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Abstract. We use tropical techniques to prove a case of the Gieseker-Petri
Theorem. Specifically, we show that the general curve of arbitrary genus does

not admit a Gieseker-Petri special pencil.

1. Introduction

A central object in the study of algebraic curves is the variety of linear series
on a curve. Given a smooth projective curve X, we write Grd(X) for the variety
parameterizing linear series of degree d and rank r on X. The nature of this variety
for general curves is the central focus of two of the most celebrated theorems in
modern algebraic geometry.

Brill-Noether Theorem. [GH80] If X is a general curve of genus g, then dim
Grd(X) = ρ = g − (r + 1)(g − d+ r). If ρ < 0, then Grd(X) is empty.

Gieseker-Petri Theorem. [Gie82] If X is a general curve, then Grd(X) is smooth.

These theorems differ from more classical results such as Riemann-Roch in that
they concern general, rather than arbitrary, curves. As such, the original proofs
due to Griffiths-Harris [GH80] and Gieseker [Gie82] make use of degeneration tech-
niques. These ideas were later refined by Eisenbud and Harris [EH83], giving a
second proof of both theorems. A subsequent proof, due to Lazarsfeld, avoids using
degeneration arguments by working instead with curves on a K3 surface [Laz86].

More recently, a team consisting of Cools, Draisma, Payne and Robeva provided
an independent proof of the Brill-Noether Theorem using techniques from tropi-
cal geometry [CDPR]. More specifically, they use the theory of divisors on metric
graphs, as developed by Baker and Norine in [BN07], to construct a Brill-Noether
general graph Γg with first Betti number g. Combining this with Baker’s Special-
ization Lemma [Bak08], which says that the rank of a divisor on a smooth curve
over a discretely valued field jumps under specialization to the dual graph of the
central fiber, they obtain a new proof of the Brill-Noether Theorem.

In this paper, we prove the r = 1 case of the Gieseker-Petri Theorem using a
similar approach. In other words, we show that G1

d(X) is smooth for the general
curve X of arbitrary genus. To do this, we use the same metric graph Γg that
appears in [CDPR]. This graph, depicted below, consists of g loops arranged in a
chain. Throughout, we assume that this graph has generic edge lengths – specifi-
cally, that the ratio `i

mi
for each i is not equal to the ratio of two positive integers

whose sum is less than or equal to 2g − 2. Given this, we prove the following:
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Theorem 1.1. The graph Γg does not admit a positive-rank divisor D such that
KΓg − 2D is linearly equivalent to an effective divisor.

v1 vg−1v0
vg

`1

m1

`g

mg

Figure 1. The graph Γg from [CDPR]

We show in Proposition 2.2 that the above theorem implies the rank one case of
the Gieseker-Petri Theorem. In particular, we interpret the smoothness of G1

d(X) at
a basepoint-free pencil W ⊂ H0(X,L) as a vanishing condition on H0(X,KX−2L).
We note that, for higher-rank linear series, the corresponding vanishing condition
concerns a certain Koszul cohomology group rather than a space of global sections.
It would be interesting to know whether it’s possible to detect the vanishing of
Koszul cohomology groups using tropical techniques. Such a theory, if developed,
could potentially be used not only to provide tropical proofs of known theorems,
such as the higher-rank cases of the Gieseker-Petri Theorem or Green’s Conjecture
for the general curve (see [Voi02] and [Voi05]), but also to shed light on open
questions like the Maximal Rank Conjecture.

Our result, together with that of [CDPR], provides strong evidence that the
graph Γg is Gieseker-Petri general in the sense that Grd(X) is smooth for any curve
X that specializes in a regular family to a curve with dual graph Γg. We mention
one other piece of evidence in support of this. In the case that ρ = 0, the variety
Grd(X) is zero-dimensional, and the Gieseker-Petri theorem simply says that it is
reduced. This latter fact follows from [CDPR], where it is shown that the graph
Γg admits precisely λ distinct divisors of degree d and rank r, where λ is the r-
dimensional Catalan number

λ := g!

r∏
k=0

k!

(g − d+ r + k)!
.

