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1. Introduction

The moduli spaces of curvesMg,n are among the most important objects in algebraic geometry. One natural approach to
studying these spaces could be to constructmorphisms from thesemoduli spaces to other, simpler spaces. There is, however,
a problem with this approach — the moduli spaces of curves do not admit any non-trivial morphisms to lower dimensional
varieties. In particular, it has been shown in [7] that every fibration (with connected fibers) ofMg,1 factors through the map
Mg,1 → Mg given by forgetting the marked point. We therefore cannot expect to learn much about the geometry of Mg,1
if we restrict our attention to such morphisms. We obtain a much richer picture, however, if we consider more generally
rational maps.

Many questions about the rational maps of a variety X can be restated in terms of the cone of effective divisors NE
1
(X).

For any divisor D, we may define the section ring

R(X,D) =


n∈N

H0(X, OX (D)⊗n).

If D is effective and R(X,D) is finitely generated, then there is an induced rational map

fD : X 99K Proj(R(X,D)).

In many cases, NE
1
(X) provides us with a nice combinatorial parameterization of the variety’s rational contractions.

In this paper, we exhibit rational contractions from M5,1 and M6,1 to moduli spaces of pointed rational curves. As a
consequence, we identify extremal rays of the corresponding effective cones. We note that this differs from the standard
approach to finding extremal rays, which is to construct birational contractions.

The study of NE
1
(Mg)was pioneered by Eisenbud, Harris andMumford in their proof thatMg is of general type for genus

g ≥ 24 [9,5]. A key step in their proof is the computation of the class of certain geometric divisors on Mg . In particular,
their argument makes use of the Brill–Noether divisors, which are defined whenever g + 1 is composite. For the remaining
genera, they complete the proof using a different set of divisors, known as the Gieseker–Petri divisors. Part of themotivation
for studying these divisors was the observation that, for small values of g , these divisors play a special role — for g ≤ 11,
g ≠ 10, there is an extremal ray of NE

1
(Mg) generated by either a Brill–Noether or Gieseker–Petri divisor (see Remark 2.17

in [6]).
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Fig. 1. The map φ5 .

In [13], Logan introduced the notion of pointed Brill–Noether divisors. In Theorem 1.1, we show that one of these
divisors generates an extremal ray of NE

1
(M5,1).

Definition 1. Let Z = (a0, . . . , ar) be an increasing sequence of nonnegative integers with α =
∑r

i=0 ai − i. Let BN r
d,Z

be the closure of the locus of pointed curves (C, p) ∈ Mg,1 possessing a g r
d on C with ramification sequence Z at p. When

g + 1 = (r + 1)(g − d + r) + α, this is a divisor inMg,1, called a pointed Brill–Noether divisor.
Our first result is:

Theorem 1.1. The Weierstrass divisor BN1
5,(0,5) generates an extremal ray of NE

1
(M5,1).

OnM6,1, we define a divisor not of pointed Brill–Noether type, the divisor of ‘‘nodes of g2
6 ’s’’.

Definition 2. Let D6 be the closure of the locus of pointed curves (C, p) ∈ M6,1 possessing a g2
6 L and a point p′

∈ C such
that

h0(C, L − p − p′) ≥ 2.
As far as we are aware, the divisor D6 does not appear earlier in the literature. Its numerical class has recently been

computed by Nicola Tarasca in [16]. We prove the following:

Theorem 1.2. D6 generates an extremal ray of NE
1
(M6,1).

Our strategy is to construct geometrically meaningful rational maps fromMg,1 to other moduli spaces. Our results follow
by examining the images of divisors under these maps. We describe the maps here.

The general genus 6 curve admits an embedding into a smooth quintic del Pezzo surface Y as a section of | − 2KY |. This
embedding is unique up to an automorphism of the surface. By forgetting the curve and simply remembering the marked
point, we obtain a rational map

φ6 : M6,1 99K Y/S5 ∼= M0,5.

The general genus 5 curve C admits a canonical embedding into P 4 as the complete intersection of 3 quadrics. For any
point p ∈ C , the set of quadrics containing both C and the tangent line to C at p forms a 2-dimensional vector space. Let Z
be the intersection of all the quadrics in this space, which is a degree 4 del Pezzo surface. Now, let H ⊆ P 4 be the osculating
hyperplane to C at p, and consider the intersection H ∩ Z . Since TpC ⊂ H ∩ Z , we may write H ∩ Z as the union of two
components TpC ∪ R, where R is generically a twisted cubic in H .

