Infinite Series

Series : Let $\left(a_{n}\right)$ be a sequence of real numbers. Then an expression of the form $a_{1}+a_{2}+a_{3}+\ldots \ldots$ denoted by $\sum_{n=1}^{\infty} a_{n}$, is called a series.

Examples : 1. $1+\frac{1}{2}+\frac{1}{3}+\ldots . \quad$ or $\sum_{n=1}^{\infty} \frac{1}{n} \quad$ 2. $1+\frac{1}{4}+\frac{1}{9}+\ldots$. or $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
Partial sums : $S_{n}=a_{1}+a_{2}+a_{3}+\ldots \ldots+a_{n}$ is called the nth partial sum of the series $\sum_{n=1}^{\infty} a_{n}$,
Convergence or Divergence of $\sum_{n=1}^{\infty} a_{n}$
If $S_{n} \rightarrow S$ for some S then we say that the series $\sum_{n=1}^{\infty} a_{n}$ converges to S. If $\left(S_{n}\right)$ does not converge then we say that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Examples :

1. $\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n}\right)$ diverges because $S_{n}=\log (n+1)$.
2. $\quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges because $S_{n}=1-\frac{1}{n+1} \rightarrow 1$.
3. If $0<x<1$, then the geometric series $\sum_{n=0}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$ because $S_{n}=\frac{1-x^{n+1}}{1-x}$.

Necessary condition for convergence

Theorem $1:$ If $\sum_{n=1}^{\infty} a_{n}$ converges then $a_{n} \rightarrow 0$.
Proof : $S_{n+1}-S_{n}=a_{n+1} \rightarrow S-S=0$.
The condition given in the above result is necessary but not sufficient i.e., it is possible that $a_{n} \rightarrow 0$ and $\sum_{n=1}^{\infty} a_{n}$ diverges.

Examples :

1. If $|x| \geq 1$, then $\sum_{n=1}^{\infty} x^{n}$ diverges because $a_{n} \nrightarrow 0$.
2. $\sum_{n=1}^{\infty} \operatorname{sinn}$ diverges because $a_{n} \nrightarrow 0$.
3. $\sum_{n=1}^{\infty} \log \left(\frac{n+1}{n}\right)$ diverges, however, $\log \left(\frac{n+1}{n}\right) \rightarrow 0$.

Necessary and sufficient condition for convergence

Theorem 2: Suppose $a_{n} \geq 0 \forall n$. Then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\left(S_{n}\right)$ is bounded above.
Proof : Note that under the hypothesis, $\left(S_{n}\right)$ is an increasing sequence.
Example : The Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges because

$$
S_{2^{k}} \geq 1+\frac{1}{2}+2 \cdot \frac{1}{4}+4 \cdot \frac{1}{8}+\ldots+2^{k-1} \cdot \frac{1}{2^{k}}=1+\frac{k}{2}
$$

for all k .
Theorem 3: If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
Proof : Since $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges the sequence of partial sums of $\sum_{n=1}^{\infty}\left|a_{n}\right|$ satisfies the Cauchy criterion. Therefore, the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ satisfies the Cauchy criterion.

Remark : Note that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=p}^{\infty} a_{n}$ converges for any $p \geq 1$.

Tests for Convergence

Let us determine the convergence or the divergence of a series by comparing it to one whose behavior is already known.

Theorem 4: (Comparison test) Suppose $0 \leq a_{n} \leq b_{n}$ for $n \geq k$ for some k. Then
(1) The convergence of $\sum_{n=1}^{\infty} b_{n}$ implies the convergence of $\sum_{n=1}^{\infty} a_{n}$.
(2) The divergence of $\sum_{n=1}^{\infty} a_{n}$ implies the divergence of $\sum_{n=1}^{\infty} b_{n}$.

Proof : (1) Note that the sequence of partial sums of $\sum_{n=1}^{\infty} a_{n}$ is bounded. Apply Theorem 2.
(2) This statement is the contrapositive of (1).

Examples:

1. $\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}$ converges because $\frac{1}{(n+1)(n+1)} \leqslant \frac{1}{n(n+1)}$. This implies that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.
2. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges because $\frac{1}{n} \leqslant \frac{1}{\sqrt{n}}$.
3. $\quad \sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $n^{2}<n$! for $n \geqslant 4$.

Problem 1: Let $a_{n} \geq 0$. Then show that both the series $\sum_{n \geq 1} a_{n}$ and $\sum_{n \geq 1} \frac{a_{n}}{a_{n}+1}$ converge or diverge together.

