The Spectral Theorem

17.1. A real or complex matrix A is called symmetric or self-adjoint if A* = A,
where A* = A" . For a real matrix A, this is equivalent to AT = A. A real or complex
matrix is called normal if A*A = AA*. Examples of normal matrices are symmetric or
anti-symmetric matrices. Normal matrices appear often in applications. Correlation
matrices in statistics or operators belonging to observables in quantum mechanics,
adjacency matrices of networks are all self-adjoint. Orthogonal and unitary matrices
are all normal.

17.2.

Theorem: Symmetric matrices have only real eigenvalues.

Proof. We extend the dot product to complex vectors as (v, w) = v-w = ), U;w; which
extends the usual dot product (v, w) = T -w for real vectors. This dot product has the
property (A*v,w) = (v, Aw) and (\v,w) = A(v,w) as well as (v, \w) = A(v,w). Now
AMv,v) = (v, v) = (Av,v) = (A*v,v) = (v, Av) = (v, \v) = A(v,v) shows that A = A

because (v,v) =T -v = |v1|? + -+ + |v,|? is non-zero for non-zero vectors v. O

17.3.

Theorem: If A is symmetric, then eigenvectors to different eigenvalues
are perpendicular.

Proof. Assume Av = Av and Aw = pw. If X # p, then the relation A(v, w) = (Av,w) =
(Av,w) = (v, ATw) = (v, Aw) = (v, pw) = u(v,w) is only possible if (v, w) = 0. O

17.4. If A is a n xn matrix for which all eigenvalues are different, we say such a matrix
has simple spectrum. The “wiggle-theorem” tells that we can approximate a given
matrix with matrices having simple spectrum:

Theorem: A symmetric matrix can be approximated by symmetric
matrices with simple spectrum.
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Proof. We show that there exists a curve A(t) = A(t)T of symmetric matrices with
A(0) = A such that A(t) has simple for small positive ¢.
Use induction with respect to n. For n = 1, this is clear. Assume it is true for n, let
Abea(n+1)x (n+ 1) matrix. It has an eigenvalue A\; with eigenvector v; which
we assume to have length 1. The still symmetric matrix A + tv; - v7 has the same
eigenvector v; with eigenvalue \; +t. Let vs,...,v, be an orthonormal basis of V*
the space perpendicular to V = span(v;). Then A(t)v = Av for any v in V4. In that
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which contains the orthonormal basis {vy,vs, ..., v,} of R". Because B(t) = S~1A(t)S
with orthogonal S, also B(t) is symmetric implying that C' = 0. So, B(t) preserves D
and B(t) restricted to D does not depend on ¢. In particular, all the eigenvalues are
different from A; + ¢. By induction we find a curve D(t) with D(0) = D such that all
the eigenvalues of D(t) are different and also different from Ay + ¢. O

basis, the matrix A(t) becomes B(t) = [ } . Let S be the orthogonal matrix

17.5. This immediately implies the spectral theorem

Theorem: Every symmetric matrix A has an orthonormal eigenbasis.

Proof. Wiggle A so that all eigenvalues of A(t) are different. There is now an orthonor-
mal basis B(t) for A(t) leading to an orthogonal matrix S(t) such that S(¢) "t A(t)S(t) =
B(t) is diagonal for every small positive . Now, the limit S(t) = lim;_¢S(¢) and
also the limit S™!(¢) = ST(t) exists and is orthogonal. This gives a diagonalization
S7'AS = B. The ability to diagonalize is equivalent to finding an eigenbasis. As S is
orthogonal, the eigenbasis is orthonormal. 0

17.6. What goes wrong if A is not symmetric? Why can we not wiggle then? The
proof applied to the magic matrix A = [ 8 (1) } gives A(t) = A+ tey - el = [ (t) (1) }
which has the eigenvalues 0, ¢. For every ¢ > 0, there is an eigenbasis with eigenvectors
[1,0]%, [1, —t]. We see that for t — 0, these two vectors collapse. This can not happen in
the symmetric case because eigenvectors to different eigenvalues are orthogonal there.
We see also that the matrix S(t) converges to a singular matrix in the limit ¢ — 0.

17.7. First note that if A is normal, then A has the same eigenspaces as the symmetric
matrix A*A = AA*: if A*Av = v, then (A*A)Av = AA*Av = Adlv = AAwv, so that
also Av is an eigenvector of A*A. This implies that if A*A has simple spectrum, (leading
to an orthonormal eigenbasis as it is symmetric), than A also has an orthonormal
eigenbasis, namely the same one. The following result follows from a Wiggling theorem
for normal matrices:

17.8.
Theorem: Any normal matrix can be diagonalized using a unitary S.

EXAMPLES

17.9. A matrix A is called doubly stochastic if the sum of each row is 1 and the sum
of each column is 1. Doubly stochastic matrices in general are not normal, but they



are in the case n = 2. Find its eigenvalues and eigenvectors. The matrix must have
the form

i<fin, 7]
IL—p p

It is symmetric and therefore normal. Since the rows sum up to 1, the eigenvalue 1
appears to the eigenvector [1,1]7. The trace is 2a so that the second eigenvalue is
2a — 1. Since the matrix is symmetric and for a # 0 the two eigenvalues are distinct,
by the theorem, the two eigenvectors are perpendicular. The second eigenvector is
therefore [—1, 1]T.

17.10. We have seen the quaternion matrix belonging to z = p + i1q + jr + ks:
p —q —r —s
q p s —r
r o —s p q
s T —q p

space vector defined by the quatenion. Then the eigenvalues of A are p£i|v|, both with

algebraic multiplicity 2. The characteristic polynomial is p4(A\) = (A\? — 2p\ + |2]?)%

. As an orthogonal matrix, it is normal. Let v = [q,r, s] be the

17.11. Every normal 2 X 2 matrix is either symmetric or a rotation-dilation matrix.
Proof: just write down AAT = AT A. This gives a system of quadratic equations for
four variables a, b, ¢, d. This gives c =b or ¢ = —b,d = a.



