TAYLOR AND MACLAURIN SERIES

1. Basics and examples

Consider a function f defined by a power series of the form

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \tag{1}
\end{equation*}
$$

with radius of convergence $R>0$. If we write out the expansion of $f(x)$ as

$$
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{2}+c_{4}(x-a)^{4} \ldots
$$

we observe that $f(a)=c_{0}$. Moreover

$$
\begin{aligned}
f^{\prime}(x) & =c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+4 c_{4}(x-a)^{3}+\ldots, \\
f^{(2)}(x) & =2 c_{2}+2 \cdot 3 \cdot c_{3}(x-a)+3 \cdot 4 \cdot c_{4}(x-a)^{2}+\ldots \\
f^{(3)}(x) & =2 \cdot 3 \cdot c_{3}+2 \cdot 3 \cdot 4 \cdot c_{4}(x-a)^{2}+\ldots
\end{aligned}
$$

After computing the above derivatives we observe that

$$
\begin{aligned}
f(a) & =c_{0} \\
f^{\prime}(a) & =c_{1} \\
f^{(2)}(a) & =2 \Longrightarrow c_{2}=\frac{f^{(2)}(a)}{2!} \\
f^{(3)}(a) & =2 \cdot 3 \cdot c_{3} \Longrightarrow c_{3}=\frac{f^{(3)}(a)}{3!} .
\end{aligned}
$$

In general we have

$$
f^{(n)}(a)=n!c_{n} \Longrightarrow c_{n}=\frac{f^{(n)}(a)}{n!}
$$

We have shown the following
Theorem 1 (Taylor-Maclaurin series). Suppose that $f(x)$ has a power series expansion at $x=a$ with radius of convergence $R>0$, then the series expansion of $f(x)$ takes the form

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\ldots \tag{2}
\end{equation*}
$$

that is, the coefficient c_{n} in the expansion of $f(x)$ centered at $x=a$ is precisely $c_{n}=\frac{f^{(n)}(a)}{n!}$. The expansion (2) is called Taylor series. If $a=0$, the expansion

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+\frac{f^{(2)}(0)}{2!} x^{2}+\ldots,
$$

is called Maclaurin Series.
Let us now consider several classical Taylor series expansions. For the following examples we will assume that all of the functions involved can be expanded into power series.

Example 1. The function $f(x)=e^{x}$ satisfies $f^{(n)}(x)=e^{x}$ for any integer $n \geq 1$ and in particular $f^{(n)}(0)=1$ for all n and then the Maclaurin series of $f(x)$ is

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},
$$

observe that the radius of convergence of $f(x)$ is computed by noting that $c_{n} x^{n}=\frac{x^{n}}{n!}$ so that

$$
\lim _{n \rightarrow \infty}\left|\frac{c_{n+1} x^{n+1}}{c_{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{(n+1)}=0
$$

and the radius of convergence is $R=\infty$ since the above computation shows that the series converges absolutely for any x. Note that for any other center, say $x=a$ we have $f^{(n)}(a)=e^{a}$, so that the Taylor expansion of $f(x)$ is

$$
e^{x}=\sum_{n=0}^{\infty} \frac{e^{a}(x-a)^{n}}{n!}
$$

and this series also has radius of convergence $R=\infty$.
Example 2. Compute the Maclaurin series of the function $f(x)=\cos (x)$. Note that $f(x)$ satisfies

$$
\left\{\begin{array}{c}
f^{\prime}(x)=-\sin (x) \\
f^{(2)}(x)=-\cos (x) \\
f^{(3)}(x)=\sin (x) \\
f^{(4)}(x)=\cos (x)
\end{array}\right.
$$

and the above pattern is periodic, in fact, we will have

$$
\begin{aligned}
f^{(2 n)}(x) & =(-1)^{n} \cos (x) \Longrightarrow f^{(2 n)}(0)=(-1)^{n} \\
f^{(2 n+1)}(x) & =(-1)^{n} \sin (x) \Longrightarrow f^{(2 n+1)}(0)=0,
\end{aligned}
$$

and therefore

$$
\cos (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
$$

Note that $\cos (x)$ is an even function in the sense that $\cos (-x)=\cos (x)$ and this is reflected in its power series expansion that involves only even powers of x. The radius of convergence in this case is also $R=\infty$.

