Vector Valued Functions and Motion in Space I

T,B,andN: LetP(t) = x(t)i +y(t)j +z(t)k, a<t < b, be the position vector describing the motion
in the space of a particle. Then
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Formulas for Integration in Vector Fields I

Line Integrals: The line integral of a continuous functidiix,y,z) over a space curve parametrized
byT(t) =g(t)i+h(t)] +k(t)k, a<t <bis given by
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Green'’s Theorems: If F = M(x, y)T+ N(x,y)j is a 2-dimensional vector field then:
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Functions of Two or More Variables and Their Derivatives I

Gradient and
Directional Derivative:

Let f(x,y,z) be a function differentiable throughout some regidm the space con-
taining a pointP(xo, Yo, ). Thegradient of f atP is the vector
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If U is a unit vector, then thdirectional derivative of f atP in the direction ofu is

(Daf)e = (Of)p-0.

Tangent Plane and
Normal Line:

The eq. of the tangent planeRx, yo, Zp) on the level surfacé(x,y,z) = cis:
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The eq. of normal line of the surfaceRis:
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Critical Points:

Let f(x,y) be a continuous function of two independent variables. The points where

af—af—o and the ones where ﬂ or ﬂ
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are calleccritical points of f(x,y).

Local Max & Min Test:

Let P be a critical point off (x,y), then
e f has docal maximum atP if
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o f has asaddle pointatP if
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Multiple Integrals I

Masses, etc.: If &= 03(X,Y,2) is the density function of an object occupying a regibim space, then
the mass, the first moments, the center of mass, and the second moments are given by

the following formulas:
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NOTE: similar (even though simplérformulas hold in the case of an object in the
xy-plane.

2:

Jacobians: Suppose that the regida in the uvwspace is transformed one-to-one into the region
D in thexyzspace by differentiable equations of the form

X=g(u,v,w), y = h(u,v,w), z=K(u,v,w)

under mild assumption@lways met in this exahones has that
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J=J(u,v,w) = det 9 9y 9 = Jacobian determinant
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NOTE: a similar (even though simplerformula holds in the case of a one-to-one
transformation between the~plane into thexy-plane.

Cylindrical Coordi- The following are selected equations relating cartesian and cylindrical coordinates:

nates:
x=rcosd, y=rsinB, z=z X+y=r2

Here 0< 0 < 21t
The Jacobian of this transformationdig, 6,z) =r.

Spherical Coordinates: The following are selected equations relating cartesian and spherical coordinates:

X = psing cosh, y = psind sing, Z=pcosy,

X+y+Z2=p°  and tarezi—(/.

Here 0< ¢ <mand 0< 6 < 21t
The Jacobian of this transformationlig, 8, ¢) = p?sing.




