Worksheet - Row, Column, Null Spaces, and Span

1. Find a basis for the row space, column space, and null space of the matrix given below:

$$
A=\left[\begin{array}{cccc}
3 & 4 & 0 & 7 \\
1 & -5 & 2 & -2 \\
-1 & 4 & 0 & 3 \\
1 & -1 & 2 & 2
\end{array}\right]
$$

2. What is the maximum number of linearly independent vectors that can be found in the nullspace of

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 3 & 1 \\
2 & 4 & -1 & 5 & 4 \\
3 & 6 & -1 & 8 & 5 \\
4 & 8 & -1 & 12 & 8
\end{array}\right]
$$

3. Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear transformation defined by

$$
T\left(\left[x_{1}, x_{2}, x_{3}\right]\right)=\left[2 x_{1}+3 x_{2}, x_{3}, 4 x_{1}-2 x_{2}\right] .
$$

Find the standard matrix representation of T. Is T invertible? If so, find a formula for T^{-1}.
4. Is the set $S=\left\{[x, y]\right.$ such that $\left.y=x^{2}\right\}$ a subspace of \mathbf{R}^{2} ?
5. Use the Cauchy-Schwarz inequality

$$
|\mathbf{v} \cdot \mathbf{w}| \leq\|\mathbf{v}\| \cdot\|\mathbf{w}\|
$$

to prove the Triangle Inequality

$$
\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\| .
$$

(Hint: Begin by computing $\|\mathbf{v}+\mathbf{w}\|^{2}$ with dot products, and then plug in the Cauchy-Schwarz inequality when the opportunity arises.)
6. Determine whether each of the following statements is True or False. No explanation is necessary.
(a) If V is a subspace of \mathbf{R}^{5} and $V \neq \mathbf{R}^{5}$, then any set of 5 vectors in V is linearly dependent.
(b) If A is a 4×7 matrix and if the dimension of the nullspace of A is 3 , then for any \mathbf{b} in \mathbf{R}^{4}, the linear system $A \mathbf{x}=\mathbf{b}$ has at least one solution.
(c) Any 4 linearly independent vectors in \mathbf{R}^{4} are a basis for \mathbf{R}^{4}.
(d) If A is an $m \times n$ matrix, then the set of solutions of a linear system $A \mathbf{x}=\mathbf{b}$ must be a linear subspace of \mathbf{R}^{n}.