This paper is broken into three sections. In the next section, we discuss the basic
theory of linear systems on metric graphs. In the third and final section, we use
this theory to prove Theorem 1.1.

Acknowledgements: We would like to thank Eric Katz for reading an early
version of this paper.

2. Preliminaries

This section contains a short outline of the facts we will need concerning divisors
on metric graphs. The full theory is developed in [BN07] and [Bak08], which we
encourage the reader to consult for more details.
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2.1. Divisors and Equivalence. Given a metric graph Γ, we define the group
Div(Γ) of divisors on Γ to be the free abelian group on the points of Γ. Given a
divisor D =

∑
aipi ∈ Div(Γ), we define the degree of D to be the sum

∑
ai, and

we say that D is effective if all of the coefficients ai are nonnegative.
In the tropical world, the role of meromorphic functions on an algebraic curve

is played by piecewise linear functions on a metric graph. More precisely, given a
finite subdivision of Γ and a continuous function ψ on Γ whose restriction to each
edge of the subdivision is given by a linear function with integer slope, we define
ordp(ψ) to be the sum of the incoming slopes of ψ along edges containing the point
p ∈ Γ. A principal divisor on Γ is then any divisor of the form

div(ψ) :=
∑
p∈Γ

ordp(ψ)p

for some piecewise linear function ψ. In analogy with the case of algebraic curves,
we define the Picard group Pic(Γ) to be the quotient of Div(Γ) by the subgroup
of principal divisors. We say that two divisors D and D′ are equivalent, and write
D ∼ D′, if D −D′ is a principal divisor.

It is standard practice in combinatorics to refer to divisors on Γ as chip configu-
rations. In this language, a divisor D =

∑
aipi is represented by a stack of ai chips

at each point pi of the graph. We will naturally turn to this language in our proof
of Theorem 1.1.

2.2. Ranks of Divisors and Baker’s Specialization Lemma. Given a divisor
D on Γ, we say that D has rank r if r is the greatest integer such that D −
E is equivalent to an effective divisor for every effective divisor E of degree r.
Throughout, we will say that a divisor moves if it has positive rank.

Perhaps the most important property of divisors on metric graphs is their relation
to divisors on algebraic curves. Let R be a DVR with field of fractions K and residue
field k, and let X be a smooth projective curve over K. A strongly semistable
regular model of X is a regular scheme X over SpecR whose general fiber is X and
whose special fiber is a reduced union of geometrically irreducible smooth curves
meeting in nodes defined over k. Let Γ denote the metric graph corresponding to
the dual graph of Xk, where every edge is assigned length 1.

Each point of X(K) specializes to a smooth point of the special fiber, and hence
is associated to a well-defined vertex of Γ. Note that, if every component of the
central fiber is rational, then the degree of the relative dualizing sheaf on each
component is two less than the number of nodes, and hence the canonical divisor
on X specializes to

KΓ :=
∑
v∈Γ

(deg(v)− 2)v.

If K ′ is a finite extension of K, the variety X ×K K ′ may not be a strongly
semistable regular model of X ×K K ′, but this issue may be resolved by blowing
up the singularities of the central fiber. The dual graph of the special fiber of this
new model is isomorphic to Γ, but with edges subdivided into e segments, where e
is the ramification index of K ′ over K. Hence there is a well-defined map from the
K̄-points of X to the points of Γ. Extending this linearly defines a map on divisors
τ∗ : Div(XK̄) → Div(Γ). Moreover, this map respects linear equivalence, and
hence defines a map τ∗ : Pic(XK̄)→ Pic(Γ). The key point of this construction is
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Baker’s Specialization Lemma, which says that ranks of divisors are well-behaved
under this map.

Lemma 2.1. [Bak08] Let D be a divisor on XK̄ . Then r(τ∗(D)) ≥ r(D).

Proposition 2.2. Let X be a strongly semistable regular model with general fiber
X, and suppose that the central fiber has dual graph Γg. Then Theorem 1.1 implies
that G1

d(X) is smooth.

