Worksheet: Subspaces, Span, and Linear Independence

- (1) Using the subspace test or a graph of the equation, determine if the following subsets of \mathbb{R}^3 are subspaces.
 - (a) $V = \{(x, y, z)^T \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$
 - (b) $V = \{(x, y, z)^T \in \mathbb{R}^3 | x + 2y + 3z = 0\}$
 - (c) $V = \{(x, y, z)^T \in \mathbb{R}^3 | x + y = 0, \text{ and } x 3z = 0\}$

- (2) Use the subspace test to determine if the following are subspaces of the given vector space.
 - (a) $W = \left\{ \text{functions } f: [0,1] \to \mathbb{R} \mid \int_0^1 f(x) \, dx = 0 \right\}$ as a subset of integrable functions from [0,1] to \mathbb{R} .
 - (b) $W = \{ \text{polynomials } p(x) \mid \deg(p(x)) \le n, \deg(p(x)) \text{ is odd } \} \cup \{0\} \text{ as a subset of } \mathcal{P}^n, \text{ the vector space of polynomials of degree } \le n.$

(3) Show that the vectors $(0, 1, 0)^T$, $(0, 2, 1)^T$, and $(-4, 3, 7)^T$ are linearly independent.

(4) Let $\boldsymbol{v}_1 = (-2, 2, 2)^T$ and $\boldsymbol{v}_2 = (3, 6, 0)^T$. Is the vector $\boldsymbol{w} = (-1, 4, 2)^T$ in span $(\boldsymbol{v}_1, \boldsymbol{v}_2)$? If so, write \boldsymbol{w} as a linear combination of \boldsymbol{v}_1 and \boldsymbol{v}_2 .

(5) What conditions on a, b and c are necessary for $(a, b, c)^T$ to lie in the span of $(-1, 3, 2)^T$ and $(0, 1, 1)^T$?