Dot Product, Orthogonality, and Projections

August 13 - AM

1. Dot Product (Scalar Product, Inner Product)

Definition 1. (Dot Product). The dot product $\mathbf{v} \cdot \mathbf{w}$ of two vectors

$$
\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle, \quad \mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle
$$

is the scalar defined by

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

denoted by (\mathbf{v}, \mathbf{w}) or $\langle\mathbf{v}, \mathbf{w}\rangle$.
In words, to compute the dot product, multiply the corresponding components and add.
Theorem 1. (Properties of the Dot Product).
i. $\mathbf{0} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{0}=0$
ii. Commutativity: $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$
iii. Pulling out scalars: $(\lambda \mathbf{v}) \cdot \mathbf{w}=\mathbf{v} \cdot(\lambda \mathbf{w})=\lambda(\mathbf{v} \cdot \mathbf{w})$
$i v$. Distributive Law: $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

$$
(\mathbf{v}+\mathbf{w}) \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{u}
$$

v. Relation with length: $\mathbf{v} \cdot \mathbf{v}=\|\mathbf{v}\|^{2}$
There is one convention for the angle between two vectors:

$$
\text { The angle between two vectors is chosen to satisfy } 0 \leq \theta \leq \pi
$$

Theorem 2. (Dot Product and the Angle). Let θ be the angle between two nonzero vectors \mathbf{v} and \mathbf{w}. Then

$$
\mathbf{v} \cdot \mathbf{w}=\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta \quad \text { or } \quad \cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}
$$

Proof. According to the Law of Cosines, the three sides of a triangle satisfy

$$
c^{2}=a^{2}+b^{2}-2 a b \cos \theta
$$

If two sides of the triangle are \mathbf{v} and \mathbf{w}, then the third side is $\mathbf{v}-\mathbf{w}$, and the Law of Cosines gives

$$
\|\mathbf{v}-\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2 \cos \theta\|\mathbf{v}\|\|\mathbf{w}\|
$$

By property (v) of Theorem 1 and the Distributive Law.

$$
\begin{aligned}
\|\mathbf{v}-\mathbf{w}\|^{2} & =(\mathbf{v}-\mathbf{w}) \cdot(\mathbf{v}-\mathbf{w})=\mathbf{v} \cdot \mathbf{v}-2 \mathbf{v} \cdot \mathbf{w}+\mathbf{w} \cdot \mathbf{w} \\
& =\|\mathbf{v}\|^{2}+\|\mathbf{w}\|^{2}-2 \mathbf{v} \cdot \mathbf{w}
\end{aligned}
$$

Thus, Equation (2) follows.

By definition of the arccosine, the angle $\theta=\cos ^{-1} x$ is the angle in the interval $[0, \pi]$ satisfying $\cos \theta=x$. Thus, for nonzero vectors \mathbf{v} and \mathbf{w}, we have

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}\right)
$$

2. Perpendicular (Orthogonal), Obtuseness and Projection

Definition 2. (Perpendicular). Two nonzero vectors \mathbf{v} and \mathbf{w} are called perpendicular or orthogonal if the angle between them is $\frac{\pi}{2}$, denoted as $\mathbf{v} \perp \mathbf{w}$.

$$
\mathbf{v} \perp \mathbf{w} \quad \text { iff } \quad \mathbf{v} \cdot \mathbf{w}=0
$$

The standard basis vectors are mutually orthogonal and have length 1 .

Definition 3. (Obtuseness).

The angle θ between \mathbf{v} and \mathbf{w} is obtuse if $\mathbf{v} \cdot \mathbf{w}<0$.
The angle θ between \mathbf{v} and \mathbf{w} is acute if $\mathbf{v} \cdot \mathbf{w}>0$.
Definition 4. (Projection). Assume $\mathbf{v} \neq 0$. The projection of \mathbf{u} along \mathbf{v} is the vector

$$
\mathbf{u}_{\|}=\left(\mathbf{u} \cdot \mathbf{e}_{\mathbf{v}}\right) \mathbf{e}_{\mathbf{v}} \quad \text { or } \quad \mathbf{u}_{\|}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