Solution : Suppose $\sum_{n \geq 1} a_{n}$ converges. Since $0 \leq \frac{a_{n}}{1+a_{n}} \leq a_{n}$ by comparison test $\sum_{n \geq 1} \frac{a_{n}}{1+a_{n}}$ converges. Suppose $\sum_{n \geq 1} \frac{a_{n}}{1+a_{n}}$ converges. By the Theorem $1, \frac{a_{n}}{1+a_{n}} \rightarrow 0$. Hence $a_{n} \rightarrow 0$ and therefore $1 \leq 1+a_{n}<2$ eventually. Hence $0 \leq \frac{1}{2} a_{n} \leq \frac{a_{n}}{1+a_{n}}$. Apply the comparison test.

Theorem 5: (Limit Comparison Test) Suppose $a_{n}, b_{n} \geq 0$ eventually. Suppose $\frac{a_{n}}{b_{n}} \rightarrow L$.

1. If $L \in \mathbb{R}, L>0$, then both $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} a_{n}$ converge or diverge together.
2. If $L \in \mathbb{R}, L=0$, and $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}$ converges.
3. If $L=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: 1. Since $L>0$, choose $\epsilon>0$, such that $L-\epsilon>0$. There exists n_{0} such that $0 \leq L-\epsilon<$ $\frac{a_{n}}{b_{n}}<L-\epsilon$. Use the comparison test.
2. For each $\epsilon>0$, there exists n_{0} such that $0<\frac{a_{n}}{b_{n}}<\epsilon, \forall n>n_{0}$. Use the comparison test.
3. Given $\alpha>0$, there exists n_{0} such that $\frac{a_{n}}{b_{n}}>\alpha \forall n>n_{0}$. Use the comparison test.

Examples :

1. $\sum_{n=1}^{\infty}\left(1-n \sin \frac{1}{n}\right)$ converges. Take $b_{n}=\frac{1}{n^{2}}$ in the previous result.
2. $\sum_{n=1}^{\infty} \frac{1}{n} \log \left(1+\frac{1}{n}\right)$ converges. Take $b_{n}=\frac{1}{n^{2}}$ in the previous result.

Theorem 6 (Cauchy Test or Cauchy condensation test) If $a_{n} \geq 0$ and $a_{n+1} \leq a_{n} \forall n$, then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ converges.

Proof : Let $S_{n}=a_{1}+a_{2}+\ldots .+a_{n}$ and $T_{k}=a_{1}+2 a_{2}+\ldots .+2^{k} a_{2^{k}}$.
Suppose $\left(T_{k}\right)$ converges. For a fixed n, choose k such that $2^{k} \geq n$. Then

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\ldots+a_{n} \\
& \leq a_{1}+\left(a_{2}+a_{3}\right)+\ldots .+\left(a_{2^{k}}+\ldots .+a_{2^{k+1}-1}\right) \\
& \leq a_{1}+2 a_{2}+\ldots .+2^{k} a_{2^{k}} \\
& =T_{k}
\end{aligned}
$$

This shows that $\left(S_{n}\right)$ is bounded above; hence $\left(S_{n}\right)$ converges.
Suppose $\left(S_{n}\right)$ converges. For a fixed k, choose n such that $n \geq 2^{k}$. Then

$$
\begin{aligned}
S_{n} & =a_{1}+a_{2}+\ldots .+a_{n} \\
& \geq a_{1}+a_{2}+\left(a_{3}+a_{4}\right) \ldots .+\left(a_{2^{k-1}+1}+\ldots .+a_{2^{k}}\right) \\
& \geq \frac{1}{2} a_{1}+a_{2}+2 a_{4}+\ldots .+2^{k-1} a_{2^{k}} \\
& =\frac{1}{2} T_{k}
\end{aligned}
$$

This shows that $\left(T_{k}\right)$ is bounded above; hence $\left(T_{k}\right)$ converges.

Examples:

1. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.
2. $\sum_{n=1}^{\infty} \frac{1}{n(\operatorname{logn})^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

Problem 2: Let $a_{n} \geq 0, a_{n+1} \leq a_{n} \forall n$ and suppose $\sum a_{n}$ converges. Show that $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Solution : By Cauchy condensation test $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ converges. Therefore $2^{k} a_{2^{k}} \rightarrow 0$ and hence $2^{k+1} a_{2^{k}} \rightarrow 0$ as $k \rightarrow \infty$. Let $2^{k} \leq n \leq 2^{k+1}$. Then $n a_{n} \leq n a_{2^{k}} \leq 2^{k+1} a_{2^{k}} \rightarrow 0$. This implies that $n a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 7 (Ratio test) Consider the series $\sum_{n=1}^{\infty} a_{n}, a_{n} \neq 0 \forall n$.

1. If $\left|\frac{a_{n+1}}{a_{n}}\right| \leq q$ eventually for some $0<q<1$, then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
2. If $\left|\frac{a_{n+1}}{a_{n}}\right| \geq 1$ eventually then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: 1. Note that for some $N,\left|a_{n+1}\right| \leq q\left|a_{n}\right| \forall n \geq N$. Therefore, $\left|a_{N+p}\right| \leq q^{p}\left|a_{N}\right|$ $\forall p>0$. Apply the comparison test.
2. In this case $\left|a_{n}\right| \nrightarrow 0$.