Notice that, since C is a complete intersection of quadrics, it has no trisecants, and thus the intersection multiplicity of C
and TpC at p on Z must be 2. Since H intersects C at pwith order of vanishing 4 or more, we see that Rmust be tangent to C .
The three curves C , R, and TpC all therefore have the same tangent direction at p. If we blow up Z at p, the strict transforms
of all three curves will pass through the same point on the exceptional divisor E. If we then blow up again at this point, the
new exceptional divisor will be a P 1 with 4 marked points on it — namely, the points of intersection of this P 1 with the
strict transforms of C , R, E, and TpC . In this way, we obtain a rational map

φ5 : M5,1 99K M0,4 (see Fig. 1).

It is natural to ask to what extent our techniques generalize. In an earlier paper we identify extremal rays of Mg,1
generated by pointed Brill–Noether divisors when g = 3, 4 [10]. In each case the maps we construct are specific to
the genus, but pointed Brill–Noether divisors exist in every genus and it is possible that there is always a corresponding
extremal ray. There are higher-genus analogues of the divisor D6 as well, as discussed in [16]. More generally, we expect
that Proposition 2.3 may have several applications, as it gives a new method for identifying extremal rays.

The outline of the paper is as follows. In Section 2 we develop tools for studying the birational geometry of a variety by
considering a certain type of rational fibration. In Sections 3 and 4, we use these tools to obtain our results onM6,1 andM5,1,
respectively. While the results in Section 3 follow directly, in Section 4 we must show that the map φ5 decomposes as the
composition of a birational contraction and a morphism. In order to show this, we use techniques from geometric invariant
theory.

Notation: Following [15], we refer to any element of NE
1
(X) as an effective divisor. To avoid confusion, we use the term

‘‘codimension one subvariety’’ where applicable.
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2. Rational fibrations

In this section,we develop tools for studying effective cones. Onewell-known such technique involves the construction of
birational maps (see, for example, [15]). This is because the exceptional divisors of a birational contraction X 99K Y generate
extremal rays of NE

1
(X). This idea has been exploited by many authors in the study of various moduli spaces, includingMg

[15], M0,n [2], and the Kontsevich space of stable maps [1]. In our case, however, the maps we construct are not birational
— they in fact have very low-dimensional images. In what follows, we will see that extremal rays can be similarly obtained
from these rational fibrations. We begin with a few definitions, which can all be found in [8].

Definition 3. Let f : X 99K Y be a rational map between normal projective varieties. Let (p, q) : W → X × Y be a resolution
of f withW projective and p birational.We call f a birational contraction if it is birational and every p-exceptional divisor is
q-exceptional. More generally, we say that f is a contraction if every p-exceptional divisor is q-fixed. For a Q-Cartier divisor
D ⊂ Y , we define f ∗(D) to be p∗(q∗(D)).

Examples of contractions include morphisms, birational contractions, and compositions of these. Rational contractions
are exactly the maps corresponding to complete linear series. Such maps are often useful for identifying extremal rays. One
example is the statement about birational maps alluded to above. This fact is a direct consequence of the following, known
variously as the ‘‘Kodaira Lemma’’ or ‘‘Negativity of Contraction’’.

Lemma 2.1 (See [11,15]). Let f : X → Y be a proper birational morphism, with X regular in codimension one. Let {Ei}ni=1 be a
collection of f -exceptional divisors, M an f -nef Q-Cartier divisor on X, and P ∈ NE

1
(X) any element such that there is a sequence

of Q-Cartier divisors {Dj} → P such that no Ei is contained in the support of any Dj. If L is a Q-Cartier divisor on Y such that

f ∗L = M + P +

n−
i=1

eiEi,

then ei ≥ 0 ∀i.

One technical issue that arises when studying effective cones is that not every element of NE
1
(X) corresponds to a

codimension one subvariety of X . Instead, an element of this cone is a limit of codimension one subvarieties. A major tool
used in this work for dealing with this issue is the following:

Lemma 2.2 (See [15]). Let X be a projective variety and suppose that
∑n

i=1 R≥0Ei is a subcone of NE
1
(X) generated by

codimension one subvarieties Ei. Then for any P ∈ NE
1
(X), one can write

P = Q +

n−
i=1

ciEi

where ci ≥ 0 ∀i and Q is the limit of effective Q-Cartier divisors {Dj} such that no Ei is contained in the support of any Dj.

We now turn our attention to a specific type of rational contraction — the composition of a birational contraction and a
morphism. Throughout the remainder of this section, we let X, Y and Z be normal projective varieties with dim Y < dim X ,
f : X 99K Z a birational contraction, c : Z → Y a proper morphism, and h : X 99K Y the composition. Let W be a resolution
of f , giving us the following diagram.

