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Abstract We discuss linear series on tropical curves and their relation to classical
algebraic geometry, describe the main techniques of the subject, and survey some
of the recent major developments in the field, with an emphasis on applications to
problems in Brill–Noether theory and arithmetic geometry.
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1 Introduction

Algebraic curves play a central role in the field of algebraic geometry. Over the
past century, curves have been the focus of a significant amount of research, and
despite being some of the most well-understood algebraic varieties, there are still
many important open questions. The goal of classical Brill–Noether theory is to
study the geometry of a curve C by examining all of its maps to projective space,
or equivalently the existence and behavior of all line bundles on C. Thus, we have
classical results such as Max Noether’s Theorem [12, p. 117] and the Enriques–
Babbage Theorem [13] that relate the presence of linear series on a curve to its
geometric properties. A major change in perspective occurred during the twentieth
century, as the field shifted from studying fixed to general curves—that is, general
points in the moduli space of curves Mg. Many of the major results in the field,
such as the Brill–Noether [66] and Gieseker–Petri [65] theorems, remained open
for nearly a century as they awaited this new point of view.

A major milestone in the geometry of general curves was the development of
limit linear series by Eisenbud and Harris [58]. This theory allows one to study
linear series on general curves by studying one-parameter degenerations where the
central fiber is a special kind of singular curve, known as a curve of compact type.
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One property of curves of compact type is that if they have positive genus then
they must have components of positive genus. Shortly after the development of
limit linear series, many researchers became interested in a different type of nodal
curve, which has only rational components, and where the interesting geometric
data is encoded by the combinatorics of how the components meet each other. Early
examples using the so-called graph curves to establish properties of general curves
include Bayer and Eisenbud’s work on Green’s conjecture for the general curve [28],
and the Ciliberto–Harris–Miranda result on the surjectivity of the Wahl map [47].

Much like the theory of limit linear series does for curves of compact type, the
recent development of tropical Brill–Noether theory provides a systematic approach
to this kind of degeneration argument [5, 17, 19]. A major goal of this survey is to
introduce the basic definitions and techniques of this theory, as well as describing
some recent applications to the geometry of general curves and the behavior of
Weierstrass points in degenerating families. Degeneration arguments also play a
major role in arithmetic geometry, and we also survey how linear series on tropical
curves can be used to study rational points on curves.

Here are just a few of the interesting theorems which have been proved in recent
years with the aid of the theory of linear series on tropical curves.

1. The Maximal Rank Conjecture for quadrics. In [79], Jensen and Payne prove
that for fixed g; r; and d, if C is a general curve of genus g and V � L.D/ is
a general linear series on C of rank r and degree d, then the multiplication map
�2 W Sym2V ! L.2D/ is either injective or surjective.

2. Uniform boundedness for rational points of curves of small Mordell–Weil rank.
In [81], Katz, Rabinoff, and Zureick–Brown prove that if C=Q is a curve of genus
g with Mordell–Weil rank at most g � 3, then #C.Q/ � 76g2 � 82gC 22: This
is the first such bound depending only on the genus of C.

3. Non-Archimedean equidistribution of Weierstrass points. In [4], Amini proves
that if C is an algebraic curve over C..t// and L is an ample line bundle on C, then
the Weierstrass points of L˝n become equidistributed with respect to the Zhang
measure on the Berkovich analytic space Can as n goes to infinity. This gives
precise asymptotic information on the limiting behavior of Weierstrass points in
degenerating one-parameter families.

4. Mnëv universality for the lifting problem for divisors on graphs. In [40],
Cartwright shows that if X is a scheme of finite type over SpecZ, there exist
a graph G and a rank 2 divisor D0 on G such that, for any infinite field k, there
are a curve C over k..t// and a rank 2 divisor D on C tropicalizing to G and D0,
respectively, if and only if X has a k-point.

