1. Find the limits:
 a. \(\lim_{n \to \infty} \frac{n(3n+1)^2}{5n^3 + 23n^2 + 10n + 4} \)
 b. \(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k + 5}{n} \)

2. Compute the integral \(\int_{0}^{5} 3x^2 \, dx \) via the following steps:
 a. Write down a sum which approximates the integral. The sum should use \(n \) rectangles of equal width, and the height of each rectangle should be determined by the right endpoint of the rectangle. (Your answer should be a summation involving the variables \(k \) and \(n \).)
 b. Use the summation formulas to express the summation in part (a) in simpler terms. (This should be a variable expression only involving \(n \).)
 c. Compute the limit as the number of rectangles increases to infinity.

3. Write down a sum which approximates the integral \(\int_{4}^{5} (5x+1) \, dx \) as in 2(a) above.

4. Given that the area of the ellipse \(30x^2 + y^2 = 30 \) is \(\sqrt{30}\pi \), evaluate the integral \(\int_{0}^{1} \sqrt{30 - 30x^2} \, dx \).

5. Consider the limit \(\lim_{n \to \infty} \frac{4}{n} \sum_{k=1}^{n} \sqrt{4^2 - \left(\frac{k}{n} \right)^2} \).
 a. This limit is obtained by applying the definition of the definite integral to \(\int_{0}^{4} f(x) \, dx \) for what function \(f(x) \)?
 b. Use a graph of \(f(x) \), and geometry, to evaluate this definite integral (and thus, the limit).
1. Find the indefinite integrals:
 a. \(\int (t^3 + 4t^2 - 8t + 3) dt \)
 b. \(\int \frac{9}{\sqrt{t}} dt \)
 c. \(\int \frac{9x^5 + 5x^3 - 4x + 1}{x^3} dx \)

2. Use the fundamental theorem of calculus to find the derivative of \(F(x) \) for
 \(F(x) = \int_2^x \sqrt{t^3 + 5t - 8} dt \).

3. Use the fundamental theorem of calculus to evaluate the definite integrals:
 a. \(\int_0^8 (4x - 7) dx \)
 b. \(\int_1^2 (4x - 7) dx \)
 c. \(\int_1^7 \left(\frac{x+1}{x^4} \right) dx \)

4. Find the value of \(x \) for which \(F(x) = \int_{-8}^x (|t| + 200) dt \) takes its maximum on the interval \([-8, 40]\).
1. Find the definite integrals using the fundamental theorem of calculus. You may need to use a substitution.
 a. $\int_0^x e^t dt$
 b. $\int_0^x (t+3)^2 dt$
 c. $\int_0^x \sqrt{t+9} dt$
 d. $\int_0^x \frac{3}{4t+5} dt$
 e. $\int_0^x 6e^{3t-2} dt$
 f. $\int_0^x 3t^2 e^{t+2} dt$

2. Consider the function $F(x) = \int_{-2}^x \frac{1}{1+t^2} dt$.
 Determine the intervals on which $F(x)$ is increasing.

3. Find the average value of $g(x) = e^{2x}$ on the interval $[1, 4]$.

4. A rock is dropped from a cliff. The velocity of the rock, measured in feet per second, after t seconds, is $v(t) = -32t$. The rock hits the ground 10 seconds later. How high is the cliff?