W
p

xxppppppppppppp
q

��
e

��
00

00
00

00
00

00
00

X
f

//

h

))

Z

c
  

@@
@@

@@
@@

Y

Note that, if X is a Mori Dream Space, then all rational contractions are of this type (see Proposition 1.11 in [8]). In the later
sections, we will see that both of the maps we construct are of this type as well. In what follows, we describe how to use
these fibrations to identify extremal rays.

Proposition 2.3. Let D1 and D2 be distinct irreducible codimension one subvarieties of X such that h(D1) = h(D2) ≠ Y . Then D1

generates an extremal ray of NE
1
(X). Furthermore, the divisor D1 does not move.

Proof. The result is well-known in the case that D1 is contracted by f (see, for example, [15]) . In what follows we assume
that this is not the case.
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Let D̃1, D̃2 denote the strict transforms ofD1,D2 inW . LetD ⊂ Y be an irreducible codimension one subvariety containing
e(D̃1). By assumption, there exist irreducible divisors Bi inW such that

e∗D = a1D̃1 + a2D̃2 +

−
biBi

where ai, bi > 0 for all i. Note that some of the divisors Bi may be exceptional divisors of the map p. We will denote these
by Ei and rewrite the above expression as

e∗D = a1D̃1 + a2D̃2 +

−
biBi +

−
eiEi.

Now, suppose that P1, P2 ∈ NE
1
(X) such that P1 + P2 = D1. Then

p∗P1 + p∗P2 = p∗D1 = αD̃1 +

n−
i=1

βiEi.

By Lemma 2.2, we may write

p∗Pk = Qk + ckD̃1 +

n−
i=1

dikEi

where ck, dik ≥ 0 and Qk is a limit of effective divisors whose support does not contain D̃1 or Ei. Note that Q1 + Q2 + (c1 +

c2 − α)D̃1 is in the span of the Ei’s. Hence, if c1 + c2 − α ≥ 0, then by extremality, Q1 and Q2 are in the span of the Ei’s as
well. It follows that Pk = p∗p∗Pk is linearly equivalent to a multiple of D1, and we are done.

If, on the other hand, c1 + c2 − α < 0, then by solving for D̃1 in the expression above and replacing Q1, Q2 with positive
multiples, we have

D̃1 = Q1 + Q2 +

n−
i=1

γiEi.

Substituting this into the expression above, we obtain

e∗D = a1(Q1 + Q2) + a2D̃2 +

−
biBi +

−
diEi

where ai, bi > 0. Note that, since e∗D = q∗c∗D and all of the p-exceptional divisors are q-exceptional, by Lemma 2.1 we
have di ≥ 0 for all i as well.

Now, let F be a general fiber of themap D̃1 → e(D̃1). Furthermore, let A be a general ample divisor in F , n = dimF−1, and
C = An. Notice that, since C covers D̃1, its intersection with any divisor whose support does not contain D̃1 is nonnegative.
In particular, it has nonnegative intersection with Qi, Bi, and Ei. Moreover, since C is contained in a fiber, C · e∗D = 0. Indeed,
it is clear that C does not intersect the pullback of a general ample divisor. Hence, by linearity of the intersection pairing, it
follows that C ·e∗D = 0 for every divisorD in Y . Finally, since D̃2 surjects onto e(D̃1), we know that C ·D̃2 > 0, a contradiction.
It follows that D1 generates an extremal ray of NE

1
(X).

To see that D1 does not move, consider the case where P2 = 0 and some multiple mP1 is an irreducible divisor different
from D1. We write P̃1 for the strict transform of this divisor. We then have

mp∗D1 = mαD̃1 +

n−
i=1

mβiEi = α′P̃1 +

n−
i=1

β ′

iEi.

By replacing P̃1 with a positive multiple, we may substitute to obtain:

e∗D = a1P̃1 + a2D̃2 +

−
biBi +

−
diEi

where, for the same reason as above, all of the coefficients are nonnegative. We then obtain a contradiction in the same
manner as before. �

3. Genus 6 curves

In order to establish our results about the map φ6, we must show that it arises as the composition of a birational
contraction with a morphism. Recall that the general genus 6 curve admits an embedding into a smooth quintic del Pezzo
surface Y as a section of | − 2KY |, and that this embedding is unique up to an automorphism of the surface. If we let

Z = {(C, p) ∈ P (H0(Y , −2KY )) × Y |p ∈ C},

there is then a rational map

M6,1
f

//

φ6

!!