The scalar $\mathbf{u} \cdot \mathbf{e}_{\mathbf{v}}$ is called the component of \mathbf{u} along $\mathbf{v}, \mathbf{u} \cdot \mathbf{e}_{\mathbf{v}}=\|\mathbf{u}\| \cos \theta$.
Proof.

$$
\begin{aligned}
\mathbf{u}_{\|} & =\left(\mathbf{u} \cdot \mathbf{e}_{\mathbf{v}}\right) \mathbf{e}_{\mathbf{v}}=\left(\mathbf{u} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}\right) \frac{\mathbf{v}}{\|\mathbf{v}\|} \\
& =\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
\end{aligned}
$$

Every vector \mathbf{u} can be written as the sum of the projection $\mathbf{u}_{\|}$and a vector \mathbf{u}_{\perp} with respect to another vector \mathbf{v}.

$$
\mathbf{u}=\mathbf{u}_{\|}+\mathbf{u}_{\perp}
$$

This is the decomposition of \mathbf{u} with respect to \mathbf{v}.

THE SPECTRAL THEOREM

Let A be an $n \times n$ symmetric real matrix. An amazing fact is that we can write A as

$$
\left(\begin{array}{ccccc}
\mid & \mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & \mid & & \mid
\end{array}\right)\left(\begin{array}{ccccc}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \lambda_{3} & & \\
& & & \ddots & \\
& & & & \lambda_{n}
\end{array}\right)\left(\begin{array}{ccc}
- & \vec{v}_{1} & - \\
- & \vec{v}_{2} & - \\
- & \vec{v}_{3} & - \\
- & \cdots & - \\
- & \vec{v}_{n} & -
\end{array}\right)
$$

with $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ orthonormal vectors.
Here is how we compute ${ }^{1}$ the λ 's and the \vec{v} 's. The fact that this method works involves what seems to be some amazing pieces of good fortune.

Step 1 Compute the characteristic polynomial $\operatorname{det}(A-k I d)$.
Factor this polynomial as $\left(\lambda_{1}-k\right)\left(\lambda_{2}-k\right) \cdots\left(\lambda_{n}-k\right)$. The Fundamental Theorem of Algebra ${ }^{2}$ promises us that such a factorization is possible if we use complex numbers. However, it turns out in our case that life is much better than this:

Lucky Fact 1: All the roots of f are real.
Step 2 For each eigenvalue λ, compute an orthonormal basis for $\operatorname{Ker}(A-\lambda I d)$.
Putting all these bases together gives us a list of vectors: $\vec{v}_{1}, \vec{v}_{2}, \ldots$.
Lucky Fact 2: The geometric multiplicity of λ, meaning the dimension of this kernel, is equal to the number of times λ occurs as a root of f.

Thus, the total number of vectors in our list is equal to the number of roots of f, which is n.
Lucky Fact 3: These vectors form an orthonormal basis of \mathbb{R}^{n}.
In the rest of this note, we will explain why we got so lucky.

A key fact

We will use the following key fact twice below:
Key Fact: Suppose that \vec{u} and \vec{v} are eigenvectors of A, with

$$
A \vec{u}=\lambda \vec{u} \quad A \vec{v}=\mu \vec{v} .
$$

Suppose that $\lambda \neq \mu$. Then \vec{u} and \vec{v} are orthogonal.
To see this, we compute $\vec{u}^{T} A \vec{v}$ in two ways. We have

$$
\vec{u}^{T} A \vec{v}=\vec{u}^{T}(\lambda \vec{v})=\lambda \vec{u}^{T} \vec{v} .
$$

But, also, $\vec{u}^{T} A \vec{v}=\left(\vec{v}^{T} A^{T} \vec{u}\right)^{T}=\left(\vec{v}^{T} A \vec{u}\right)^{T}$, where we have replaced A^{T} by A because A is symmetric. And $\left(\vec{v}^{T} A \vec{u}\right)^{T}=\left(\vec{v}^{T} \mu \vec{u}\right)^{T}=\mu\left(\vec{v}^{T} \vec{u}\right)^{T}=\mu\left(\vec{u}^{T} \vec{v}\right)$. Putting it all together,

$$
\lambda \vec{u}^{T} \vec{v}=\mu \vec{u}^{T} \vec{v}
$$

Since $\lambda \neq \mu$, we get $\vec{u}^{T} \vec{v}=0$. In other words, the dot product $\vec{u} \cdot \vec{v}$ is 0 or, in still other words, \vec{u} and \vec{v} are orthogonal.

