
TAYLOR AND MACLAURIN SERIES

1. Basics and examples

Consider a function f defined by a power series of the form

f(x) =
∞∑
n=0

cn(x− a)n,(1)

with radius of convergence R > 0. If we write out the expansion of f(x) as

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)2 + c4(x− a)4 . . . ,

we observe that f(a) = c0. Moreover

f
′
(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + 4c4(x− a)3 + . . . ,

f (2)(x) = 2c2 + 2 · 3 · c3(x− a) + 3 · 4 · c4(x− a)2 + . . .

f (3)(x) = 2 · 3 · c3 + 2 · 3 · 4 · c4(x− a)2 + . . .

After computing the above derivatives we observe that

f(a) = c0,

f
′
(a) = c1,

f (2)(a) = 2 =⇒ c2 =
f (2)(a)

2!
,

f (3)(a) = 2 · 3 · c3 =⇒ c3 =
f (3)(a)

3!
.

In general we have

f (n)(a) = n!cn =⇒ cn =
f (n)(a)

n!
,

We have shown the following

Theorem 1 (Taylor-Maclaurin series). Suppose that f(x) has a power series expan-
sion at x = a with radius of convergence R > 0, then the series expansion of f(x)
takes the form

f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f

′
(a)(x− a) +

f (2)(a)

2!
(x− a)2 + . . . ,(2)

1
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that is, the coefficient cn in the expansion of f(x) centered at x = a is precisely

cn =
f (n)(a)

n!
. The expansion (2) is called Taylor series. If a = 0, the expansion

f(x) =
∞∑
n=0

f (n)(0)

n!
xn = f(0) + f

′
(0)x +

f (2)(0)

2!
x2 + . . . ,

is called Maclaurin Series.

Let us now consider several classical Taylor series expansions. For the following
examples we will assume that all of the functions involved can be expanded into power
series.

Example 1. The function f(x) = ex satisfies f (n)(x) = ex for any integer n ≥ 1 and
in particular f (n)(0) = 1 for all n and then the Maclaurin series of f(x) is

f(x) =
∞∑
n=0

xn

n!
,

observe that the radius of convergence of f(x) is computed by noting that cnx
n =

xn

n!
so that

lim
n→∞

∣∣∣∣cn+1x
n+1

cnxn

∣∣∣∣ = lim
n→∞

|x|
(n + 1)

= 0,

and the radius of convergence is R =∞ since the above computation shows that the
series converges absolutely for any x. Note that for any other center, say x = a we
have f (n)(a) = ea, so that the Taylor expansion of f(x) is

ex =
∞∑
n=0

ea(x− a)n

n!
.

and this series also has radius of convergence R =∞.

Example 2. Compute the Maclaurin series of the function f(x) = cos(x). Note that
f(x) satisfies 

f
′
(x) = − sin(x)

f (2)(x) = − cos(x)
f (3)(x) = sin(x)
f (4)(x) = cos(x)

and the above pattern is periodic, in fact, we will have

f (2n)(x) = (−1)n cos(x) =⇒ f (2n)(0) = (−1)n

f (2n+1)(x) = (−1)n sin(x) =⇒ f (2n+1)(0) = 0,

and therefore

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n.
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Note that cos(x) is an even function in the sense that cos(−x) = cos(x) and this is
reflected in its power series expansion that involves only even powers of x. The radius
of convergence in this case is also R =∞.

Example 3. Compute the Maclaurin series of f(x) = sin(x). For this case we note
that

f (2n)(x) = (−1)n sin(x) =⇒ f (2n)(0) = 0

f (2n+1)(x) = (−1)n cos(x) =⇒ f (2n+1)(0) = (−1)n,

and therefore

f(x) =
∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
,

The radius of convergence is again R =∞.

Example 4. Compute the Maclaurin series of the following functions

(1)
sin(x)

x

(2)
sin(x2)

x2

(3)

∫ x

0

sin(s2)

s2
ds

For (1) we use the the expansion sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n + 1)!
so that

sin(x)

x
=
∞∑
n=0

(−1)nx2n

(2n + 1)!
.

For (2) we replace x by x2 and obtain for x > 0 the series

sin(x2)

x2
=
∞∑
n=0

(−1)n(x2)2n

(2n + 1)!

=
∞∑
n=0

(−1)n(x)4n

(2n + 1)!
.

Finally, for (3) we integrate the Maclaurin series of
sin(x2)

x2∫ x

0

sin(s2)

s2
ds =

∞∑
n=0

(−1)n
∫ x

0

(s)4n

(2n + 1)!

=
∞∑
n=0

(−1)n
(x)4n+1

(4n + 1) · (2n + 1)!
.
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Remark: For a function that has an even expansion like f(x) =
sin(x)

x
, we can also

expand f(
√
x) as a power series. As an exercise, compute the Maclaurin expansion

of

∫ x

0

sin(
√
s)√

s
ds.