Z/S5

c

��

Y/S5 M0,5.
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Proposition 3.1. The map f is a birational contraction.

Proof. For the first part, it suffices to exhibit a morphism f −1
: U → M6,1, where U ⊂ Z/S5 is open with complement

of codimension ≥ 2 and f −1 is an isomorphism onto its image. To see this, let U ⊂ Z/S5 be the set of all moduli stable
pointed curves (C, p) ∈ Z/S5. Notice that the complement of U is strictly contained in the locus of singular curves, which is
an irreducible hypersurface in Z/S5. It follows that the complement of U has codimension ≥ 2.

By the universal property of the moduli space, since

U → PH0(Y , −2KY )/S5

is a family of moduli stable curves, it admits a uniquemap U → M6,1. Since the embedding of a genus 6 curve in Y is unique
up to an automorphism of Y , two such curves are isomorphic if and only if they differ by an element of S5. Since the general
genus 6 curve possesses no non-trivial automorphisms, it follows that this map is generically injective. �

We now consider the images of divisors in M6,1 under the map constructed above. One geometric divisor of interest is
the Gieseker–Petri divisor GP6. As mentioned in the introduction, the Gieseker–Petri divisors played a key role in Harris and
Eisenbud’s proof theMg is of general type for g sufficiently large [5]. By definition, GP6 is the closure of the locus of smooth
curves C admitting a g1

4 L such that the multiplication map

H0(C, L) ⊗ H0(C, K − L) → H0(C, K)

fails to be injective.While the typical genus 6 curve admits 5 g1
4 ’s, the general element ofGP6 admits fewer than this expected

number.
Another divisor of interest is the one denoted D6 above. Recall that D6 is the closure of the locus of pointed curves

(C, p) ∈ M6,1 possessing a g2
6 L and a point p′

∈ C such that

h0(C, L − p − p′) ≥ 2.

We will show that D6 and GP6 have the same image under the map φ6.

Proposition 3.2. Let ∆ ⊂ M0,5 be the boundary divisor. Then

φ6(GP6) = φ6(D6) = ∆.

Proof. The general genus 6 curve has 5 g2
6 ’s, corresponding to the 5 blow-downs Y → P 2. From this description, it is clear

that a point on a genus 6 curve will map to a node under some g2
6 if and only if it is contained in a −1 curve on Y . It follows

that φ6(D6) = ∆.
We now prove the statement about the Gieseker–Petri divisor. Let C → B be a family of curves over a DVR such that

the general fiber is a general genus 6 curve and the special fiber is a general element of GP6. By definition, there exist line
bundles L1, L2 on C such that the restriction of L1 and L2 to the general fiber are distinct g1

4 ’s, whereas their restrictions to
the special fiber are identical g1

4 ’s. The linear series |L1| and |L2| determine a map from C to P 1
× P 1, sending the general

fiber birationally onto a curve with 3 nodes, and the special fiber to 4 times the diagonal. Blowing up at the three nodes, we
obtain a map from C to Y . Note that the image of the special fiber under this map is a union of −1 curves. In particular, it
maps to the sum of 4 times a −1 curve, plus 2 times each of the 3 −1 curves meeting it.

C //

|L1|×|L2|

''PPPPPPPPPPPPP

��

Y

��

B P 1
× P 1

Because this family is sufficiently general and M0,5 is projective, it follows that φ6(GP6) = ∆. �

Theorem 3.3. The divisor D6 generates an extremal ray of NE
1
(M6,1).

Proof. This follows immediately from Propositions 2.3 and 3.2. �

4. Genus 5 curves

In order to obtain our results on M5,1, we make a similar argument to that of Section 3. Specifically, we first exhibit the
map φ5 as the composition of a birational contraction and a morphism, and then apply Proposition 2.3 to show that certain
effective divisors generate extremal rays of NE

1
(M5,1). To see that this map does indeed admit the desired decomposition,

we use techniques from geometric invariant theory. For a more detailed discussion of variation of GIT, see [4,17].
Throughout, we will make frequent use of Mumford’s numerical criteria. Given a reductive group G acting on a variety

X , and a one-parameter subgroup λ : C∗
→ G, we choose coordinates so that λ is diagonal. In other words, it is given by

diag(ta1 , ta2 , . . . , tan). We will refer to the ai’s as the weights of the C∗ action. For a point x ∈ X , Mumford defines

µλ(x) = min(ai|xi ≠ 0).
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Then x is stable (semistable) if and only if µλ(x) < 0 (resp. µλ(x) ≤ 0) for every nontrivial 1-parameter subgroup λ of
G [14].