Proof. Let L be a line bundle on X and W ⊂ H0(X,L) be a 2-dimensional vector
space. By Proposition 4.1 in [ACGH85], it suffices to show that the cup-product
map

µW : W ⊗H0(X,KX − L)→ H0(X,KX)

is injective. If B is the base locus of W , then by the basepoint-free pencil trick
(see p. 126 in [ACGH85]), we see that ker(µW ) ∼= H0(X,KX − 2L + B). Letting
L′ = L−B, it therefore suffices to show that KX − 2L′ is not effective. By Lemma
2.1, we therefore have

r(τ∗L
′) ≥ r(L′) ≥ 1,

r(KΓg
− 2τ∗L

′) = r(τ∗(KX − 2L′)) ≥ r(KX − 2L′).

By Theorem 1.1, however, since τ∗L′ has positive rank, KΓg
− 2τ∗L′ is not linearly

equivalent to an effective divisor, and hence has negative rank. The result follows.
�

2.3. Reduced Divisors and Lingering Lattice Paths. A useful tool for work-
ing with divisors on metric graphs is the notion of reduced divisors. For a fixed
point p ∈ Γ, we say that an effective divisor D is p-reduced if the set of distances
from p to chips of D is lexicographically minimal among all effective divisors equiv-
alent to D. By definition, every effective divisor is equivalent to a unique p-reduced
divisor.

It is straightforward to characterize the vn-reduced divisors on Γg, and indeed
this is done in [CDPR]. Let γ̄j denote the jth loop of Γg. For each j > n, let
γj = γ̄j\{vj−1} be the corresponding left-punctured loop, and for each j ≤ n, let
γ′j = γ̄j\{vj} be the corresponding right-punctured loop, as pictured below. An
effective divisor D is vn-reduced if and only if each such cell contains at most one
chip of D.

γ′1

vn

γ′n γn+1 γg

v0
vg

Figure 2. Cell decomposition of the graph Γg (from [CDPR])

One of the main results of [CDPR] is a characterization of those divisors on Γg

that have rank r. Every effective divisor on Γg is equivalent to a v0-reduced divisor,
and every such a divisor consists of d0 chips at the vertex v0, together with at most
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one chip on every other loop. We may therefore associate to each equivalence class
the data (d0, x1, x2, . . . xg), where xi ∈ R/(`i +mi)Z is the distance from the chip
on the ith loop to vi−1 in the counterclockwise direction. (If there is no chip on
the ith loop, we write xi = 0.) The associated lingering lattice path is defined as
follows.

Definition 2.3. [CDPR] Let D be the v0-reduced divisor of degree d corresponding
to (d0, x1, . . . , xg). Then the associated lingering lattice path P in Zr starts at
(d0, d0 − 1, . . . , d0 − r + 1) with steps given by

pi − pi−1 =


(−1,−1, . . . ,−1) if xi = 0
ej if xi = (pi−1(j) + 1)m mod `i +mi

and both pi−1 and pi−1 + ej are in C
0 otherwise


where e0, . . . er−1 are the standard basis vectors in Zr.

They then prove:

Proposition 2.4. [CDPR] A divisor D on Γg has rank at least r if and only if the
associated lingering lattice path lies entirely in the open Weyl chamber

{y ∈ Zr|y0 > y1 > · · · > yr−1 > 0}.

In this paper, we are only interested in the case where r = 1, in which case the
lingering lattice path is simply a sequence of integers pi. The proposition above says
that a given divisor D moves if and only if pi > 0 for all i. It is shown in Proposition
3.10 of [CDPR] that the vn-reduced divisor equivalent to D has precisely pn chips
at vn.

3. Combinatorial Arguments

In this section, we prove Theorem 1.1. Our approach is via induction on g.
The base cases g = 1, 2, 3 follow from [CDPR], as Γg is Brill-Noether general.
Throughout, we will suppose that there exists a pair (D,E) of divisors on Γg such
that D moves, E is effective, and 2D + E ∼ KΓg . We will furthermore write
(p0, p1, p2, . . . , pg) for the (rank one) lingering lattice path associated to D.

