Sequences A real sequence is a function $a: \mathbb{N} \rightarrow \mathbb{R}$.
Example: Find the first five terms of the sequence $a_{n}=n!$.
The first five terms are determined by substituting $n=0,1,2,3,4$ for n. So we have the first five terms are $1,1,2,6,24$.

There are also recursive formulas for sequences.
Example: Let $a_{0}=1$ and $a_{n}=2 a_{n-1}+1$. Find a_{1} and a_{2}.

$$
a_{1}=2 a_{0}+1=2+1=3 \quad a_{2}=2 a_{1}+1=6+1=7
$$

Example: Fibonacci's sequence is recursive. It is defined by

$$
F_{0}=1 \quad F_{1}=1 \quad F_{n}=F_{n-1}+F_{n-2}
$$

The first few terms are $1,1,2,3,5,8,13,21, \ldots \ldots$

Sequential Limits:

The most common question that arises in the setting of sequences is whether a given sequence converges.

Definition: A sequence a_{n} converges to a limit L if $\forall \epsilon>0 \exists N$ such that $n>N \Longrightarrow\left|a_{n}-L\right|<\epsilon$.

Example: The sequence $a_{n}=\frac{1}{n}$ converges to zero.
Let $\epsilon>0$ be given. Let $N=\frac{1}{\epsilon}$. When $n>N$ we have

$$
\left|a_{n}-0\right|=\left|\frac{1}{n}\right|<\frac{1}{N}=\epsilon
$$

The most common way to find sequential limits is to use the following theorem and then apply all the limit tools we have already developed.

Theorem: If $f(n)=a_{n}$ and $\lim _{s \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$.

Example: Find the limit of the sequence $a_{n}=\frac{n+\ln (n)}{n^{2}}$.

$$
\lim _{n \rightarrow \infty} \frac{n+\ln (n)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2 n}=0
$$

We used L'Hopital's rule for the first equality.

Geometric Sequence: Suppose $a_{n}=c r^{n}$ for some real numbers c, r. Then

$$
\lim _{n \rightarrow \infty} a_{n}= \begin{cases}c & r=1 \\ 0 & r<1 \\ \infty & r>1\end{cases}
$$

Refer to the limit laws handout for more rules.
Example: Show $a_{n}=\frac{\sin (n)}{n}$ converges to zero.
This follows directly from the squeeze theorem by using the fact that $|\sin (n)| \leq 1$ for all natural numbers.

