Vector Spaces, Subspaces, Span, Matrices, Linear Tranformations, Null Spaces, Column Spaces

August 9

Definition

A vector space V over a field \mathbb{F} is a nonempty set on which two operations are defined - addition and scalar multiplication. Addition is a rule for associating with each pair of objects \mathbf{u} and \mathbf{v} in V an object $\mathbf{u}+\mathbf{v}$, and scalar multiplication is a rule for associating with each scalar $k \in \mathbb{F}$ and each object \mathbf{u} in V an object $k \mathbf{u}$ such that

1. If $\mathbf{u}, \mathbf{v} \in V$, then $\mathbf{u}+\mathbf{v} \in V$.
2. If $\mathbf{u} \in V$ and $k \in \mathbb{F}$, then $k \mathbf{u} \in V$.
3. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
4. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$
5. There is an object $\mathbf{0}$ in V , called a zero vector for V, such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$ for all \mathbf{u} in V.
6. For each \mathbf{u} in V, there is an object $-\mathbf{u}$ in V, called the additive inverse of \mathbf{u}, such that $\mathbf{u}+(-\mathbf{u})=-\mathbf{u}+\mathbf{u}=\mathbf{0}$;
7. $k(l \mathbf{u})=(k l) \mathbf{u}$
8. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
9. $(k+l) \mathbf{u}=k \mathbf{u}+l \mathbf{u}$
10. $\mathbf{1 u}=\mathbf{u}$

Remark The elements of the underlying field \mathbb{F} are called scalars and the elements of the vector space are called vectors. Note also that we often restrict our attention to the case when $\mathbb{F}=\mathbb{R}$ or \mathbb{C}.

Examples of Vector Spaces

A wide variety of vector spaces are possible under the above definition as illustrated by the following examples. In each example we specify a nonempty set of objects V. We must then define two operations - addition and scalar multiplication, and as an exercise we will demonstrate that all the axioms are satisfied, hence entitling V with the specified operations, to be called a vector space.

1. The set of all n-tuples with entries in the field \mathbb{F}, denoted \mathbb{F}^{n} (especially note
2. The set of all $m \times n$ matrices with entries from the field \mathbb{F}, denoted $M_{m \times n}(\mathbb{F})$.
3. The set of all real-valued functions defined on the real line $(-\infty, \infty)$.
4. The set of polynomials with coefficients from the field \mathbb{F}, denoted $P(\mathbb{F})$.
5. (Counter example) Let $V=\mathbb{R}^{2}$ and define addition and scalar multiplication oparations as follows: If $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$, then define

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)
$$

and if k is any real number, then define

$$
k \mathbf{u}=\left(k u_{1}, 0\right)
$$

Theorem If $u, v, w \in V$ (a vector space) such that $u+w=v+w$, then $u=v$.
Corollary The zero vector and the additive inverse vector (for each vector) are unique.

Theorem Let V be a vector space over the field $\mathbb{F}, \mathbf{u} \in V$, and $k \in \mathbb{F}$. Then the following statement are true:
(a) $0 \mathbf{u}=\mathbf{0}$
(b) $k 0=0$
(c) $(-k) \mathbf{u}=-(k \mathbf{u})=k(-\mathbf{u})$
(d) If $k \mathbf{u}=\mathbf{0}$, then $k=0$ or $\mathbf{u}=0$.

Subspaces

- A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

In general, all ten vector space axioms must be verified to show that a set W with addition and scalar multiplication forms a vector space. However, if W is part of a larget set V that is already known to be a vector space, then certain axioms need not be verified for W because they are inherited from V. For example, there is no need to check that $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (axiom 3) for W because this holds for all vectors in V and consequently holds for all vectors in W. Likewise, axioms 4, 7, 8, 9 and 10 are inherited by W from V. Thus to show that W is a subspace of a vector space V (and hence that W is a vector space), only axioms $1,2,5$ and 6 need to be verified. The following theorem reduces this list even further by showing that even axioms 5 and 6 can be dispensed with.

Theorem If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold.
(a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v}$ is in W.
(b) If k is any scalar and \mathbf{u} is any vector in W, then $k \mathbf{u}$ is in W.

Examples of Subspaces

1. A plane through the origin of \mathbb{R}^{3} forms a subspace of \mathbb{R}^{3}. This is evident geometrically as follows: Let W be any plane through the origin and let \mathbf{u} and \mathbf{v} be any vectors in W other than the zero vector. Then $\mathbf{u}+\mathbf{v}$ must lie in W because it is the diagonal of the parallelogram determined by \mathbf{u} and \mathbf{v}, and $k \mathbf{u}$ must lie in W for any scalar k because $k \mathbf{u}$ lies on a line through \mathbf{u}. Thus, W is closed under addition and scalar multiplication, so it is a subspace of \mathbb{R}^{3}.
2. A line through the origin of \mathbb{R}^{3} is also a subspace of \mathbb{R}^{3}. It is evident geometrically that the sum of two vectors on this line also lies on the line and that a scalar multiple of a vector on the line is on the line as well. Thus, W is closed under addition and scalar multiplication, so it is a subspace of \mathbb{R}^{3}.