Without loss of generality, we may assume that D and E are both v0-reduced.
Indeed, letting D′ and E′ be the v0-reduced divisors equivalent to D and E, we see
that 2D′+E′ ∼ 2D+E ∼ KΓg

. Moreover, we may assume that D is not supported
at any of the vertices vk for k ≥ 1. To see this, let v′k be the point on γ̄k a distance
of 1

2 (`k +mk) from vk. Setting D′ = D+ v′k − vk, we see that 2D′ ∼ 2D, and since

the kth step of the lingering lattice path associated to D is lingering, D′ moves if
and only if D does.

By assumption, there exists a continuous piecewise linear function ψ on Γg such
that 2D+E −KΓg = div(ψ). For each k, let ψk be the restriction of ψ to γ̄k. The
function ψ plays a pivotal role in the arguments that follow, and our first task is
to determine a few of its properties.

3.1. Properties of the Function ψ. We will use the following lemma and its
corollaries.

Lemma 3.1. Consider the subgraph Γg−k obtained by removing the right-punctured
loops γ′1, . . . , γ

′
k. For each k ≥ 1, we have deg(2D+E)|Γg−k

= ordvk(ψk)+2(g−k).
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Proof. Let D′ and E′ be the restriction of D and E to Γ\Γg−k, and let ψ′ be the
restriction of ψ to Γk := (Γ\Γg−k) ∪ {vk}. For all p ∈ Γk, we have

ordp(ψ′) =

{
ordvk(ψk) if p = vk;
ordp(ψ) otherwise.

Therefore, div(ψ′) = 2D′+E′+ordvk(ψk)vk−KΓk
. We have the following equations:

deg (2D′ + E′ −KΓk
) + ordvk(ψk) = 0

deg
(
2D + E −KΓg

)
= 0

deg
(
KΓg

)
− deg (KΓk

) = 2(g − k)

It follows that deg(2D+E)− deg(2D′+E′) = ordvk(ψk) + 2(g− k). By definition,
the left hand side is precisely deg(2D + E)|Γg−k

. �

As a first consequence, we obtain bounds on the incoming slopes of ψk at each
of the vertices.

Corollary 3.2. For all k < g, we have 2(k − g) ≤ ordvk(ψk) < 0.

Proof. The lefthand inequality follows directly from Lemma 3.1. To see the right-
hand inequality, note that in the proof of Lemma 3.1, 2D′+E′+ordvk(ψk)vk ∼ KΓk

.
In addition, the lingering lattice path associated to D′ is (p0, p1, . . . , pk), so D′

moves. If ordvk(ψk) ≥ 0, then E′ + ordvk(ψk)vk is effective, and thus the pair
(D′, E′ + ordvk(ψk)vk) on Γk contradicts our inductive hypothesis. �

Next, we see that the possible distributions of chips of D and E is quite limited.

Corollary 3.3. For all k < g, there is at least one chip of D or E on γk\{vk}.

Proof. Suppose that there is some positive integer k < g such that neither D nor
E has a chip on γk\{vk}. Let x be the slope of ψ on the longer edge of γ̄k. The
slope of ψ on the shorter edge of γ̄k must then be x+ ordvk(ψk).

v
k

v
k-1

(x)

l
k

m
k

(x+ord
vk
(ψ

k
))

Figure 3. The slopes of ψ (outside the loop) and distances (inside
the loop) on γ̄k

We have the following equation:

x`k + (x+ ordvk(ψk))mk = 0

Which gives

(1)
`k
mk

=
x+ ordvk(ψk)

−x
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The numerator and the denominator of the right hand side are integers which add
up to ordvk(ψk). But, by Corollary 3.2, we have |ordvk(ψk)| ≤ 2(g− k) ≤ 2(g− 1),
contradicting the genericity condition on the edge lengths of Γg. �

Corollary 3.4. Neither D nor E has a chip on γg.

Proof. By corollary 3.2, ordvg−1
(ψg−1) ≤ −1. By Lemma 3.1, it follows that (2D+

E) has at most 1 chip on γ̄g, which means D has no chip on γg.
Suppose that E has a chip on γg. The point containing this chip and vg−1 divide

γ̄g into two edges. Let d1, d2 denote their lengths, and x1, x2 denote the slopes of ψ
on these edges. We have d1x1 +d2x2 = 0. Since d1 and d2 are positive, this implies
that either x1 = x2 = 0 or x1 and x2 are of opposite sign. Given that x1 and x2

are two consecutive integers, neither case is possible. �

Finally, we see that the non-lingering steps in the lingering lattice path determine
the incoming slopes of ψk precisely.

