Worksheet Aug 13-AM

Exercise 1. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{span}\{\mathbf{u}\}$ and one orthogonal to it.

$$
\mathbf{y}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
4 \\
-3
\end{array}\right]
$$

Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Exercise 2. True and false! Justify your answers!
(a) If A is an $n \times n$ matrix with orthogonal columns, then it is invertible.
(b) If a set $\left\{\mathbf{u}_{\mathbf{1}}, \ldots \mathbf{u}_{\mathbf{p}}\right\}$ has the property that $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ whenever $i \neq j$ then S is an orthnormal set.
(c) If c is not 0 , then the orthogaonl projection of \mathbf{y} onto a vector \mathbf{u} is the same as the orthogonal projection of \mathbf{y} onto $c \mathbf{u}$.

Exercise 3. Let W be the subspace spanned by the $\mathbf{v}^{\prime} s$ and write \mathbf{y} as a sum of a vector in W and a vector orthogonal to W.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right]
$$

What is the closest point in W to \mathbf{y} ?

Exercise 4. Find an orthogonal basis for $\operatorname{col}(A)$.

$$
A=\left[\begin{array}{ccc}
-1 & 6 & 6 \\
3 & -8 & 3 \\
1 & -2 & 6 \\
1 & -4 & -3
\end{array}\right]
$$

