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Unit 17: Spectral theorem

Lecture

17.1. A real or complex matrix A is called symmetric or self-adjoint if A∗ = A,

where A∗ = A
T

. For a real matrix A, this is equivalent to AT = A. A real or complex
matrix is called normal if A∗A = AA∗. Examples of normal matrices are symmetric or
anti-symmetric matrices. Normal matrices appear often in applications. Correlation
matrices in statistics or operators belonging to observables in quantum mechanics,
adjacency matrices of networks are all self-adjoint. Orthogonal and unitary matrices
are all normal.

17.2.

Theorem: Symmetric matrices have only real eigenvalues.

Proof. We extend the dot product to complex vectors as (v, w) = v ·w =
∑

i viwi which
extends the usual dot product (v, w) = v ·w for real vectors. This dot product has the
property (A∗v, w) = (v,Aw) and (λv, w) = λ(v, w) as well as (v, λw) = λ(v, w). Now
λ(v, v) = (λv, v) = (Av, v) = (A∗v, v) = (v, Av) = (v, λv) = λ(v, v) shows that λ = λ
because (v, v) = v · v = |v1|2 + · · ·+ |vn|2 is non-zero for non-zero vectors v. �

17.3.

Theorem: If A is symmetric, then eigenvectors to different eigenvalues
are perpendicular.

Proof. Assume Av = λv and Aw = µw. If λ 6= µ, then the relation λ(v, w) = (λv, w) =
(Av,w) = (v,ATw) = (v, Aw) = (v, µw) = µ(v, w) is only possible if (v, w) = 0. �

17.4. If A is a n×n matrix for which all eigenvalues are different, we say such a matrix
has simple spectrum. The “wiggle-theorem” tells that we can approximate a given
matrix with matrices having simple spectrum:

Theorem: A symmetric matrix can be approximated by symmetric
matrices with simple spectrum.
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Proof. We show that there exists a curve A(t) = A(t)T of symmetric matrices with
A(0) = A such that A(t) has simple for small positive t.
Use induction with respect to n. For n = 1, this is clear. Assume it is true for n, let
A be a (n + 1) × (n + 1) matrix. It has an eigenvalue λ1 with eigenvector v1 which
we assume to have length 1. The still symmetric matrix A + tv1 · vT1 has the same
eigenvector v1 with eigenvalue λ1 + t. Let v2, . . . , vn be an orthonormal basis of V ⊥

the space perpendicular to V = span(v1). Then A(t)v = Av for any v in V ⊥. In that

basis, the matrix A(t) becomes B(t) =

[
λ1 + t C

0 D

]
. Let S be the orthogonal matrix

which contains the orthonormal basis {v1, v2, . . . , vn} of Rn. Because B(t) = S−1A(t)S
with orthogonal S, also B(t) is symmetric implying that C = 0. So, B(t) preserves D
and B(t) restricted to D does not depend on t. In particular, all the eigenvalues are
different from λ1 + t. By induction we find a curve D(t) with D(0) = D such that all
the eigenvalues of D(t) are different and also different from λ1 + t. �

17.5. This immediately implies the spectral theorem

Theorem: Every symmetric matrix A has an orthonormal eigenbasis.

Proof. Wiggle A so that all eigenvalues of A(t) are different. There is now an orthonor-
mal basis B(t) for A(t) leading to an orthogonal matrix S(t) such that S(t)−1A(t)S(t) =
B(t) is diagonal for every small positive t. Now, the limit S(t) = limt→0 S(t) and
also the limit S−1(t) = ST (t) exists and is orthogonal. This gives a diagonalization
S−1AS = B. The ability to diagonalize is equivalent to finding an eigenbasis. As S is
orthogonal, the eigenbasis is orthonormal. �

17.6. What goes wrong if A is not symmetric? Why can we not wiggle then? The

proof applied to the magic matrix A =

[
0 1
0 0

]
gives A(t) = A + te1 · eT1 =

[
t 1
0 0

]
which has the eigenvalues 0, t. For every t > 0, there is an eigenbasis with eigenvectors
[1, 0]T , [1,−t]. We see that for t→ 0, these two vectors collapse. This can not happen in
the symmetric case because eigenvectors to different eigenvalues are orthogonal there.
We see also that the matrix S(t) converges to a singular matrix in the limit t→ 0.

17.7. First note that if A is normal, then A has the same eigenspaces as the symmetric
matrix A∗A = AA∗: if A∗Av = λv, then (A∗A)Av = AA∗Av = Aλv = λAv, so that
also Av is an eigenvector of A∗A. This implies that if A∗A has simple spectrum, (leading
to an orthonormal eigenbasis as it is symmetric), than A also has an orthonormal
eigenbasis, namely the same one. The following result follows from a Wiggling theorem
for normal matrices:

17.8.

Theorem: Any normal matrix can be diagonalized using a unitary S.

Examples

17.9. A matrix A is called doubly stochastic if the sum of each row is 1 and the sum
of each column is 1. Doubly stochastic matrices in general are not normal, but they



are in the case n = 2. Find its eigenvalues and eigenvectors. The matrix must have
the form

A =

[
p 1− p

1− p p

]
It is symmetric and therefore normal. Since the rows sum up to 1, the eigenvalue 1
appears to the eigenvector [1, 1]T . The trace is 2a so that the second eigenvalue is
2a − 1. Since the matrix is symmetric and for a 6= 0 the two eigenvalues are distinct,
by the theorem, the two eigenvectors are perpendicular. The second eigenvector is
therefore [−1, 1]T .

17.10. We have seen the quaternion matrix belonging to z = p + iq + jr + ks:
p −q −r −s
q p s −r
r −s p q
s r −q p

. As an orthogonal matrix, it is normal. Let v = [q, r, s] be the

space vector defined by the quatenion. Then the eigenvalues of A are p±i|v|, both with
algebraic multiplicity 2. The characteristic polynomial is pA(λ) = (λ2 − 2pλ+ |z|2)2.

17.11. Every normal 2 × 2 matrix is either symmetric or a rotation-dilation matrix.
Proof: just write down AAT = ATA. This gives a system of quadratic equations for
four variables a, b, c, d. This gives c = b or c = −b, d = a.

Illustrations

Figure 1. The atomic hydrogen emission spectrum is given by eigen-
value differences 1/λ = R(1/n2− 1/m2), where R is the Rydberg con-
stant. The Lyman series is in the ultraviolet range. The Balmer
series is is visible in the solar spectrum. The Paschen Series finally
is in the infrared band. By Niels Bohr, the n’th eigenvalue of the self-
adjoint Hydrogen operator A is λn = −Rhc/n2, where h is the Planck’s
constant and c is the speed of light. The spectra we see are differences
of such eigenvalues.