Now, let Y = P 4 and Z = G(3, O Y (2)) be the Grassmannian of 3-dimensional subspaces of the space of quadrics in Y .
Since a general genus 5 canonical curve is the complete intersection of 3 quadrics in P 4, the general point in Z corresponds
to a genus 5 curve. For a given such canonical curve C , we will write I C (2) for the vector space of quadrics containing the
C . Now, let

X = {(I C (2), p) ∈ Z × Y |p ∈ Q ∀Q ∈ I C (2)}.

We denote the various maps as in the following diagram.

X

f

��

i // Z × Y

π2

��

π1 // Y

Z
id // Z

Since X is a Grassmannian bundle over P 4, it is smooth, and PicX ∼= Z × Z . We will write O X (a, b) to denote (i ◦

π1)
∗(O P 4(a)) ⊗ f ∗(O Z (b)). There is a natural action of Aut(Y ) = PSL(5, C) on X . Our goal is to study the GIT quotients

of X by the action of this group.
Notice that, since the general point of X corresponds to a pointed genus 5 curve, there is a rational map X 99K M5,1. Our

first step is to calculate the pullback of the pointed Brill–Noether divisors under this map.

Proposition 4.1. The pullback of every pointed Brill–Noether divisor under the map X 99K M5,1 is numerically equivalent to
O X (3, 2)⊗n for some n ≥ 0.

Proof. To prove this, we introduce two test curves on X . Let F1 be a fiber of a general point in Z under the map f : X → Z .
In other words, F1 is obtained by fixing a general genus 5 curve C and varying the marked point. Notice that O X (0, 1) has
intersection number 0 with F1, and O X (1, 0) has intersection number deg(C) = 8 with F1.

Let S be the complete intersection of two general quadric hypersurfaces in Y . Then S is a smooth del Pezzo surface of
degree 4. Fix a point p ∈ S and let F2 be a Lefschetz pencil of curves in | − 2KS | through p with marked point p. Since F2 lies
entirely inside a fiber of the map i ◦ π1 : X → Y , O X (1, 0) has intersection number 0 with F2. Moreover, since the image of
F2 under the map f : X → Z is a line in Z , O X (0, 1) has intersection number 1 with F2. It is clear that the class of a divisor
on X is determined uniquely by its intersection with F1 and F2.

Notice that the pullback of the (non-pointed) Brill–Noether divisor has intersection number 0 with both F1 and F2, and
therefore pulls back to zero under this rational map. Because every pointed Brill–Noether divisor is an effective combination
of this divisor and the Weierstrass divisor, we therefore see that the pullbacks of all the pointed Brill–Noether divisors lie
on a single ray in NS(X). It thus suffices to compute the intersection numbers of the pullback of a single such divisor with F1
and F2. Here we examine the Weierstrass divisor,W = BN1

5,(0,5).
The general genus 5 curve possesses 4 · 5 · 6 = 120 Weierstrass points, soW · F1 = 120. To computeW · F2, we use the

class of the Weierstrass divisor inM5,1 (see [3]):

W = 15ω − λ + 10δ1 + 6δ2 + 3δ3 + δ4.

Since F2 is a Lefschetz pencil, δi = 0 ∀i > 0. The total space of this pencil is the blow-up of S at 16 points, with p being one
of these points. It follows that the Euler characteristic of the total space F tot

2 is 24. If F gen is a generic fiber of this pencil, then

χ(F tot
2 ) = χ(P 1)χ(F gen

2 ) + #{singular fibers}.

It follows that δ0 = 24 + 2 · 8 = 40. Moreover, K 2
F tot2

= −12, and so κ = −12 + 2 · 2 · 8 = 20. Since λ = 12(κ + δ), we
have λ = 5. Finally, ω is the negative self-intersection of the section corresponding to the fixed point p, which is just the
exceptional divisor lying over p in F tot

2 . It follows that ω = 1, and soW · F2 = 15 − 5 = 10.
Together, these intersection numbers show that the pullback of W is numerically equivalent to O X (15, 10). This

concludes the proof. �

Our next result shows that this ray generates an edge of the G-effective cone.

Proposition 4.2. O X (3, 2) lies on a boundary of CG(X).

Proof. Let L = O X (3, 2). It suffices to show that X ss(L ) ≠ X s(L ) = ∅. It is clear that X ss(L ) ≠ ∅, since the pullbacks of
all of the pointed Brill–Noether divisors are G-invariant sections of L ⊗n for some n.

