1. Compute the integral

$$
\iint_{D} x y^{2} d A
$$

where D is the rectangle defined by $0 \leq x \leq 2$ and $0 \leq y \leq 1$.
2. Compute the integral

$$
\iint_{D} x y^{2} d A
$$

where D is the rectangle defined by $0 \leq x \leq 2$ and $0 \leq y \leq \frac{x}{2}$. Make x the outer integral variable.
3. Compute the integral

$$
\iint_{D} x y^{2} d A
$$

where D is the rectangle defined by $0 \leq x \leq 2$ and $0 \leq y \leq \frac{x}{2}$. Make y the outer integral variable.
4. Compute the integral

$$
\iint_{D} x y^{2} d A
$$

where D is the disk of radius 1 .
5. Compute the integral

$$
\iint_{D}(x+y) d A
$$

where D is the diamond region below.

6. Compute the integral

$$
\iint_{D}\left(x^{2}-x y+y^{2}\right) d A
$$

where D is the elliptical region given by $x^{2}-x y+y^{2} \leq 2$ and using the transformation $x=\sqrt{2} u-\sqrt{\frac{2}{3}} v$ and $y=\sqrt{2} u+\sqrt{\frac{2}{3}} v$.