Example 3. Compute the Maclaurin series of $f(x)=\sin (x)$. For this case we note that

$$
\begin{aligned}
f^{(2 n)}(x) & =(-1)^{n} \sin (x) \Longrightarrow f^{(2 n)}(0)=0 \\
f^{(2 n+1)}(x) & =(-1)^{n} \cos (x) \Longrightarrow f^{(2 n+1)}(0)=(-1)^{n}
\end{aligned}
$$

and therefore

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!},
$$

The radius of convergence is again $R=\infty$.
Example 4. Compute the Maclaurin series of the following functions
(1) $\frac{\sin (x)}{x}$
(2) $\frac{\sin \left(x^{2}\right)}{x^{2}}$
(3) $\int_{0}^{x} \frac{\sin \left(s^{2}\right)}{s^{2}} d s$

For (1) we use the the expansion $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ so that

$$
\frac{\sin (x)}{x}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}
$$

For (2) we replace x by x^{2} and obtain for $x>0$ the series

$$
\begin{aligned}
\frac{\sin \left(x^{2}\right)}{x^{2}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x^{2}\right)^{2 n}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(x)^{4 n}}{(2 n+1)!}
\end{aligned}
$$

Finally, for (3) we integrate the Maclaurin series of $\frac{\sin \left(x^{2}\right)}{x^{2}}$

$$
\begin{aligned}
\int_{0}^{x} \frac{\sin \left(s^{2}\right)}{s^{2}} d s & =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} \frac{(s)^{4 n}}{(2 n+1)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(x)^{4 n+1}}{(4 n+1) \cdot(2 n+1)!}
\end{aligned}
$$

Remark: For a function that has an even expansion like $f(x)=\frac{\sin (x)}{x}$, we can also expand $f(\sqrt{x})$ as a power series. As an exercise, compute the Maclaurin expansion of $\int_{0}^{x} \frac{\sin (\sqrt{s})}{\sqrt{s}} d s$.
1.1. Taylor polynomials and Maclaurin polynomials. The partial sums of Taylor (Maclaurin) series are called Taylor (Maclaurin) polynomials. More precisely, the Taylor polynomial of degree k of $f(x)$ at $x=a$ is the polynomial

$$
p_{k}(x)=\sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!}(x-a)^{n},
$$

and the Maclaurin polynomial of degree k of $f(x)$ (at $x=0$) is the polynomial

$$
p_{k}(x)=\sum_{n=0}^{k} \frac{f^{(n)}(0)}{n!} x^{n}
$$

An important question about Taylor polynomials is how well they approximate the functions that generate them. In fact we have the following error estimate

Theorem 2. Consider the interval $\left(x_{0}, x_{1}\right)$ with $x_{0}<a<x_{1}$ and suppose that $f(x)$ is differentiable to any order on $\left(x_{0}, x_{1}\right)$ and continuous on $\left[x_{0}, x_{1}\right]$. Fix $k \geq 1$ and let $M>0$ be a constant such that $\max _{\left[x_{0}, x_{1}\right]}\left|f^{(k+1)}(x)\right| \leq M$. Then for any x in $\left(x_{0}, x_{1}\right)$ we have

$$
\left|f(x)-p_{k}(x)\right| \leq \frac{M|x-a|^{k+1}}{(k+1)!}
$$

On the other hand, when it comes to the practical computation of Taylor or Maclaurin polynomials it may not be necessary to compute all of the derivatives of $f(x)$.

Example 5. Compute the Maclaurin polynomial of degree 4 for the function $f(x)=$ $\cos (x) \ln (1-x)$ for $-1<x<1$.