1.1. Taylor polynomials and Maclaurin polynomials. The partial sums of Tay-
lor (Maclaurin) series are called Taylor (Maclaurin) polynomials. More precisely, the
Taylor polynomial of degree k of f(x) at x = a is the polynomial

pk(x) =
k∑

n=0

f (n)(a)

n!
(x− a)n,

and the Maclaurin polynomial of degree k of f(x) (at x = 0) is the polynomial

pk(x) =
k∑

n=0

f (n)(0)

n!
xn

An important question about Taylor polynomials is how well they approximate the
functions that generate them. In fact we have the following error estimate

Theorem 2. Consider the interval (x0, x1) with x0 < a < x1 and suppose that f(x)
is differentiable to any order on (x0, x1) and continuous on [x0, x1]. Fix k ≥ 1 and let
M > 0 be a constant such that max[x0,x1] |f (k+1)(x)| ≤M . Then for any x in (x0, x1)
we have

|f(x)− pk(x)| ≤ M |x− a|k+1

(k + 1)!
.

On the other hand, when it comes to the practical computation of Taylor or Maclau-
rin polynomials it may not be necessary to compute all of the derivatives of f(x).

Example 5. Compute the Maclaurin polynomial of degree 4 for the function f(x) =
cos(x) ln(1− x) for −1 < x < 1.

Idea: In order to compute the Maclaurin polynomial of degree 4 of f(x) we will
multiply out the series expansions of the functions cos(x) and ln(1−x) thus obtaining
a new power series, however we will only keep those terms in the expansion of the
new series that have degree at most 4. In other words, if after multiplying the power
series expansions of cos(x) and ln(1 − x) we manage to write out the power series
expansion of cos(x) ln(1− x) in the form

f(x) = cos(x) ln(1− x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4︸ ︷︷ ︸+c5x

5 + . . .

then the Maclaurin polynomial p4 of degree 4 of f(x) is

p4(x) = c0 + c1x + c2x
2 + c3x

3 + c4x
4.
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Note that for −1 < x < 1 we have

1

1− x
= 1 + x + x2 + x3 + x4 + . . .

ln(1− x) = −
∫ x

0

ds

(1− s)
= −

∞∑
n=0

∫ x

0

snds

= −x− x2

2
− x3

3
− x4

4
− . . .

on the other hand

cos(x) = 1− x2

2
+

x4

4!
− . . . ,(3)

let us use (∗) to denote the expansion in (3), meaning that (∗) = 1 − x2

2
+ x4

4!
− . . .,

so that after multiplying both series we have

cos(x) ln(1− x) = (1− x2

2
+

x4

4!
− . . .)︸ ︷︷ ︸

(∗)

(−x− x2

2
− x3

3
− x4

4
− . . .)

= −x(∗)− x2

2
(∗)− x3

3
(∗)− x4

4
(∗)− . . .(

−x +
x3

2
− x5

4!
+ . . .

)
︸ ︷︷ ︸

−x(∗)

+

(
−x2

2
+

x4

2 · 2!
− x6

2 · 4!
+ . . .

)
︸ ︷︷ ︸

−x2

2
(∗)

+

(
−x3

3
+

x5

3 · 5!
− . . .

)
︸ ︷︷ ︸

−x3

3
(∗)

+

(
−x4

4
+

x6

4 · 2!
− . . .

)
︸ ︷︷ ︸

−x4

4
(∗)

=

(
−x +

x3

2

)
+

(
−x2

2
+

x4

2 · 2!

)
+

(
−x3

3

)
+

(
−x4

4

)
+ . . .

= −x− x2

2
+

x3

6︸ ︷︷ ︸
p4(x)

+ . . .

We have used the color blue to highlight those terms of degree at most 4 in the
multiplication of the two series. It follows that the Maclaurin polynomial of order 4
of f(x) = cos(x) ln(1− x) is

p4(x) = −x− x2

2
+

1

6
x3
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Remark: The radius of convergence of
1

1− x
=
∞∑
n=0

xn is R = 1 and this is also

the case for − ln(1− x) =
∞∑
n=0

xn+1

n + 1
, however the interval of convergence of this last

series is [−1, 1) (closed on the left and open on the right) because for x = −1 the

series is
∞∑
n=1

(−1)n

n
which converges conditionally but for x = 1 the series is

∞∑
n=1

1

n
.

Exercise: Compute the first four terms in the power series expansion of f(x) =
ln(1 + x)

1 + x
.

Example 6. Compute the limit

lim
x→0

cos(x4)− 1 + 1
2
x8

x16
.

Note that in this case using a L’Hospital rule is extremely tedious. An alternative
approach is to expand cos(x4)− 1 + 1

2
x8 as a power series

cos(x4) =
∞∑
n=0

(−1)n
x8n

(2n)!
= 1− 1

2
x8 +

x16

4!
− . . . ,

so that

lim
x→0

(
cos(x4)− 1 + 1

2
x8

x16

)
=

1

4!
.

2. Intervals of convergence

The radius of convergence of a power series determines where the series is absolutely
convergent but as we will see below there are points where the series may only be con-

ditionally convergent. More precisely, if the radius of convergence of
∞∑
n=0

cn(x− x0)
n

is R > 0 then the series converges absolutely for |x − x0| < R and diverges for
|x−x0| > R but it could still happen that the series converges at the points x0−R or
x0 +R (that is, at those points with |x− x0| = R). Let us illustrate this with several
examples

Example 7. The series

ln(1 + x) =

∫ x

0

ds

1 + s
=
∞∑
n=0

(−1)nxn+1

n + 1
,

has radius of convergence equal to 1 so that x converges absolutely for |x| < 1. For
x = 1 we obtain the series

∞∑
n=0

(−1)n

n + 1
,