Definitions

- A vector \mathbf{w} is called a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{r}$ if it can be expressed in the form

$$
\mathbf{w}=k_{1} v_{1}+k_{2} v_{2}+\cdots+k_{r} v_{r}
$$

where $k_{1}, k_{2}, \ldots, k_{r}$ are scalars.

Example

Consider the vectors $\mathbf{u}=(1,2,-1)$ and $\mathbf{v}=(6,4,2)$ in \mathbb{R}^{3}. Show that $\mathbf{w}=$ $(9,2,7)$ is a linear combination of \mathbf{u} and \mathbf{v} and that $\mathbf{w}^{\prime}=(4,-1,8)$ is not a linear combination of \mathbf{u} and \mathbf{v}.

Span

If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are vectors in a vector space V, then generally some vectors in V may be linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ and others may not. The following theorem shows that if a set W is constructed consisting of all those vectors that are expressible as linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$, then W forms a subspace of V.

Theorem 1.6. If $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ are vectors in a vector space V, then:
(a) The set W of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ is a subspace of V.
(b) W is the smallest subspace of V that contains $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ every other subspace of V that contains $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ must contain W

Definitions

- If $\mathrm{S}=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ is a set of vectors in a vector space V, then the subspace W of V consisting of all linear combinations of the vectors in S is called the space spanned by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$, and it is said that the vectors $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}$ span W. To indicate that W is the space spanned by the vectors in the set $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}$ the below notation is used.

$$
W=\operatorname{span}(S) \quad \text { or } \quad W=\operatorname{span}\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{r}}\right\}
$$

Example The polynomials $1, x, x^{2}, \ldots, x^{n}$ span the vector space P_{n} since each polynomial \mathbf{p} in P_{n} can be written as

$$
\mathbf{p}=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

which is a linear combination of $1, x, x^{2}, \ldots, x^{n}$. This can be denoted by writing

$$
P_{n}=\operatorname{span}\left\{1, x, x^{2}, \ldots, x^{n}\right\}
$$

Spanning sets are not unique. For example, any two noncolinear vectors that lie in the $x-y$ plane will span the $x-y$ plane. Also, any nonzero vector on a line will span the same line.

Column Space and Nullspace

If A is an $m \times n$ matrix, then the subspace of \mathbb{R}^{m} spanned by the column vectors of A is called the column space. The solution space of the homogeneous system of equations $A \mathbf{x}=\mathbf{0}$, which is a subspace of \mathbb{R}^{n}, is called the nullspace.

Definition: A system of equations $A \mathbf{x}=\mathbf{b}$ is consistent if there is a solution(s).

Theorem: A system of linear equations $A \mathbf{x}=\mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A.

Example: Let $A \mathbf{x}=\mathbf{b}$ be the linear system

$$
\left[\begin{array}{ccc}
-1 & 3 & 2 \\
1 & 2 & -3 \\
2 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-9 \\
-3
\end{array}\right]
$$

Show that \mathbf{b} is in the column space of A and express \mathbf{b} as a linear combination of the column vectors of A.

Solving the system by Gaussian elimination yields

$$
x_{1}=2, \quad x_{2}=-1, \quad x_{3}=3
$$

Since the system is consistent, \mathbf{b} is in the column space of A. Moreover,

$$
2\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-9 \\
-3
\end{array}\right]
$$

Linear Transformations:

If $T: V \rightarrow W$ is a function between vector spaces, then T is called a linear transformation from V to W if for all vectors \mathbf{u}, \mathbf{v} in V and all scalars c

$$
\text { (a) } T(\mathbf{u}+\mathbf{v})=\mathbf{T}(\mathbf{u})+\mathbf{T}(\mathbf{v}) \quad \text { and } \quad \text { (b) } \mathbf{T}(\mathbf{c u})=\mathbf{c} \mathbf{T}(\mathbf{u})
$$

Example: Define the orthogonal projection of \mathbf{v} onto \mathbf{w} by $\operatorname{proj}_{\mathbf{w}} \mathbf{v}=(\mathbf{v} \cdot \mathbf{w}) \frac{\mathbf{w}}{\|\mathbf{w}\|^{2}}$. Then for a fixed $\mathbf{w}, T(\mathbf{v})=\operatorname{proj}_{\mathbf{w}} \mathbf{v}$ is a linear transformation.

Example: Suppose that a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ maps

$$
\mathbf{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \text { to }\left[\begin{array}{c}
x-y \\
0 \\
2 x+3 y+z \\
y+4 z
\end{array}\right]
$$

Find a matrix A such that $T(\mathbf{v})=\mathbf{A v}$.
Answer: The required matrix is

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
2 & 3 & 1 \\
0 & 1 & 4
\end{array}\right]
$$

