Integration by Parts: Integration by parts follows from the product rule for derivatives. You likely saw the formula as

$$
\int u d v=u v-\int v d u
$$

This is a compact version of the actual formula, but it will suffice.
Example: Evaluate $\int x^{2} \cos (x) d x$. We can let $u=x^{2}$ and $d v=\cos (x) d x$ and then rewrite the integral using the integration by parts formula.

$$
\int x^{2} \cos (x) d x=x^{2} \sin (x)-\int 2 x \sin (x) d x
$$

We need to do integration by parts one more time. Let $u=2 x$ and $d v=\sin (x) d x$. Then

$$
\begin{gathered}
x^{2} \sin (x)-\int 2 x \sin (x) d x=x^{2} \sin (x)+2 x \cos (x)+\int 2 \cos (x) d x \\
=x^{2} \sin (x)+2 x \cos (x)-2 \sin (x)+C
\end{gathered}
$$

Partial Fraction Decomposition: Sometimes we want to integrate a rational function. If the denominator is just the right kind of complicated, we can apply partial fraction decomposition which will split the rational function into a sum of simpler rational functions.

Example: Apply partial fraction decomposition to $\frac{3 x-9}{(x-1)(x+2)^{2}}$.
First, we guess at the decomposition. The guessing is restricted to certain rules. In this case, we get

$$
\frac{3 x-9}{(x-1)(x+2)^{2}}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}
$$

Equivalently,

$$
3 x-9=A(x+2)^{2}+B(x-1)(x+2)+C(x-1)
$$

The easiest way to determine A, B, C is called the cover up method.
Let $x=1$, then $-6=9 A \Longrightarrow A=-\frac{2}{3}$.
Let $x=-2$, then $-15=-3 C \Longrightarrow C=5$.

To find B, plug in a random value for x, say $x=0$, then $-9=4 A-2 B-C \Longrightarrow B=\frac{2}{3}$

