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1 Introduction

The inverse of a matrix A can only exist if A is nonsingular. This is an important theorem
in linear algebra, one learned in an introductory course. In recent years, needs have been
felt in numerous areas of applied mathematics for some kind of inverse like matrix of a
matrix that is singular or even rectangular. To fulfill this need, mathematicians discovered
that even if a matrix was not invertible, there is still either a left or right sided inverse
of that matrix. A matrix A ∈ Cm×n is left invertible (right invertible) so that there is a
matrix L(R)∈ Cn×m so that

LA = In (AR = Im) .

This property, where every matrix has some inverse-like matrix, is what gave way to the
defining of the generalized inverse.

The generalized inverse has uses in areas such as inconsistent systems of least squares,
properties dealing with eigenvalues and eigenvectors, and even statistics. Though the
generalized inverse is generally not used, as it is supplanted through various restrictions
to create various different generalized inverses for specific purposes, it is the foundation
for any pseudoinverse. Arguably the most important generalized inverses is the Moore-
Penrose inverse, or pseudoinverse, founded by two mathematicians, E.H. Moore in 1920
and Roger Penrose in 1955. Just as the generalized inverse the pseudoinverse allows
mathematicians to construct an inverse like matrix for any matrix, but the pseudoinverse
also yields a unique matrix. The pseudoinverse is what is so important, for example, when
solving for inconsistent least square systems as it is constructed in a way that gives the
minimum norm and therefore the closest solution.

2 Generalized Inverse

If A is any matrix, there is a generalized inverse, A− such that,

AA−A = A.

As mentioned before, this equation is extrapolated from the conjecture that any matrix
has at least a one sided inverse. If we assume that A− is equal to either L or R we see
that

ALA = A(LA) = AI = A ARA = (AR)A = IA = A

If A is a n×m matrix though, A− is then a m×n matrix, and the resultant identity matrix
either has its rank equal to the columns or rows of A.It is obvious to point out as well that
when m = n and when rank(A) = n then A− = A−1. There are other properties, some
trivial, some interesting, but the most important part of the generalized inverse though,
is that A− is not unique.
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3 Moore-Penrose Inverse

Definition 1. If A ∈ Mn,m, then there exists a unique A+ ∈ Mm,n that satisfies the four
Penrose conditions:

1. AA+A = A

2. A+AA+ = A+

3. A+A = (A+A)∗ Hermitian

4. AA+ = (AA+)∗ Hermitian

Where M∗ is the conjugate transpose of matrix M .

If A is nonsingular, it is clear that A+ = A−1 trivially satises the four equations.
Since the pseudoinverse is known to be unique, which we prove shortly, it follows that the
pseudoinverse of a nonsingular matrix is the same as the ordinary inverse.

Theorem 3.1. For any A ∈ Cn,m there exists a A+ ∈ Cm,n that satisfies the Penrose
conditions.

Proof. The proof of this existence theorem is lengthy and is not included here, but can be
taken as conjecture. A version of the proof can be found in Generalized Inverses: Theory
and Applications

Theorem 3.2. For a matrix A ∈Mn,m, then there exists a unique A+ ∈Mm,n

Proof. Suppose that there are two matrices, B and C that satisfy the four penrose con-
ditions (1,2,3,4) so that

B = BAB (2)

= (A∗B∗)B (4)

= (A∗C∗A∗)B∗B (1)

= (CA)(A∗B∗B) (4)

= CAB (2)

and

C = CAC (2)

= C(C∗A∗) (3)

= CC∗(A∗B∗A∗) (1)

= (CA)(B) (3)

= CAB (2).

Therefore B = C.
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Where the

(D+ =

[
1/2 0 0
0 1 0

]
Which we then plug into

A+ = V D+U =

[
.25 00.433012701892
0 1 0

]
so thatA+ satisfies the Penrose conditions.

5 Pseudoinverse In Least Squares

The pseudoinverse is most often used to solve least squares systems using the equation
A~x = ~b. When ~b is in the range of A, there is at least one or more solutions to the
system. If ~b is not in the range of A, then there are no solutions to the system, but it
is still desirable to to find a ~x0 that is closest to a solution. The residual vector is a key
component to solve these systems, and is given as ~r = A~x−~b.

Definition 3. The norm of a vector is written as ||~a|| such that ||~a|| =
√

~a2.

Definition 4. A least squares solution to a system is a vector such that

||~r0|| = ||A~x0 −~b|| ≤ ||A~x−~b||

The unique least squares solution is given when the ~x0 creates a minimum in the norm
of the residual vector.

Theorem 5.1. ~x0 = A+~b is the best approximate solution of A~x = ~b.

Proof. For any x ∈ Cm,

A~x−~b = A(~x− A+~b) + (I − AA+)(−~b)
where I−AA+ is an orthogonal projector onto N(A∗), which by corollary 1 of theorem

3.3 we know is also a projector onto N(A+), then the summation on the right hand side
is of orthogonal vectors. Using Pythagorean theorem with the norm, we can deduce that

||A~x−~b||2 = ||A(~x− A+~b)||2 + ||(I − AA+)(−~b)||2

= ||A(~x− ~x0)||2 + ||A~x0 −~b||2

≥ ||A~x0 −~b||2.

Now we can say that the norm of the residual vector is at its minimum when ~x =
~x0.

This theorem allows us to affirm that A+~b is either the unique least squares solution
or is the least squares solution of minimum norm.
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Example 3.

A =

1 2
2 0
0 2

 ~b =

1
2
3


Using the corollary 2 of theorem 3.3, ~x0 = A+~b = (A∗A)−1A∗~b.

~x0 = A+~b A+ =

[
1/9 4/9 −1/9
2/9 −1/9 5/18

]

~x0 =

[
1/9 4/9 −1/9
2/9 −1/9 5/18

]1
2
3


=

(
2/3
5/6

)

A~x0 =

1 2
2 0
0 2

(2/3
5/6

)

=

7/3
4/3
5/3

 ||~r|| =
(
7/3 4/3 5/3

)7/3
4/3
5/3

 =
(
10
)

6 Conclusion

We have effectively shown the basics of the pseudoinverse. From where it is derived from,
the generalized inverse, to how to calculate it and its use in applications the pseudoin-
verse is an interesting tool in linear algebra. Please refer to the bibliography for further
readings into the pseudoinverse and higher math applications of it, specifically Regression
And The Moore-Penrose Pseudoinverseby Albert, and Generalized Inverses: Theory and
Applicationsby Ben-Israel and Greville.
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