1. True/False

(a) An $n \times n$ matrix that is orthogonal and diagonalizable must be symmetric.
(b) If $A=A^{T}$ and if vectors u and v satisfy $A u=3 u$ and $A v=4 v$, then $u \cdot v=0$.
(c) An $n \times n$ symmetric matrix has n distinct real eigenvalues.
(d) If $B=P D P^{-1}$, where $P^{T}=P^{-1}$ and D is a diagonal matrix, then B is a symmetric matrix.
2. Diagonalize the following symmetric matrix with an orthonormal basis.

$$
A=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

3. Suppose we know that the matrix

$$
A=\left(\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

has eigenvalues -2 and 7 . Diagonalize A by orthogonal matices.