Idea: In order to compute the Maclaurin polynomial of degree 4 of $f(x)$ we will multiply out the series expansions of the functions $\cos (x)$ and $\ln (1-x)$ thus obtaining a new power series, however we will only keep those terms in the expansion of the new series that have degree at most 4. In other words, if after multiplying the power series expansions of $\cos (x)$ and $\ln (1-x)$ we manage to write out the power series expansion of $\cos (x) \ln (1-x)$ in the form

$$
f(x)=\cos (x) \ln (1-x)=\underbrace{c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}}+c_{5} x^{5}+\ldots
$$

then the Maclaurin polynomial p_{4} of degree 4 of $f(x)$ is

$$
p_{4}(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4} .
$$

Note that for $-1<x<1$ we have

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\ldots \\
& \ln (1-x)=-\int_{0}^{x} \frac{d s}{(1-s)}=-\sum_{n=0}^{\infty} \int_{0}^{x} s^{n} d s \\
&=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots
\end{aligned}
$$

on the other hand

$$
\begin{equation*}
\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots \tag{3}
\end{equation*}
$$

let us use $(*)$ to denote the expansion in (3), meaning that $(*)=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots$, so that after multiplying both series we have

$$
\begin{aligned}
\cos (x) \ln (1-x) & =\underbrace{\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\ldots\right)}_{(*)}\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\ldots\right) \\
& =-x(*)-\frac{x^{2}}{2}(*)-\frac{x^{3}}{3}(*)-\frac{x^{4}}{4}(*)-\ldots \\
& \underbrace{\left(-x+\frac{x^{3}}{2}-\frac{x^{5}}{4!}+\ldots\right)}_{-x(*)}+\underbrace{\left(-\frac{x^{2}}{2}+\frac{x^{4}}{2 \cdot 2!}-\frac{x^{6}}{2 \cdot 4!}+\ldots\right)}_{-\frac{x^{2}}{2}(*)} \\
& +\underbrace{\left(-\frac{x^{3}}{3}+\frac{x^{5}}{3 \cdot 5!}-\ldots\right)}_{p_{4}(x)}+\underbrace{\left(-\frac{x^{4}}{4}+\frac{x^{6}}{4 \cdot 2!}-\ldots\right)}_{-\frac{x^{4}}{4}(*)} \\
& =\underbrace{\left(-x+\frac{x^{3}}{2}\right)+\left(-\frac{x^{2}}{2}\right.}+\frac{x^{4}}{2 \cdot 2!})+\left(-\frac{x^{3}}{3}\right)+\left(-\frac{x^{4}}{4}\right)+\ldots \\
& =\underbrace{-x-\frac{x^{2}}{2}+\frac{x^{3}}{6}}+\ldots
\end{aligned}
$$

We have used the color blue to highlight those terms of degree at most 4 in the multiplication of the two series. It follows that the Maclaurin polynomial of order 4 of $f(x)=\cos (x) \ln (1-x)$ is

$$
p_{4}(x)=-x-\frac{x^{2}}{2}+\frac{1}{6} x^{3}
$$

Remark: The radius of convergence of $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ is $R=1$ and this is also the case for $-\ln (1-x)=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}$, however the interval of convergence of this last series is $[-1,1)$ (closed on the left and open on the right) because for $x=-1$ the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ which converges conditionally but for $x=1$ the series is $\sum_{n=1}^{\infty} \frac{1}{n}$.
Exercise: Compute the first four terms in the power series expansion of $f(x)=\frac{\ln (1+x)}{1+x}$.
Example 6. Compute the limit

$$
\lim _{x \rightarrow 0} \frac{\cos \left(x^{4}\right)-1+\frac{1}{2} x^{8}}{x^{16}}
$$

Note that in this case using a L'Hospital rule is extremely tedious. An alternative approach is to expand $\cos \left(x^{4}\right)-1+\frac{1}{2} x^{8}$ as a power series

$$
\cos \left(x^{4}\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{8 n}}{(2 n)!}=1-\frac{1}{2} x^{8}+\frac{x^{16}}{4!}-\ldots,
$$

so that

$$
\lim _{x \rightarrow 0}\left(\frac{\cos \left(x^{4}\right)-1+\frac{1}{2} x^{8}}{x^{16}}\right)=\frac{1}{4!}
$$

