -2 & 3 & -1 \end{pmatrix}$$

3. Are the columns of A linearly independent in \mathbb{R}^3 ?

Definition: A set of vectors $S = \{v_1, v_2, v_3, \dots, v_k\}$ with $v_i \in \mathbb{R}^n$ and span(S) = V is a basis of V if S forms a linearly independent set.

Definition: Let $V \neq \{0\}$ be a subspace of \mathbb{R}^n . The dimension of V is the number of elements in any basis of V.

Example: Find the dimension of the null space of

$$A = \begin{pmatrix} 1 & 0 & 0 & 3 & 2 \\ 0 & 1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix}$$