MA123 — E Exam 2	lem. (Calculus	Spring 20 2018-3-8		Name:		Solut	lars		_ Sec.: _	
Do not remove You may use as System (CAS), allowed.	n ACT-	approved	calculator	during tl	ne exam, b	out I	NO calc	ulator	with a	Compute	er Algebra
The exam constants answer question this page. For eanswer. It is your second to the correct, your	ns on the each mu our resp	he back of iltiple choi oonsibility	this page ce question	, and rec n, you wi	ord your a ll need to	ansv fill i	vers to n the ci	the mu	ıltiple o	choice que	estions on
		•	(a	b (c d (e					
You have two h	ours to	do this ex	kam. Pleas	e write y	our name	and	section	numb	er on t	his page.	
				GOOD	LUCK!						
	3.	(a) (b)	(c) (d)	e	12.	a) (b) (c (d	d e		
	4.	(a) (b)	c d	e	13.	a) (b) (c) (c	(e)		
	5.	(a) (b)	(c) (d)	e	14.	(a)) (b) ((c)	i) (e)		
	6.	(a) (b)	(c) (d)	(e)	15.	(a)) (b) ($\stackrel{\frown}{\bigcirc}$) (e)		
	7.	(a) (b)	(c) (d)	(e)	16.	(a) (b) (c) (d			
	8.	(a) (b)	(c) (d)	e	17.	(a)	(b) (b)	$\begin{array}{c} \bullet \\ \bullet \\ \hline \\ \bullet \\ \end{array}$	l) (e)		
	9.	(a) (b)	0 0	\bigcirc				\sim			
			(c) (d)	(e)	18.	(a)	(b) (c) (d	(l) (e)		
	10.	(a) (b)	(c) (d)	(e)	19.	(a)	(p) (c) (d	(e)		
	11.	(a) (b)	(c) (d)	e	20.	a	b (c (d) e		
				For grad	ding use:						
Mult	tiple C	hoice	Short A	nswer							
							Total				
(number ri	ght) (5	points each)	(out of 10]	points)				(out	of 10	0 points	

Spring 2018 Exam 2 Short Answer Questions

Write answers on this page. Your work must be clear and legible to be sure you will get full credit.

- 1. Let $H(x) = (x^2 + f(x))^3$. Given that f(1) = -4 and f'(1) = 6, find H'(1). Clearly circle your final answer. Rule

 H'(x) = $3(x^2 + f(x))^3(2x + f'(x))$ H'(1) = $3(1^2 + f(1))^3(2(1) + f'(1))$ = $3(1^2 + f(1))^3(2(1) + f'(1))$
- 2. The length of a rectangle is increasing at a rate of 3 cm/min and its width is increasing at a rate of 10 cm/min. When the length is 15 cm and the width is 6cm, how fast is the area of the rectangle increasing? (Show appropriate calculus steps clearly and circle) your final answer.)

$$A = L \cdot W$$

$$\frac{dA}{dt} = L \frac{dW}{dt} + \frac{dL}{dt} W$$

$$\frac{dA}{dt} = 15 \cdot 10 + 3 \cdot 6 = 150 + 18 = 168 \frac{\text{cm}^2}{\text{min}}$$

Name:	
Name:	
_ ,	

Multiple Choice Questions

Show all your work on the page where the question appears. Clearly mark your answer on the cover page on this exam.

3. For the function $f(x) = \ln(7x^3 + 2x^2 + 3x + 17)$, find the equation of the tangent line to the graph of f at x = 0.

Possibilities:

(a) $y = \frac{3}{17}x + \ln(17)$

(b)
$$y = \frac{21x^3 + 4x^2 + 3x}{7x^3 + 2x^2 + 3x + 17} + \ln(17)$$

(b)
$$y = \frac{1}{7x^3 + 2x^2 + 3x + 17} + \ln(14)$$

(c) $y = \ln(17)x + 3$

f'(x) = 1 7x3+7x2+34+17 (21x3+4x+3)

