Worksheet: Subspaces, Span, and Linear Independence

(1) Using the subspace test or a graph of the equation, determine if the following subsets of \mathbb{R}^{3} are subspaces.
(a) $V=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$
(b) $V=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x+2 y+3 z=0\right\}$
(c) $V=\left\{(x, y, z)^{T} \in \mathbb{R}^{3} \mid x+y=0\right.$, and $\left.x-3 z=0\right\}$
(2) Use the subspace test to determine if the following are subspaces of the given vector space.
(a) $W=\left\{\right.$ functions $\left.f:[0,1] \rightarrow \mathbb{R} \mid \int_{0}^{1} f(x) d x=0\right\}$ as a subset of integrable functions from $[0,1]$ to \mathbb{R}.
(b) $W=\{$ polynomials $p(x) \mid \operatorname{deg}(p(x)) \leq n, \operatorname{deg}(p(x))$ is odd $\} \cup\{0\}$ as a subset of \mathcal{P}^{n}, the vector space of polynomials of degree $\leq n$.
(3) Show that the vectors $(0,1,0)^{T},(0,2,1)^{T}$, and $(-4,3,7)^{T}$ are linearly independent.
(4) Let $\boldsymbol{v}_{1}=(-2,2,2)^{T}$ and $\boldsymbol{v}_{2}=(3,6,0)^{T}$. Is the vector $\boldsymbol{w}=(-1,4,2)^{T}$ in $\operatorname{span}\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)$? If so, write \boldsymbol{w} as a linear combination of \boldsymbol{v}_{1} and \boldsymbol{v}_{2}.
(5) What conditions on a, b and c are necessary for $(a, b, c)^{T}$ to lie in the span of $(-1,3,2)^{T}$ and $(0,1,1)^{T}$?