To show that X s(L ) = ∅, we invoke the numerical criterion. Let (C, p) ∈ X . By change of coordinates, we may assume
that p = (0, 0, 0, 0, 1). Furthermore, we may assume that the tangent line to C at p is the line x0 = x1 = x2 = 0. Note that
the map

I C (2) → H0(P 1, O P 1(2) − 2p)
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given by restricting the quadric to the tangent line TpC is a linearmap. Since the codomain has dimension 1, there are at least
two linearly independent quadrics in C containing TpC . Again, by change of coordinates, we may assume that the tangent
spaces to these two quadrics at p both contain the plane x0 = x1 = 0. In addition, let V ⊆ I C (2) be the subspace of quadrics
containing TpC . Notice that, if Q ∈ V , then the restriction of Q to this plane is the union of TpC and a second line through p.
Consider the map

V → H0(P 2, O P 1(1) − p)

given by restricting this second line to TpC . As above, since the codomain has dimension 1, there must be a quadric in V
whose restriction to this plane is a double line. By change of coordinates, we may assume that the tangent space to this
quadric at p is the hyperplane x0 = 0. So, if

C =

−
0≤iα≤jα≤4

(ai0,j0,i1,j1,i2,j2)xi0xj0 ∧ xi1xj1 ∧ xi2xj2 ,

then ai0,j0,i1,j1,4,4 = ai0,j0,i1,j1,3,4 = ai0,j0,3,3,2,4 = a1,4,2,3,2,4 = 0. In particular, notice that ai0,j0,i1,j1,i2,j2 = 0 if

i0 + j0 + i1 + j1 + i2 + j2 > 15.

Under the embedding determined by L , we write (C, p) in terms of the basis of monomials of the form

x34
2∏

α=1

ai0α ,j0α ,i1α ,j1α ,i2α ,j2α .

Now, consider the 1-parameter subgroup with weights (−2, −1, 0, 1, 2). It acts on the monomial above with weight
6 + 2(12 − (i0 + j0 + i1 + j1 + i2 + j2)), which is negative when i0 + j0 + i1 + j1 + i2 + j2 > 15. By assumption, this
is not the case, so (C, p) /∈ X s(L ). Since (C, p) was arbitrary, it follows that X s(L ) = ∅. �

We now let L (0) = O X (3, 2),and L − be a line bundle lying in the chamber of CG(X) adjacent to L (0). By general
variation of GIT, we know that there is a morphism X ss(L −)//G → X ss(L (0))//G. Moreover, since the linearization L (0)
admits no stable points, the corresponding quotient is in some sense degenerate — it satisfies the categorical definition
of a quotient but not the geometric definition. We show that φ5 is equal to the composition of the natural map M5,1 99K
X ss(L −)//G with this map.

Proposition 4.3. The map X ss(L −)//G → X ss(L (0))//G is the same as the natural map X ss(L −)//G → M0,4 described in
the introduction.

Proof. It suffices to show that, if two points in X ss(L −) have the same image under the map X 99K M0,4, then they have
the same image under the map X ss(L −)//G → X ss(L (0))//G. To prove this, we show that both points lie in the same orbit
closure. As above, we assume that p = (0, 0, 0, 0, 1), and that C = Q1 ∩ Q2 ∩ Q3, where

Qα =

−
0≤i≤j≤4

aα,i,jxixj.

Also, as above,we assume that aα,i,j = 0 if i+j > 3+α. Note that, by acting on this curve by a diagonalmatrix,wemay further
assume that a3,3,3 = −a3,2,4. We also note that, since (C, p) ∈ X ss(L −), the terms a1,0,4, a2,1,4, a3,2,4 are all nonzero. This
can be verified using one-parameter subgroups.We can therefore scale all of the quadrics so that a1,0,4 = a2,1,4 = a3,2,4 = 1.

We now determine the image of (C, p) under the map to M0,4. Notice that the del Pezzo surface S is the intersection
Q1 ∩ Q2, and the osculating hyperplane to C at p is cut out by x0 = 0. Taking the intersection of S with this hyperplane and
projecting onto the tangent plane x0 = x1 = 0, x4 = 1, we obtain a curve in A2 cut out by the following equation:

x2(a1,1,1a1,2,2x2 − a1,1,1a2,2,3a1,1,3x23 + higher order terms).

Simplifying this, we see two components. TpC is cut out by x2 = 0, and R is cut out by

a1,2,2x2 − a2,2,3a1,1,3x23 + higher order terms.