(d) y = 17

(e)
$$y = \frac{17}{3}x + \ln(17)$$

4. Find the derivative, f'(x), if $f(x) = \sqrt[7]{6x^3 + x^2 + 2x + 7}$. $= (6 \times 3 + x^2 + 2 \times 4 + 7)^{1/2}$

Possibilities:

$$f'(x) = \frac{1}{2}(6x^3 + x^2 + 2x + 7)^{-6/7}$$

 $\cdot (18x^2 + 2x + 7)$

(a)
$$(1/7)(6x^3 + x^2 + 2x + 7)(18x^2 + 2x + 2)$$

(b)
$$\sqrt[7]{18x^2 + 2x + 2}$$

(c)
$$(1/7)(6x^3 + x^2 + 2x + 7)^{-1/7}$$

(d)
$$(1/7)(6x^3 + x^2 + 2x + 7)^{-6/7}(18x^2 + 2x + 2)$$

(e)
$$\frac{\sqrt[7]{18x^2 + 2x + 2}}{\sqrt[7]{6x^3 + x^2 + 2x + 7}}$$

5. Find the derivative, f'(x), if $f(x) = e^{8x+3} + 20x + 60$.

(a)
$$(8x+3)e^{8x+2} + 20$$

(b)
$$\frac{8}{8x+3} + 20$$

(c)
$$e^8 + 20$$

(d)
$$\ln(8x+3) + 80$$

(e)
$$8e^{8x+3} + 20$$

6. Suppose $F(x) = g(x) \cdot h(x+2)$. If g(0) = 9, g'(0) = 4, h(0) = 3, h'(0) = 8, h(2) = 5, and h'(2) = 6, find F'(0).

Possibilities:
$$F'(x) = g'(x) \cdot h(x+z) + g(x) \cdot h'(x+z) \cdot 1$$

(a) 60

(b) 84
$$F(a) = g'(a) \cdot h(z) + g(a) \cdot h'(z)$$

(c) 74

= 4.5+9.6

(d) 35 (e) 128

- 20+54=74
- 7. Suppose g(5) = 4 and g'(5) = 6. Find F'(5) if

$$F(x) = \frac{x^3}{g(x)}$$

Possibilities:

Possibilities:
(a)
$$-\frac{225}{8}$$

(b) $\frac{3}{2}$
 $+(x) - g(x) \cdot 3x^2 - x^3 \cdot g'(x)$
 $-(g(x))^7$

- (b) $\frac{3}{2}$
- (c) $\frac{225}{8}$
- (d) $-\frac{225}{9}$
- (e) -18

$$F'(s) = \frac{g(s) \cdot 3(s)^{2} - (s)^{3} \cdot g'(s)}{(g(s))^{2}} + \frac{4 \cdot 7s - 12s \cdot 6}{4^{2}}$$

$$= -\frac{450}{16} = -\frac{225}{8}$$

8. Suppose $H(x) = f(x^2 - 15)$. If f(2) = 9, f'(2) = 4, f(-11) = 8, and f'(-11) = 3, then find H'(2).

(a) 3
$$H(x) = f(x^2 - 1S) \cdot 2x$$

- (b) 36
- $H'(2) = f'(2^2 15) \cdot 2(2)$ (c) 16
- (d) -44
- = [(-11).4 = 3.4 = 12 (e) 12

9. Suppose $F(x) = e^{g(x)}$. If g(9) = 4 and g'(9) = 3, find F'(9).

Possibilities:

(a)
$$12e^3$$

(b)
$$3e^3$$

(c)
$$4e^3$$

(d)
$$3e^4$$

(e)
$$e^4$$

$$F'(x) = g'(x) e^{g(x)}$$

 $F'(9) = g'(9) e^{g(9)}$

10. For the function $f(x) = \begin{cases} x^2 - 4 & x < 10 \\ x^3 - 7 & 10 \le x < 20, \text{ find the slope of the tangent line to the graph of } f(x) \end{cases}$ Use this one

f'(18) = 3(18) = 972

Possibilities:

(c)
$$\frac{1}{54}\sqrt{27}$$

11. Find the derivative, f'(x), if $f(x) = \ln(\ln(7+2x))$.

P(A)= 3x3

(a)
$$\frac{1}{\ln(\ln(7+2x))} \cdot \frac{1}{\ln(7+2x)} \cdot \frac{2}{7+2x}$$
(b)
$$e^{\frac{2}{7+2x}}$$

$$\frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}}$$

$$\sqrt{2} = \frac{\sqrt{2}}{\sqrt{2}}$$

(b)
$$e^{\frac{2}{7+2x}}$$

(b)
$$e^{\frac{2}{7+2x}}$$

(c) $\frac{1}{\ln(7+2x)} \cdot \frac{2}{7+2x}$

(d)
$$\frac{1}{2}$$

(e)
$$\left(\frac{2}{7+2x}\right)e^{\ln(7+2x)}$$

12. If $f(x) = 8x^7 + 3x^5 + 2x$ then find the third derivative f'''(x):

Possibilities:

(a)
$$2744x^7 + 375x^5$$

(b)
$$1680x^4 + 180x^2 + 13x$$

(c)
$$336x^5 + 60x^3$$

(d)
$$\frac{56x^6 + 15x^4 + 2}{x^2}$$

(e)
$$1680x^4 + 180x^2$$

$$f''(x) = 336 \times 5 + 60 \times 3$$

13. If $f(x) = (17x + 31)^{22}$ then f''(x) =

Possibilities:

(a)
$$22^2 (17)^{22} (17x + 31)$$

(c)
$$22(17x+31)^{21}$$

(d)
$$22(21) (17x + 31)^{20} (17)^2$$

(e) 0

 $f'(x) = -40.9 \times ^{-41} = -360 \times ^{-41}$

14. Find the derivative, f'(x), of $f(x) = \frac{9}{x^{40}} = 9 \times \frac{100}{100}$

Possibilities:

(a)
$$-360x^{-41}$$

(b)
$$360x^{39}$$

(c)
$$-40x^{-41}$$

(d)
$$-40x^{-39}$$

(e)
$$9/(40 x^{39})$$

6

15. If an amount of x dollars is invested at 5% interest compounded continuously, and at the end of 2 years the value of the investment is \$6000, find x.

Possibilities:

$$6000 = P(z) = \times e^{.05(z)} = \times e^{0.1}$$

16. A bacteria culture starts with 2000 bacteria and doubles after 11 hours. If we express the number of bacteria after t hours as $y(t) = a \cdot e^{kt}$, find the value of k.

(a)
$$11/\ln(2)$$

(c)
$$\ln(2)/\ln(11)$$

(e)
$$\ln(2)/11$$

17. A sphere is growing so its volume is increasing at a rate of 81 cubic feet per minute. At what rate is the radius changing when its radius is 3 feet?

Possibilities:

- (a) $\frac{81}{36\pi}$ feet per minute
- (b) $\frac{108\pi}{3}$ feet per minute
- (c) $\frac{36\pi}{81}$ feet per minute
- (d) $\frac{81}{12\pi}$ feet per minute
- (e) 2916π feet per minute

$$81 \cdot \frac{3}{4} \cdot \frac{1}{127} = \frac{dr}{dt}$$

$$\frac{81}{367} \text{ feet per}_{min} = \frac{dr}{dt}$$

18. A street light is at the top of a 17 foot tall pole. A child who is 4 feet tall runs away from the pole with a speed of 7ft/sec along a straight path. How fast is the tip of his shadow moving when he is 49 feet from the base of the pole?

Possibilities:

- (a) $\frac{119}{49}$ feet per second
- (b) $\frac{119}{13}$ feet per second
- (c) $\frac{119}{4}$ feet per second
- (d) $\frac{28}{17}$ feet per second
- (e) $\frac{343}{17}$ feet per second

$$d'(+) = 7$$

$$\frac{2(4)-d(4)}{2(4)} = \frac{4}{17}$$

$$172(+)-17d(+)=42(+)$$

$$132(+)=17d(+)$$

(4) 13l'(t) = 17d'(t) $l'(t) = \frac{17}{3}(7)$

= 119 feet per second

19. The graph of y = f(x) is shown below. What is the maximum value of f(x) on the interval [-3, 4]?

Possibilities:

- (a) 4
- (b) 2

- (d) -1
- (e) 0

20. Find the minimum value of $g(t) = t^3 - 48t + 50$ on the interval [-2, 5].

Possibilities:

- (a) 138
- (b) 178

$$(c) -65$$
 $(d) -78$

(e) -36

Find critical points, when g'(t)=0

Check critical point & endpoints

$$g(4) = 4^3 - 48(4) + 50 = -78 + minimum$$

 $g(-2) = (-2)^3 - 48(-2) + 50 = 138$
 $g(5) = 5^3 - 48(5) + 50 = -65$

$$g(-2) = (-2)^2 - 48(-2) + 50 = 138$$

Some Formulas

1. Areas:

- (a) Triangle $A = \frac{bh}{2}$
- (b) Circle $A = \pi r^2$
- (c) Rectangle A = lw
- (d) Trapezoid $A = \frac{h_1 + h_2}{2} b$

2. Volumes:

- (a) Rectangular Solid V = lwh
- (b) Sphere $V = \frac{4}{3}\pi r^3$
- (c) Cylinder $V = \pi r^2 h$
- (d) Cone $V = \frac{1}{3}\pi r^2 h$