We will discuss the proofs of these and other results after going through the
foundations of the basic theory. To accommodate readers with various interests,
this survey is divided into three parts. The first part covers the basics of tropical
Brill–Noether theory, with an emphasis on combinatorial aspects and the relation to
classical algebraic geometry. The second part covers more advanced topics, includ-
ing the non-Archimedean Berkovich space perspective, tropical moduli spaces, and
the theory of metrized complexes. Each of these topics is an important part of the
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theory, but is not strictly necessary for many of the applications discussed in Part 3,
and the casual reader may wish to skip Part 2 on the first pass. The final part covers
applications of tropical Brill–Noether theory to problems in algebraic and arithmetic
geometry. For the most part, the sections in Part 3 are largely independent of each
other and can be read in any order. Aside from a few technicalities, the reader can
expect to follow the applications in Sects. 9, 10, and 11, as well as most of Sect. 12,
without reading Part 2.

Part 1: Introductory Topics

2 Jacobians of Finite Graphs

2.1 Degeneration of Line Bundles in One-Parameter Families

A recurring theme in the theory of linear series on curves is that it is very important
to understand the behavior of line bundles on generically smooth one-parameter
families of curves. One of the key facts about such families is the semistable
reduction theorem, which asserts that after a finite base change, one can guarantee
that the singularities of the family are “as nice as possible,” i.e., the total space
is regular and the fibers are reduced and have only nodal singularities (see [72,
Chap. 3C] or [94, Sect. 10.4]). The questions we want to answer about such families
are all local on the base, so it is convenient to consider the following setup. Let R be
a discrete valuation ring with field of fractions K and algebraically closed residue
field �, let C be a smooth proper and geometrically integral curve over K, and let C
be a regular strongly semistable model for C, that is, a proper flat R-scheme with
general fiber C satisfying:

1. The total space C is regular.
2. The central fiber C0 of C is strongly semistable, i.e., the irreducible components

of C0 are all smooth and C0 has only nodes as singularities.1

By the semistable reduction theorem, a regular strongly semistable model for C
always exists after passing to a finite extension of K.

Let L be a line bundle on the general fiber C. Because the total space C is regular,
there exists an extension L of L to the family C. One can easily see, however,
that this extension is not unique—one can obtain other extensions by twisting the
components of the central fiber. More concretely, if L is an extension of L and
Y � C0 is an irreducible component of the central fiber, then L.Y/ D L˝OC.Y/ is
also an extension of L.

1We say C0 is semistable if it is reduced and has only nodes as singularities. The term strongly
semistable is not completely standard.
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To understand the effect of the twisting operation, we consider the dual graph of
the central fiber C0. One constructs this graph by first assigning a vertex vZ to each
irreducible component Z of C0, and then drawing an edge between two vertices for
every node at which the corresponding components intersect.

Example 2.1. If C0 is a union of m general lines in P2, its dual graph is the complete
graph on m vertices. Indeed, every pair of lines meets in one point, so between every
pair of vertices in the dual graph, there must be an edge.

Example 2.2. If C0 � P1 � P1 is a union of a lines in one ruling and b lines in the
other ruling, then the dual graph is the complete bipartite graph Ka;b. This is because
a pair of lines in the same ruling do not intersect, whereas a pair of lines in opposite
rulings intersect in one point.

Example 2.3. Let C0 be the union of the �1 curves on a del Pezzo surface of
degree 5. In this case, the dual graph of C0 is the well-known Petersen graph.

2.2 Divisors and Linear Equivalence on Graphs

In this paper, by a graph we will always mean a finite connected graph which is
allowed to have multiple edges between pairs of vertices but is not allowed to have
any loop edges. Given a graph G, we write Div.G/ for the free abelian group on the
vertices of G. An element D of Div.G/ is called a divisor on G, and is written as a
formal sum

D D
X

v2V.G/

D.v/v;

where the coefficients D.v/ are integers. The degree of a divisor D is defined to be
the sum

deg.D/ D
X

v2V.G/

D.v/:

Returning now to our family of curves, let us fix for a moment an extension L
of our line bundle L. We define a corresponding divisor mdeg.L/ on G, called the
multidegree of L, by the formula

mdeg.L/ D
X

Z

.degLjZ/ vZ ;

where the sum is over all irreducible components Z of C0. The quantity degLjZ
can also be interpreted as the intersection multiplicity of L with Z considered as
a (vertical) divisor on the surface C. Note that the degree of mdeg.L/ is equal to
deg.L/.
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We now ask ourselves how mdeg.L/ changes if we replace L by a different
extension. Since any two such extensions differ by a sequence of twists by
components of the central fiber, it suffices to study the effect of twisting by one
such component Y . Given a vertex v of a graph, let val.v/ denote its valence. As the
central fiber C0 is a principal divisor on C, we have

mdeg.L.Y// D mdeg.L/C
X

Z

.Y � Z/ vZ

with

Y � Z D
� � val.vY/ if Z D Y
jZ \ Yj if Z ¤ Y

�
:

The corresponding operation on the dual graph is known as a chip-firing move.
This is because we may think of a divisor on the graph as a configuration of chips
(and anti-chips) on the vertices. In this language, the effect of a chip-firing move
is that a vertex v “fires” one chip along each of the edges emanating from v. This
decreases the number of chips at v by the valence of v, and increases the number of
chips at each of the neighbors w of v by the number of edges between v and w.

Motivated by these observations, we say that two divisors D and D0 on a graph
G are equivalent, and we write D � D0, if one can be obtained from the other by
a sequence of chip-firing moves. We define the Picard group Pic.G/ of G to be the
group of divisors on G modulo equivalence. Note that the degree of a divisor is
invariant under chip-firing moves, so there is a well-defined homomorphism

deg W Pic.G/! Z:

We will refer to the kernel Pic0.G/ of this map as the Jacobian Jac.G/ of the
graph G. This finite abelian group goes by many different names in the mathematical
literature—in combinatorics, it is commonly referred to as the sandpile group or the
critical group of G (see, for example, [30, 56, 92, 109]).

Remark 2.4. There is a tremendous amount of combinatorial literature concerning
Jacobians of graphs. As our focus is on applications in algebraic geometry, however,
we will not go into many details here—we refer the reader to [19, 76] and the
references therein. We cannot resist mentioning one remarkable fact, however: the
cardinality of Jac.G/ is the number of spanning trees in G. (This is actually a
disguised form of Kirchhoff’s celebrated Matrix-Tree Theorem.)

Our discussion shows that for any two extensions of the line bundle L, the
corresponding multidegrees are equivalent divisors on the dual graph G. There is
therefore a well-defined degree-preserving map

Trop W Pic.C/! Pic.G/;

which we refer to as the specialization or tropicalization map.
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For later reference, we note that there is a natural homomorphism � W Div.C/!
Div.G/ defined by setting �.D/ D mdeg.D/, where D is the Zariski closure of
D in C. The map � takes principal (resp., effective) divisors to principal (resp.,
effective) divisors, and the map Jac.C/ ! Jac.G/ induced by � coincides with
Trop (cf. [17, Sect. 2.1]).

It is useful to reformulate the definition of equivalence of divisors on G as
follows. For any function f W V.G/! Z, we define

ordv.f / WD
X

w adjacent to v

f .v/ � f .w/

and

div.f / WD
X

v2V.G/

ordv.f /v:

Divisors of the form div.f / are known as principal divisors, and two divisors are
equivalent if and only if their difference is principal. The reason is that the divisor
div.f / can be obtained, starting with the 0 divisor, by firing each vertex v exactly
f .v/ times.

2.3 Limit Linear Series and Néron Models

The Eisenbud–Harris theory of limit linear series focuses on the case where the
dual graph of C0 is a tree. In this case, the curve C0 is said to be of compact type.2

Although they would not have stated it this way, a key insight of the Eisenbud–
Harris theory is that the Jacobian of a tree is trivial. Given a line bundle L of degree
d on C, if the dual graph of C0 is a tree, then one can repeatedly twist to obtain a line
bundle with any degree distribution summing to d on the components of the central
fiber. In particular, given a component Y � C0, there exists a twist LY such that

degLY jZ D
�

d if Z D Y
0 if Z ¤ Y

�
:

This observation is the jumping-off point for the basic theory of limit linear series.
At the other end of the spectrum is the maximally degenerate case where all

of the components of C0 have genus 0. In this case, the first Betti number of the
dual graph G (which we refer to from now on as the genus of G) is equal to the

2The reason for the name compact type is that the Jacobian of a nodal curve C0 is an extension of
the Jacobian of the normalization of C0 by a torus of dimension equal to the first Betti number of
the dual graph. It follows that the Jacobian of C0 is compact if and only if its dual graph is a tree.
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geometric genus of the curve and essentially all of the interesting information about
degenerations of line bundles is combinatorial. At its core, tropical Brill–Noether
theory studies the behavior of line bundles on the curve C using the combinatorics
of their specializations to the graph G.

This discussion can also be understood in the context of Néron models. An
important theorem of Raynaud [111] asserts (in the language of this paper) that
the group ˆ of connected components of the special fiber NJ of the Néron model
of J D Jac.C/ is canonically isomorphic to Jac.G/, where G is the dual graph of
the special fiber of C. This result can be summarized by the commutativity of the
following diagram:

(1)

where the right vertical arrow is the canonical quotient map

J.K/! J.K/=J 0.R/ D ˆ:

The tropical approach to Brill–Noether theory and the approach via the theory of
limit linear series are in some sense orthogonal. The former utilizes the component
group ˆ, or its analytic counterpart, the tropical Jacobian, whereas classical limit
linear series are defined only when ˆ is trivial. On the other hand, limit linear series
involve computations in the compact part of NJ , which is trivial in the maximally
degenerate case.

Recent developments have led to a sort of hybrid of tropical and limit linear series
that can be used to study degenerations of line bundles to arbitrary nodal curves. We
will discuss these ideas in Sect. 8.

3 Jacobians of Metric Graphs

3.1 Behavior of Dual Graphs Under Base Change

The field of fractions of a DVR is never algebraically closed. For many applications,
we will be interested in Pic.CK/ rather than Pic.CK/, and we must therefore study
the behavior of the specialization map under base change.

Let K0 be a finite extension of K, let R0 be the valuation ring of K0, and let
CK0 D C �K K0. An important issue is that the new total space CK0 D C �K K0
may not be regular; it can pick up singularities at the nodes of the central fiber.
More specifically, if a point z on C corresponding to a node of the central fiber
has a local analytic equation of the form xy D � , where � is a uniformizer for
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R, then a local analytic equation for z over R0 will be xy D .� 0/e, where � 0 is a
uniformizer for R0 and e is the ramification index of the extension K0=K. A standard
computation shows that we can resolve such a singularity by a chain of e � 1

blowups. Repeating this procedure for each singular point of the special fiber, we
obtain a regular strongly semistable model C0 for CK0 . The dual graph G0 of the
central fiber of C0 is obtained by subdividing each edge of the original dual graph
G e � 1 times. In other words, if we assign a length of 1 to each edge of G, and a
length of 1

e to each edge of G0, then G and G0 are isomorphic as metric graphs.
A metric graph � is, roughly speaking, a finite graph G in which each edge e has

been identified with a real interval Ie of some specified length `e > 0. The points
of � are the vertices of G together with all points in the relative interiors of the
intervals Ie. More precisely, a metric graph is an equivalence class of finite edge-
weighted graphs, where two weighted graphs G and G0 give rise to the same metric
graph if they have a common length-preserving refinement. A finite weighted graph
G representing the equivalence class of � is called a model for � .