We obtain the inverse image of R in the blow-up by considering this equation along with tx2 = ux3 in A2
× P 1. If t ≠ 0, we

can set t = 1 and substitute x2 = ux3 to obtain:

a1,2,2ux3 − a2,2,3a1,1,3x23 + higher order terms
= x3(a1,2,2u − a2,2,3a1,1,3x3 + higher order terms),

which intersects the exceptional divisor at the point u = 0. To blow up the resulting surface at this point, we repeat this
process and substitute u = u′x3 to obtain:

x3(a1,2,2u′
− a2,2,3a1,1,3 + higher order terms),

which intersects the exceptional divisor at the point u′
=

a2,2,3a1,1,3
a1,2,2

. We therefore see that, in the coordinates (t ′, u′),

the points of intersection of this P 1 with the strict transforms of R, E, and the tangent line to C at p are the points
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(a2,2,3a1,1,3, a1,2,2), (0, 1), and (1, 0) respectively. A similar calculation shows that the strict transform of C intersects the
exceptional divisor at the point (1, 1). We now show that every curve with the same ratio a2,2,3a1,1,3

a1,2,2
lies in the same orbit

closure.
Consider again the 1-parameter subgroup with weights (−2, −1, 0, 1, 2). The flat limit of (C, p) under this 1-parameter

subgroup is cut out by the following quadrics:

Q1 = x0x4 + a1,1,3x1x3 + a1,2,2x22,
Q2 = x1x4 + a2,2,3x2x3,

Q3 = x2x4 − x23.

Now, consider the image of these quadrics under the action of the diagonal matrix

diag(α−1, α, β, 1β−1).

The image is

Q1 = x0x4 + α2βa1,1,3x1x3 + αβ3a1,2,2x22,

Q2 = x1x4 +
β2

α
a2,2,3x2x3,

Q3 = x2x4 − x23.

Notice that, if a1,1,3 and a1,2,2 are nonzero, then you can choose values for α and β that make α2βa1,1,3 = αβ3a1,2,2 = 1.
This forces β2

α
a2,2,3 =

a2,2,3a1,1,3
a1,2,2

. We therefore see that our curve lies in the same orbit closure as the one cut out by the three
quadrics:

Q1 = x0x4 + x1x3 + x22,

Q2 = x1x4 +
a2,2,3a1,1,3

a1,2,2
x2x3,

Q3 = x2x4 − x23.

So all curves with the same such ratio are identified under themap X ss
→ X ss(L )//G. (A similar argument shows this result

to hold if either a1,1,3 = 0 or a1,2,2 = 0.) This completes the proof. �

Proposition 4.4. There is a birational contraction

p : M5,1 99K X ss(−)//G.

Proof. It suffices to exhibit amorphism p−1
: V → M5,1, whereV ⊆ X ss(−)/G(−) is openwith complement of codimension

≥ 2 and p−1 is an isomorphism onto its image. LetU ⊆ X ss(−) be the set of all moduli stable pointed curves (C, p) ∈ X ss(−).
Notice that the complement of U is strictly contained in the locus ∆ of singular curves, which is an irreducible hypersurface
in X ss(−). Thus, in the quotient, we have the containment (X ss(−)\U)// ⊂ ∆//G ⊂ X ss(−)//G, and ∆//G is irreducible.
Notice, furthermore, that both∆ andX ss(−)\U areG-invariant, so if (C, p) ∈ X s(−)\∆ (respectively, (C, p) ∈ X s(−)∩∆∩U),
then the orbit of (C, p) does not intersect ∆ (respectively, X ss(−)\U). Since this point is stable, this means that the image
of (C, p) is not contained in ∆//G (respectively, (X ss(−)\U)//G). Thus, the containments (X ss(−)\U)//G ⊂ ∆//G and
∆//G ⊂ X ss(−)//G are strict. It follows that the complement of U has codimension ≥ 2.

By the universal property of the moduli space, since U → Z is a family of moduli stable curves, it admits a unique map
U → Z → M5,1. This map is certainly G-equivariant, so it factors uniquely through a map U//G → M5,1. Since every
smooth complete intersection of 3 quadrics in P 4 is a canonical genus 5 curve, two such curves are isomorphic if and only
if they differ by an automorphism of P 4. It follows that this map is an isomorphism onto its image. �

This proposition places us in a setting where we may use the facts from birational geometry above. In particular, we see
that the map φ5 can be expressed as the composition of a birational contraction and a morphism.

We now consider the three boundary divisors onM0,4.