Proposition 3.5. Let k be an integer in the range 1 < k < g. Suppose that D has a
chip on γk, E does not, and furthermore, pk = pk−1 +1. Then 2pk +ordvk(ψk) = 0.

Proof. Let p be the point on γk containing a chip of D. Since pk = pk−1 + 1, p is a
distance of pk−1mk from vk in the counterclockwise direction. Suppose this point
lies on the longer arc of γ̄k. The case where p lies on the shorter arc is similar.

Let d be the distance between vk and p in the counterclockwise direction, and
write x for the slope of ψ on this arc. Then the slope of ψ on the arc from p to
vk−1 in the counter clockwise direction must be x − 2, and the slope of ψ on the
arc from vk−1 to vk in the counter clockwise direction must be x+ ordvk(ψk) (see
figure 4).

v
k

v
k-1

(x)

2

(x-2)

m
k

dl
k
-d

(x+ord
vk
(ψ

k
))

Figure 4. Slopes of ψ (outside the loop) and distances (inside the
loop) on γ̄k

We have the following equation:

xd+ (x− 2)(`k − d) + (x+ ordvk
(ψk))mk = 0,

which gives
`k
mk

(x− 2) + 2
d

mk
+ ordvk(ψk) + x = 0.

Note that d = pk−1mk + n(`k +mk) for some non-negative integer n, so

`k
mk

(x− 2) + 2pk−1 + 2n
`k
mk

+ 2n+ ordvk(ψk) + x = 0,

or

(2)
`k
mk

(x− 2 + 2n) + 2pk−1 + 2n+ ordvk(ψk) + x = 0.
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Assuming that x 6= 2− 2n, we have:

`k
mk

=
2pk−1 + 2n+ ordvk

(ψk) + x

2− x− 2n
.

The numerator and the denominator of the right hand side are integers that add
up to 2pk−1 + ordvk(ψk) + 2 = 2pk + ordvk(ψk). On the other hand, it is clear that
pk ≤ g − 1, so 0 < 2pk ≤ 2g − 2. Also, by Corollary 3.2, 2(k − g) ≤ ordvk(ψk) < 0.
Adding these inequalities gives 2(k − g) < 2pk + ordvk(ψk) < 2g − 2, which leads
to |2pk + ordvk(ψk)| < 2g − 2, contradicting the genericity condition on the edge
lengths of Γg.

Hence, x = 2−2n. Then equation 2 becomes 2pk−1+2n+ordvk(ψk)+2−2n = 0,
or 2pk + ordvk(ψk) = 0. �

3.2. Proof of the Main Theorem. We now continue the proof of our original
claim. As in the proof of Corollary 3.2, our main approach is to remove loops from
the graph Γg, thereby obtaining a contradiction to the inductive hypothesis.

Proof of Theorem 1.1. First, suppose that the lingering lattice path associated to
D has a lingering step. In other words, that pk = pk−1 for some positive integer k.
By definition, D has a chip on γk. It follows from Corollary 3.4 that k 6= g.

Remove γk from Γg and identify vk with vk−1 to obtain a new graph Γg−1 (See
Figure 5). We may define a continuous piecewise linear function ψ′ on Γg−1 such
that on every edge of Γg−1, the slope of ψ′ is the same as the slope of ψ. In the
remainder of the proof, we will call ψ′ the modified restriction of ψ to the new
graph - in this case Γg−1.

1
1

2

1

2
2

2

1

2

1

v
k+1

v
kv

k-1

v
k-1

v
k-2

v
k-2

v
k+1

Figure 5. Removing γk

By the definition of ψ′, for all p ∈ Γg−1,

ordp(ψ′) =

{
ordvk−1

(ψk−1) + ordvk(ψk+1) if p = vk−1;
ordp(ψ) otherwise.

