Maple computations
> restart;
> eqns:=x = s*t+r*sqrt(1-t^2), y = (1-s)*sqrt(1-t^2)+r*t;
> sol:=solve({eqns},{t, sqrt(1-t^2)});
A parameterization of the locus of C is obtained by joining together the parameterizaions of the two loci.
> c1 := (r,s,t)->s*[t,0]+(1-s)*[0,sqrt(1-t^2)]+r*[sqrt(1-t^2),t];
> c2 := (r,s,t)->s*[t,0]+(1-s)*[0,-sqrt(1-t^2)]+r*[-sqrt(1-t^2),t];
>
p := proc(r,s,t)
if t >=0 and t<= 1/2 then c1(r,s,1-4*t) elif
t> 1/2 and t <= 1 then c2(r,s,4*t-3) fi end;
>
>
locus := proc(r,s)
plot([seq(p(r,s,i/100),i=0..100)],scaling=constrained) end;
> locus(1,1);
>
> rhs(sol[1])^2+rhs(sol[2])^2=1;
>
>
tri := proc(r,s,t)
if t >=0 and t<= 1/2 then plots[polygonplot]([c1(r,s,1-4*t),[1-4*t,0],
[0,sqrt(1-(1-4*t)^2)]],color=turquoise) elif
t> 1/2 and t <= 1 then plots[polygonplot]([c2(r,s,4*t-3),[4*t-3,0],
[0,-sqrt(1-(4*t-3)^2)]],color=turquoise) fi end:
seg := proc(r,s,t)
if t >=0 and t<= 1/2 then plot([[1-4*t,0],
[0,sqrt(1-(1-4*t)^2)]],color=red,thickness=3) elif
t> 1/2 and t <= 1 then plot([[4*t-3,0],
[0,-sqrt(1-(4*t-3)^2)]],color=red,thickness=3) fi
end:
>
drawlocus := proc(r,s)
local frame,n,pts,i,movie,loc;
pts:=[seq(p(r,s,i/100),i=0..100)];
loc:= plot(pts,color=magenta,thickness=3):
frame := (r,s,t)->plots[display]([plottools[disk](p(r,s,t),.05,color=green),seg(r,s,t),loc,tri(r,s,t)]);
movie :=[seq(frame(r,s,i/100),i=0..100)];
plots[display](movie,insequence=true,scaling=constrained);
end:
> drawlocus(0,1/2);
>
frame1 := proc(r,s)
local frame,n,pts,i,movie,loc;
pts:=[seq(p(r,s,i/100),i=0..100)];
loc:= plot(pts,color=magenta,thickness=3):
frame := (r,s,t)->plots[display]([seg(r,s,t),loc,plottools[disk](p(r,s,t),.05,color=green),tri(r,s,t)]);
plots[display](frame(r,s,0),scaling=constrained);
end:
>
> f := w->frame1(r(evalf(w)),s(evalf(w)));
> drawlocus(1,2);
Calculations made in an attempt to loc ate the foci of this ellipse.
> eq:=(r*y-x+s*x)^2/((r^2-s+s^2)^2)+(x*r-s*y)^2/((r^2-s+s^2)^2) = 1;
> A := matrix(2,2,[s-1,r,r,-s]);
> eigs:=linalg[eigenvectors](A);
> u:= op(eigs[1][3]);v:=op(eigs[2][3]);
>
>
To compute the Foci of the ellipse, note that the ellipse
is the image of the circle
under the linear transformation defined by the matrix
The eigenvectors and eigenvalues of A are
,
, and
,
. Since A is symmetric, we know the eigenvectors are perdicular and form the principal axes of the ellipse. The eigenvalues (in absolute value) are the major semi-axis
in the director of v and minor semi-axis
in the direction of u. So the foci are
and
. Note that the ellipse is a circle exactly when
, that is when s = 1/2 and r = 0.
>
M := (r,s)->1/2+sqrt((2*s-1)^2+4*r^2)/2;
m :=(r,s)-> abs(-1/2+sqrt((2*s-1)^2+4*r^2)/2);
uvec := (r,s)->[(-1/2+1/2*sqrt((2*s-1)^2+4*r^2)+s)/r, 1];
vvec:=(r,s)->[(-1/2-1/2*sqrt((2*s-1)^2+4*r^2)+s)/r, 1];
F1 := (r,s)->sqrt(M(r,s)^2-m(r,s)^2)/(uvec(r,s)[1]^2+uvec(r,s)[2]^2)*uvec(r,s);
F2 := (r,s)->-sqrt(M(r,s)^2-m(r,s)^2)/(uvec(r,s)[1]^2+uvec(r,s)[2]^2)*uvec(r,s);
>
locuswithfoci := proc(r,s)
local pl1,pl2,pl3,f1,f2;
pl1:= plot([seq(p(r,s,i/100),i=0..100)],scaling=constrained);
pl2 := plottools[disk](convert(evalf(F1(r,s)),list),.1,color=yellow);
pl3 := plottools[disk](convert(evalf(F2(r,s)),list),.1,color=yellow);
plots[display]([pl2,pl3,pl1],scaling=constrained);
end;
> plot([F1(1,1),F2(1,1)]);
Plotting error, empty plot
> locuswithfoci(3,1);
>
drawlocus2 := proc(r,s)
local frame,n,pts,i,movie,loc;
pts:=[seq(p(r,s,i/100),i=0..100)];
loc:= plot(pts,color=magenta,thickness=3):
if s <> s^2+r^2 and (r <>0 or s<>1/2) then
loc := loc,
plottools[disk](convert(evalf(F1(r,s)),list),.05,color=yellow),
plottools[disk](convert(evalf(F2(r,s)),list),.05,color=yellow) fi;
frame := (r,s,t)->plots[display]([plottools[disk](p(r,s,t),.05,color=green),
plot([evalf(F1(r,s)),p(r,s,t),evalf(F2(r,s))],color=blue),seg(r,s,t),loc,tri(r,s,t)]);
movie :=[seq(frame(r,s,i/100),i=0..100)];
plots[display](movie,insequence=true,scaling=constrained);
end:
>
> drawlocus2(1,2);
>