Worksheet - Linear Independence, Bases

Exercise 1. Assume that A is row equivalent to B. Find bases for nul A and $\operatorname{col} A$.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & 3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 2. True or false? Give brief justifications.
(a) A linearly independent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
(c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of $\operatorname{col} A$.

Exercise 3. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\beta}$ and the given basis β.

$$
\beta=\left\{\left[\begin{array}{l}
4 \\
5
\end{array}\right],\left[\begin{array}{l}
6 \\
7
\end{array}\right]\right\} \quad[\mathbf{x}]_{\beta}=\left[\begin{array}{c}
8 \\
-5
\end{array}\right]
$$

Exercise 4. Find the coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} relative to the given basis β.

$$
\beta=\left\{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
2 \\
-5
\end{array}\right]\right\} \quad \mathbf{x}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Exercise 5. Find a basis of the following vector spaces. What is the dimension of each?

$$
\left\{\left[\begin{array}{c}
4 s \\
-3 s \\
-t
\end{array}\right]: s, t \text { in } \mathbb{R}\right\} \quad\{(a, b, c, d): a-3 b+c=0\}
$$

Exercise 6. Let $T: V \rightarrow W$ be a linear transformation. Shot that if $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly dependent V, then $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{p}}\right)\right\}$ is linearly dependent in W. Use this to show that if $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{p}}\right)\right\}$ is linearly independent in W, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly independent in V.

