The Spectral Theorem

17.1. A real or complex matrix A is called symmetric or self-adjoint if $A^{*}=A$, where $A^{*}=\bar{A}^{T}$. For a real matrix A, this is equivalent to $A^{T}=A$. A real or complex matrix is called normal if $A^{*} A=A A^{*}$. Examples of normal matrices are symmetric or anti-symmetric matrices. Normal matrices appear often in applications. Correlation matrices in statistics or operators belonging to observables in quantum mechanics, adjacency matrices of networks are all self-adjoint. Orthogonal and unitary matrices are all normal.

17.2.

Theorem: Symmetric matrices have only real eigenvalues.

Proof. We extend the dot product to complex vectors as $(v, w)=v \cdot w=\sum_{i} \bar{v}_{i} w_{i}$ which extends the usual dot product $(v, w)=\bar{v} \cdot w$ for real vectors. This dot product has the property $\left(A^{*} v, w\right)=(v, A w)$ and $(\lambda v, w)=\bar{\lambda}(v, w)$ as well as $(v, \lambda w)=\lambda(v, w)$. Now $\bar{\lambda}(v, v)=(\lambda v, v)=(A v, v)=\left(A^{*} v, v\right)=(v, A v)=(v, \lambda v)=\lambda(v, v)$ shows that $\bar{\lambda}=\lambda$ because $(v, v)=\bar{v} \cdot v=\left|v_{1}\right|^{2}+\cdots+\left|v_{n}\right|^{2}$ is non-zero for non-zero vectors v.

17.3.

Theorem: If A is symmetric, then eigenvectors to different eigenvalues are perpendicular.

Proof. Assume $A v=\lambda v$ and $A w=\mu w$. If $\lambda \neq \mu$, then the relation $\lambda(v, w)=(\lambda v, w)=$ $(A v, w)=\left(v, A^{T} w\right)=(v, A w)=(v, \mu w)=\mu(v, w)$ is only possible if $(v, w)=0$.
17.4. If A is a $n \times n$ matrix for which all eigenvalues are different, we say such a matrix has simple spectrum. The "wiggle-theorem" tells that we can approximate a given matrix with matrices having simple spectrum:

Theorem: A symmetric matrix can be approximated by symmetric matrices with simple spectrum.

Proof. We show that there exists a curve $A(t)=A(t)^{T}$ of symmetric matrices with $A(0)=A$ such that $A(t)$ has simple for small positive t.
Use induction with respect to n. For $n=1$, this is clear. Assume it is true for n, let A be a $(n+1) \times(n+1)$ matrix. It has an eigenvalue λ_{1} with eigenvector v_{1} which we assume to have length 1 . The still symmetric matrix $A+t v_{1} \cdot v_{1}^{T}$ has the same eigenvector v_{1} with eigenvalue $\lambda_{1}+t$. Let v_{2}, \ldots, v_{n} be an orthonormal basis of V^{\perp} the space perpendicular to $V=\operatorname{span}\left(v_{1}\right)$. Then $A(t) v=A v$ for any v in V^{\perp}. In that basis, the matrix $A(t)$ becomes $B(t)=\left[\begin{array}{cc}\lambda_{1}+t & C \\ 0 & D\end{array}\right]$. Let S be the orthogonal matrix which contains the orthonormal basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of \mathbb{R}^{n}. Because $B(t)=S^{-1} A(t) S$ with orthogonal S, also $B(t)$ is symmetric implying that $C=0$. So, $B(t)$ preserves D and $B(t)$ restricted to D does not depend on t. In particular, all the eigenvalues are different from $\lambda_{1}+t$. By induction we find a curve $D(t)$ with $D(0)=D$ such that all the eigenvalues of $D(t)$ are different and also different from $\lambda_{1}+t$.

17.5. This immediately implies the spectral theorem

Theorem: Every symmetric matrix A has an orthonormal eigenbasis.
Proof. Wiggle A so that all eigenvalues of $A(t)$ are different. There is now an orthonormal basis $\mathcal{B}(t)$ for $A(t)$ leading to an orthogonal matrix $S(t)$ such that $S(t)^{-1} A(t) S(t)=$ $B(t)$ is diagonal for every small positive t. Now, the limit $S(t)=\lim _{t \rightarrow 0} S(t)$ and also the limit $S^{-1}(t)=S^{T}(t)$ exists and is orthogonal. This gives a diagonalization $S^{-1} A S=B$. The ability to diagonalize is equivalent to finding an eigenbasis. As S is orthogonal, the eigenbasis is orthonormal.
17.6. What goes wrong if A is not symmetric? Why can we not wiggle then? The proof applied to the magic matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ gives $A(t)=A+t e_{1} \cdot e_{1}^{T}=\left[\begin{array}{cc}t & 1 \\ 0 & 0\end{array}\right]$ which has the eigenvalues $0, t$. For every $t>0$, there is an eigenbasis with eigenvectors $[1,0]^{T},[1,-t]$. We see that for $t \rightarrow 0$, these two vectors collapse. This can not happen in the symmetric case because eigenvectors to different eigenvalues are orthogonal there. We see also that the matrix $S(t)$ converges to a singular matrix in the limit $t \rightarrow 0$.
17.7. First note that if A is normal, then A has the same eigenspaces as the symmetric matrix $A^{*} A=A A^{*}$: if $A^{*} A v=\lambda v$, then $\left(A^{*} A\right) A v=A A^{*} A v=A \lambda v=\lambda A v$, so that also $A v$ is an eigenvector of $A^{*} A$. This implies that if $A^{*} A$ has simple spectrum, (leading to an orthonormal eigenbasis as it is symmetric), than A also has an orthonormal eigenbasis, namely the same one. The following result follows from a Wiggling theorem for normal matrices:

17.8.

Theorem: Any normal matrix can be diagonalized using a unitary S.

Examples

17.9. A matrix A is called doubly stochastic if the sum of each row is 1 and the sum of each column is 1 . Doubly stochastic matrices in general are not normal, but they
are in the case $n=2$. Find its eigenvalues and eigenvectors. The matrix must have the form

$$
A=\left[\begin{array}{cc}
p & 1-p \\
1-p & p
\end{array}\right]
$$

It is symmetric and therefore normal. Since the rows sum up to 1 , the eigenvalue 1 appears to the eigenvector $[1,1]^{T}$. The trace is $2 a$ so that the second eigenvalue is $2 a-1$. Since the matrix is symmetric and for $a \neq 0$ the two eigenvalues are distinct, by the theorem, the two eigenvectors are perpendicular. The second eigenvector is therefore $[-1,1]^{T}$.
17.10. We have seen the quaternion matrix belonging to $z=p+i q+j r+k s$:
$\left[\begin{array}{cccc}p & -q & -r & -s \\ q & p & s & -r \\ r & -s & p & q \\ s & r & -q & p\end{array}\right]$. As an orthogonal matrix, it is normal. Let $v=[q, r, s]$ be the space vector defined by the quatenion. Then the eigenvalues of A are $p \pm i|v|$, both with algebraic multiplicity 2 . The characteristic polynomial is $p_{A}(\lambda)=\left(\lambda^{2}-2 p \lambda+|z|^{2}\right)^{2}$.
17.11. Every normal 2×2 matrix is either symmetric or a rotation-dilation matrix. Proof: just write down $A A^{T}=A^{T} A$. This gives a system of quadratic equations for four variables a, b, c, d. This gives $c=b$ or $c=-b, d=a$.