We now start explaining the Lucky Facts.

Lucky Fact 1

Suppose that f had a complex root, $\lambda=a+b i$. Let the corresponding eigenvector be $\vec{x}+i \vec{y}$, with x and y each real vectors. So

$$
A(\vec{x}+i \vec{y})=(a+b i)(\vec{x}+i \vec{y}) .
$$

Taking complex conjugates of everything, we also have

$$
A(\vec{x}-i \vec{y})=(a-b i)(\vec{x}-i \vec{y}) .
$$

So $\vec{x}-i \vec{y}$ is also an eigenvector, with eigenvalue $a-b i$.
Now, if λ is complex, then $b \neq 0$, and $a+b i \neq a-b i$. We can now use the Key Fact, with $\vec{u}=\vec{x}+i \vec{y}$ and $\vec{v}=\vec{x}-i \vec{y}$. (You probably expected us to use the Key Fact for real vectors, but there is nothing about our argument that needed the entries to be real.)

So we deduce that $\vec{u} \cdot \vec{v}=0$. Plugging in the formulas for \vec{u} and \vec{v}, that $(\vec{x}+i \vec{y}) \cdot(\vec{x}-i \vec{y})=0$.

$$
\text { But } \quad(\vec{x}+i \vec{y}) \cdot(\vec{x}-i \vec{y})=\vec{x} \cdot \vec{x}-i \vec{x} \cdot \vec{y}+i \vec{y} \cdot \vec{x}+\vec{y} \cdot \vec{y}=\vec{x} \cdot \vec{x}+\vec{y} \cdot \vec{y}=|\vec{x}|^{2}+|\vec{y}|^{2} .
$$

There is no way this is zero. (Remember that \vec{x} and \vec{y} have real entries.) More precisely, the only way it could be zero is if $\vec{x}=\vec{y}=0$, but then $\vec{x}+i \vec{y}$ is 0 and is not an example of a nontrivial eigenvector.

We started out supposing that f has a complex root, and reached the absurd conclusion that $|\vec{x}|^{2}+|\vec{y}|^{2}=0$. The resolution is that, in fact, f doesn't have any complex roots, and all its roots are real. (Here we are using the Fundamental Theorem of Algebra to know that there are n roots total - real and complex.) Lucky Fact 1 explained!

Lucky Fact 2

Let λ be a root of $f(k)$, so $\operatorname{det}(A-\lambda \mathrm{Id})=0$. Let r be the geometric multiplicity of λ, meaning that there is an r dimensional space of solutions to the equation $A \vec{v}=\lambda \vec{v}$.

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}$ be an orthonormal basis for the space of solutions to $A \vec{v}=\lambda \vec{v}$. Find additional vectors $\vec{v}_{r+1}, \ldots, \vec{v}_{n}$ so that $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}, \vec{v}_{r+1}, \ldots \vec{v}_{n}$ is an orthonormal basis for \mathbb{R}^{n}. For $r+1 \leq i \leq n$, we can write

$$
A \vec{v}_{i}=\sum_{j=1}^{n} c_{i j} \vec{v}_{j}
$$

for some coefficients $c_{i j}$. We can organize these equations into a matrix. For concreteness, we take $r=2$ and $n=5$.

$$
\left(\begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5} \\
\mid & \mid & \mid & \mid & \mid
\end{array}\right)\left(\begin{array}{ccccc}
\lambda & & & & \\
& \lambda & & & \\
c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\
c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \\
c_{51} & c_{52} & c_{53} & c_{54} & c_{55}
\end{array}\right)=A \cdot\left(\begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5} \\
\mid & \mid & \mid & \mid & \mid
\end{array}\right)
$$