Corollary 1: Suppose $a_{n} \neq 0 \forall n$, and $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow L$ for some L.

1. If $L<1$ then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
2. If $L>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. If $L=1$ we cannot make any conclusion.

Proof :

1. Note that $\left|\frac{a_{n+1}}{a_{n}}\right|<L+\frac{(1-L)}{2}$ eventually. Apply the previous theorem.
2. Note that $\left|\frac{a_{n+1}}{a_{n}}\right|>L-\frac{(L-1)}{2}$ eventually. Apply the previous theorem.

Examples :

1. $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges because $\frac{a_{n+1}}{a_{n}} \rightarrow 0$.
2. $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$ diverges because $\frac{a_{n+1}}{a_{n}}=\left(1+\frac{1}{n}\right)^{n} \rightarrow e>1$.
3. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, however, in both these cases $\frac{a_{n+1}}{a_{n}} \rightarrow 1$.

Theorem 8: (Root Test) If $0 \leq a_{n} \leq x^{n}$ or $0 \leq a_{n}{ }^{1 / n} \leq x$ eventually for some $0<x<1$ then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.

Proof : Immediate from the comparison test.
Corollary 2: Suppose $\left|a_{n}\right|^{1 / n} \rightarrow L$ for some L. Then

1. If $L<1$ then $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges.
2. If $L>1$ then $\sum_{n=1}^{\infty} a_{n}$ diverges.
3. If $L=1$ we cannot make any conclusion.

Examples :

1. $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{n}}$ converges because $a_{n}^{1 / n}=\frac{1}{\log n} \rightarrow 0$.
2. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ converges because $a_{n}^{1 / n}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}} \rightarrow \frac{1}{e}<1$.
3. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, however, in both these cases $a_{n}^{1 / n} \rightarrow 1$.

Theorem $9:\left(\right.$ Leibniz test) If $\left(a_{n}\right)$ is decreasing and $a_{n} \rightarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ converges.
Proof : Note that $\left(S_{2 n}\right)$ is increasing and bounded above by S_{1}. Similarly, ($S_{2 n+1}$) is decreasing and bounded below by S_{2}. Therefore both converge. Since $S_{2 n+1}-S_{2 n}=a_{2 n+1} \rightarrow 0$, both $\left(S_{2 n+1}\right)$ and $\left(S_{2 n}\right)$ converge to the same limit and therefore $\left(S_{n}\right)$ converges.

Examples : $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}, \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$ and $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{\operatorname{logn}}$ converge.
Problem 3: Let $\left\{a_{n}\right\}$ be a decreasing sequence, $a_{n} \geq 0$ and $\lim _{n \rightarrow \infty} a_{n}=0$. For each $n \in \mathbb{N}$, let $b_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$. Show that $\sum_{n \geq 1}(-1)^{n} b_{n}$ converges.

Solution : Note that $b_{n+1}-b_{n}=\frac{1}{n+1}\left(a_{1}+a_{2}+\ldots+a_{n+1}\right)-\frac{1}{n}\left(a_{1}+\ldots+a_{n}\right)=\frac{a_{n+1}}{n+1}-\frac{\left(a_{1}+\ldots+a_{n}\right)}{n(n+1)}$. Since $\left(a_{n}\right)$ is decreasing, $a_{1}+\ldots+a_{n} \geq n a_{n}$. Therefore, $b_{n+1}-b_{n} \leq \frac{a_{n+1}-a_{n}}{n+1} \leq 0$. Hence $\left(b_{n}\right)$ is decreasing.

We now need to show that $b_{n} \rightarrow 0$. For a given $\epsilon>0$, since $a_{n} \rightarrow 0$, there exists n_{0} such that $a_{n}<\frac{\epsilon}{2}$ for all $n \geq n_{0}$.

Therefore, $\left|\frac{a_{1}+\cdots+a_{n}}{n}\right|=\left|\frac{a_{1}+\cdots+a_{n_{0}}}{n}+\frac{a_{n_{0}+1}+\cdots+a_{n}}{n}\right| \leq\left|\frac{a_{1}+\cdots+a_{n_{0}}}{n}\right|+\frac{n-n_{0}}{n} \frac{\epsilon}{2}$. Choose $N \geq n_{0}$ large enough so that $\frac{a_{1}+\cdots+a_{n}}{N}<\frac{\epsilon}{2}$. Then, for all $n \geq N, \frac{a_{1}+\cdots+a_{n}}{n}<\epsilon$. Hence, $b_{n} \rightarrow 0$. Use the Leibniz test for convergence.