Proposition 4.5. The pointed Brill–Noether divisors BN1
5,(0,5), BN

1
4,(0,3), and BN2

6,(0,2,4) are each contained in the pullback by φ5

of boundary divisors on M0,4. (See Figs. 2–4.)

Proof. We first note that, by Riemann–Roch, BN1
5,(0,5) is the locus of pointed curves (C, p) such that p is a Weierstrass point

of C . Now, if (C, p) is an element of the Weierstrass divisor , then the osculating hyperplane to C at p vanishes to order 5 at
p. In terms of the intersection product on S, this means that (C · (TpC +R))p = 5. If C is not trigonal, then no line intersects C
in three points, so (C · TpC)p = 2. This means that (C · R)p = 3. In other words, the strict transforms of C and R pass through
the same point of the exceptional divisor. It follows that the Weierstrass divisor is contained in the pullback of the point
pictured in Fig. 2.
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C

R

E TpC

Fig. 2. Image of the Weierstrass divisor BN1
5,(0,5) .

E

R

C TpC

Fig. 3. Image of the pointed Brill–Noether divisor BN1
4,(0,3) .

E

C

R TpC

Fig. 4. Image of the pointed Brill–Noether divisor BN2
6,(0,2,4) .

Suppose that 2p + q + r is a g1
4 on C , ramified at p. By Riemann–Roch, there is a plane in P 4 containing q, r, and the

line TpC . This means that the line through q and r intersects the line TpC . Since S contains three points on this line, and S
is a complete intersection of quadrics, this line lies on S. It follows that the 5 g1

4 ’s on C that are ramified at p are cut out by
divisors on S of the form TpC + L, where L is a−1 curve on S that intersects TpC . If (C, p) ∈ BN1

4,(0,3), then there must be a−1
curve L on S, other than TpC , that passes through p. We see from this description that R is the union of L and another rational
curve passing through p. Since R is singular at p, its inverse image under the first blow-up contains the exceptional divisor
with multiplicity 2. It follows that this pointed Brill–Noether divisor is contained in the pullback of the point pictured in
Fig. 3.

Now, let (C, p) ∈ BN2
6,(0,2,4). By definition, there exists a g2

6 D on C with ramification sequence (0, 2, 4) at p. It follows
that D − 2p and K − D + 2p are both g1

4 ’s on C that are ramified at p. From the description above, we see that there are two
−1 curves L, L′ on S such that L + L′

+ 2TpC is a hyperplane section of S. We therefore see that R is the union of L, L′, and
TpC . Since R contains TpC as a component, this divisor is contained in the pullback of the point pictured in Fig. 4. �

These descriptions of pointed Brill–Noether divisors determine fundamental properties of the map φ5. In particular,

Theorem 4.6. BN1
4,(0,3) is the pullback by φ5 of an ample divisor on M0,4.

Proof. By Proposition 4.5, we know that BN1
4,(0,3) is contained in the pullback by φ5 of a boundary divisor ∆ onM0,4. Hence

φ∗

5∆ = BN1
4,(0,3) + E, where E is a sum of irreducible divisors onM5,1. By definition, each of these irreducible divisors maps

to the same point as BN1
4,(0,3), hence, by Proposition 2.3, either E = 0 or BN1

4,(0,3) generates an extremal ray of NE
1
(M5,1).

By Theorem 4.5 in [13], however, we know that BN1
4,(0,3) = BN1

5,(0,5) + BN1
3 , and thus BN1

4,(0,3) clearly does not lie on an

extremal ray of NE
1
(M5,1). It follows that BN1

4,(0,3) is the pullback by φ5 of an ample divisor onM0,4. �

Corollary 4.7. The Weierstrass divisor BN1
5,(0,5) generates an extremal ray of NE

1
(M5,1).

Proof. By Theorem 4.6, we know that BN1
5,(0,5) +BN1

3 is the pullback by φ5 of a point onM0,4. It follows that both irreducible

divisors map to the same point, and hence, by Proposition 2.3, they both generate extremal rays of NE
1
(M5,1). �

Corollary 4.8. BN2
6,(0,2,4) is numerically equivalent to a multiple of BN1

4,(0,3).

Proof. By [12], we know that BN2
6,(0,2,4) is numerically equivalent to a linear combination of BN1

5,(0,5) and BN1
3 . On the other

hand, if it is not numerically equivalent to a multiple of BN1
4,(0,3), then by the above argument it generates an extremal ray.

This would imply that BN2
6,(0,2,4) is linearly equivalent to a multiple of either BN1

5,(0,5) or BN
1
3 . But Proposition 2.3 shows that

neither of these divisors move, so this is impossible. �
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