You may recognize this argument from the November 13 notes.

$$
\text { Let } S=\left(\begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
\vec{v}_{1} & \overrightarrow{v_{2}} & \vec{v}_{3} & \vec{v}_{4} & \vec{v}_{5} \\
\mid & \mid & \mid & \mid & \mid
\end{array}\right) . \quad \text { So } \quad S A S^{-1}=\left(\begin{array}{ccccc}
\lambda & & & \\
& \lambda & & & \\
c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\
c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \\
c_{51} & c_{52} & c_{53} & c_{54} & c_{55}
\end{array}\right) \text {. }
$$

But $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ is an orthonormal basis, so S is orthogonal and $S^{-1}=S^{T}$. So we have

$$
S^{T} A S=\left(\begin{array}{ccccc}
\lambda & & & & \\
& \lambda & & & \\
c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\
c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \\
c_{51} & c_{52} & c_{53} & c_{54} & c_{55}
\end{array}\right) .
$$

Notice that $\left(S^{T} A S\right)^{T}=S^{T} A^{T} S=S^{T} A S$, so the above matrix is symmetric. In particular, that lower left block is entirely zero and we have

$$
S^{-1} A S=\left(\begin{array}{ll|l}
\lambda & & \\
& \lambda & \\
\hline & & C
\end{array}\right)
$$

for some symmetric $(n-r) \times(n-r)$ matrix C. As in the November 13 notes, we see that

$$
\begin{aligned}
& \operatorname{det}\left(A-k \cdot \operatorname{Id}_{n}\right)=\operatorname{det}\left(\left(\begin{array}{ll|l}
\lambda & & \\
& \lambda & \\
\hline & & C
\end{array}\right)-k \cdot \operatorname{Id}_{n}\right)=\operatorname{det}\left(\begin{array}{ll|l}
\lambda-k & & \\
& &
\end{array}\right) \\
& =(\lambda-k)^{r} \operatorname{det}\left(C-k \cdot \operatorname{Id}_{n-r}\right) \text {. }
\end{aligned}
$$

Our goal is to show that $\lambda-k$ divides $\operatorname{det}\left(A-k \cdot \operatorname{Id}_{n}\right)$ exactly r times. So we want to know that $\lambda-k$ does not $\operatorname{divide} \operatorname{det}\left(C-k \operatorname{Id}_{n-r}\right)$. In other words, we want to know that λ is not an eigenvalue of C.

Suppose, to the contrary that $C \vec{u}=\lambda \vec{u}$. Then

$$
\left(\begin{array}{c|c}
\lambda & \\
& \\
& \lambda
\end{array}\right)
$$

So $\left(\begin{array}{l}0 \\ 0 \\ u\end{array}\right)$ is another λ eigenvector for A, which should have been listed when we found the v_{i}.

Lucky Fact 3

We need to explain two things: Why the \vec{v}_{i} are orthonormal, and why they are a basis.
If \vec{v}_{i} and \vec{v}_{j} both come from the same eigenvalue λ, then $\vec{v}_{i} \cdot \vec{v}_{j}=0$ because we chose an orthonormal basis for the λ-eigenspace. Also, the \vec{v}_{i} all have length 1 because we chose an orthonormal basis in this place.

If \vec{v}_{i} and \vec{v}_{j} come from different eigenvalues, then the Key Fact tells us that \vec{v}_{i} and \vec{v}_{j} are perpendicular. So we also have perpendicularity between these vectors.

Since the \vec{v}_{i} are orthonormal, they are linearly independent. From Lucky Fact 2, the number of \vec{v}_{i} coming from each λ is the same as the number of times $(\lambda-k)$ divides $f(k)$, and the polynomial f has degree n. So the total number of vectors \vec{v}_{i} is n. We have n linearly independent vectors in \mathbb{R}^{n}, so we have a basis for \mathbb{R}^{n}.

We have now explained all of our Lucky Facts, and shown that every symmetric matrix has a basis of eigenvectors.