Therefore, letting D′ and E′ be the restriction of D and E to Γg−1, we see that
div(ψ′) = 2D′ + E′ −KΓg−1

+ zvk−1 for some integer z.
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We have the following equations:

deg
(
2D′ + E′ −KΓg−1

)
+ z = 0

deg
(
2D + E −KΓg

)
= 0

deg
(
KΓg

)
− deg

(
KΓg−1

)
= 2

deg(2D + E)− deg(2D′ + E′) = 2 or 3

It easily follows that z = 0 or 1. Note that E′ is effective, as is E′ + zvk−1.
On the other hand, note that pk = pk−1, so the lingering lattice path associated
to D′ is (p0, p1, . . . , pk−1, pk+1, . . . , pg). Thus, D′ moves. It follows that the pair
(D′, E′ + zvk−1) on Γg−1 contradicts our inductive hypothesis.

It remains to prove the theorem in the case where the lingering lattice path
associated to D has no lingering steps. By Corollaries 3.3 and 3.4, every cell γk for
k < g admits one of the following descriptions:

(1) (Type-(E) loop) The cell contains a chip of E, but not D.
(2) (Type-(D) loop) The cell contains a chip of D, but not E.
(3) (Type-(D,E) loop) The cell contains chips of both D and E.

We break this into two cases:
Case 1: There exists a type-(E) loop next to a type-(D,E) loop.
Suppose that γk and γk+1 form such a pair of loops. It follows from Corollary

3.4 that k < g−1. Remove both γk and γk+1 and identify vk+1 with vk−1 to obtain
a new graph Γg−2. Let D′, E′ be the restrictions of D,E to Γg−2, and ψ′ be the
modified restriction of ψ to Γg−2. It is clear that E′ is effective.

1

1

2

1

2

v
kv

k-1

v
k-2

v
k+1

1

v
k+2

1

v
k-1

v
k-2

1

v
k+22

Figure 6. Removing γ̄k and ¯γk+1

By the definition of ψ′, for all p ∈ Γg−2,

ordp(ψ′) =

{
ordvk−1

(ψk−1) + ordvk+1
(ψk+2) if p = vk−1;

ordp(ψ) otherwise.
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In a similar way to the case above, we see that div(ψ′) = 2D′+E′−KΓg−2
+zvk−1

for some integer z. We have the following equations:

deg
(
2D′ + E′ −KΓg−2

)
+ z = 0

deg
(
2D + E −KΓg

)
= 0

deg
(
KΓg

)
− deg

(
KΓg−2

)
= 4

deg(2D + E)− deg(2D′ + E′) = 4

It easily follows that z = 0, which means 2D′ + E′ ∼ KΓg−2
. On the other

hand, note that pk+1 = pk−1, so the lingering lattice path associated to D′ is
(p0, p1, . . . , pk−1, pk+2, . . . , pg). Thus, D′ moves. As before, we see that the pair
(D′, E′) on Γg−2 contradicts our inductive assumption.

Case 2: There is no type-(E) loop next to any type-(D,E) loop.
If there is no type-(D) loop, then the cells γk for k < g are either all type-(E)

or all type-(D,E). The former gives pg = p0 − g ≤ −1, while the latter gives
deg(2D + E) = p0 + 3(g − 1) > 2(g − 1), both of which are impossible.

If after the last type-(D) loop γk, there is no type-(D,E) loop, we have pj =
pj−1 − 1 for all j > k. Hence pg = pk + k − g. By Corollary 3.2 and Proposition
3.5, however, we have 2pk = −ordvk(ψk) ≤ 2(g − k). It follows that pg ≤ 0,
contradicting our assumption that D moves.

Otherwise, the last type-(D) loop γk is followed by g − k − 1 type-(D,E) loops
(g−k−1 > 0). By Lemma 3.1, ordvk(ψk)+2(g−k) ≥ 3(g−k−1). By Proposition
3.5, however, 2pk + ordvk(ψk) = 0. It follows that 2pk ≤ k + 3 − g, but this is
impossible because k < g − 1 and 2pk ≥ 2.

Therefore, the graph Γg does not admit a positive-rank divisor D such that
KΓg

− 2D is linearly equivalent to an effective divisor.
�
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