Example 3.1. Let K D C..t//, and consider the family C W xy D tz2 of smooth
conics degenerating to a singular conic in P2. The dual graph G of the central fiber
consists of two vertices v; v0 connected by a single edge. Let D D P C Q be the
divisor on the general fiber cut out by the line y D x. In homogeneous coordinates,
we have P D .

p
t W pt W 1/ and Q D .�pt W �pt W 1/. Although the divisor D itself

is K-rational, P and Q are not, and both points specialize to the node of the special
fiber. It is not hard to check that �.D/ D vCv0 2 Div.G/. If K0 D C..

p
t//, then the

total space of the family C�K K0 has a singularity at the node of the central fiber. This
singularity can be resolved by blowing up the node, and the dual graph G0 of the new
central fiber is a chain of 3 vertices connected by two edges, with the new vertex
v00 corresponding to the exceptional divisor of the blowup (see Fig. 1). The base
change D0 of D to K0 specializes to a sum of two smooth points on the exceptional
divisor, and in particular �C0.D0/ D 2v00 is not the image of �C.D/ with respect
to the natural inclusion map Div.G/ ,! Div.G0/. Note, however, that �C0.D0/ and
�C.D/ are linearly equivalent on G0 (this turns out to be a general phenomenon).

Remark 3.2. A similar example, with a semistable family of curves of genus 3, is
given in [17, Sect. 4.4].

v

v′

v

v′′

v′

Fig. 1 The dual graph of the central fiber in Example 3.1 initially (on the left), and after base
change followed by resolution of the singularity (on the right). If we give the segment on the left
a length of 1 and each of the segments on the right a length of 1=2, then both weighted graphs are
models for the same underlying metric graph � , which is a closed segment of length 1
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There are two possible ways to address the lack of functoriality with respect to
base change illustrated in Example 3.1. One is to only consider the induced maps
on Picard groups, rather than divisors. The other is to replace � W Div.C/! Div.G/

with a map Div.C NK/! Div.�/, where � is the metric graph underlying G, defined
by first base-changing to an extension K0 over which all points in the support
of D are rational and then applying �. The most natural way to handle these
simultaneous base changes and prove theorems about the resulting map is to work
on the Berkovich analytification of C; see Sect. 6 for details.

3.2 Divisors and Linear Equivalence on Metric Graphs

Let � be a metric graph. A divisor D on � is a formal linear combination

D D
X

v2�

D.v/v

with D.v/ 2 Z for all v 2 � and D.v/ D 0 for all but finitely many v 2 � . Let
PL.�/ denote the set of continuous, piecewise linear functions f W � ! R with
integer slopes. The order ordv.f / of a function f at a point v 2 � is the sum of its
incoming3 slopes along the edges containing v. As in the case of finite graphs, we
write

div.f / WD
X

v2�

ordv.f /v:

A divisor is said to be principal if it is of the form div.f / for some f 2 PL.�/, and
two divisors D; D0 are equivalent if D � D0 is principal. We let Prin.�/ denote the
subgroup of Div0.�/ (the group of degree-zero divisors on �) consisting of principal
divisors. By analogy with the case of finite graphs, the group

Jac.�/ WD Div0.�/=Prin.�/

is called the (tropical) Jacobian of � .

Example 3.3. The Jacobian of a metric tree � is trivial. To see this, note that given
any two points P; Q 2 � , there is a unique path from P to Q. One can construct
a continuous, piecewise linear function f that has slope 1 along this path, and has
slope 0 everywhere else. We then see that div.f / D Q� P, so any two points on the
tree are equivalent (Fig. 2).

Example 3.4. A circle � is a torsor for its own Jacobian. To see this, fix a point O 2
� . Given two points P; Q 2 � , there exists a continuous, piecewise linear function f
that has slope 1 on the interval from O and P, slope�1 on the interval from some 4th

3As a caution, some authors use the opposite sign convention.
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Fig. 2 Slopes of a function f
on a tree with div.f / D Q � P

P

Q

1
1

1

0 0

0

Fig. 3 A function f on the
circle with
div.f / D O C Q � .P C R/

P Q

O

R

1

0 1

0

point R to Q, and slope 0 everywhere else. We then have div.f / D OCQ� .PCR/,
so P � Q � R � O. It follows that every divisor of degree zero is equivalent to a
divisor of the form R � O for some point R. It is not difficult to see that the point R
is in fact unique (Fig. 3).

Note that if two divisors are equivalent in the finite graph G, then they are also
equivalent in the corresponding metric graph � , called the regular realization of G,
in which every edge of G is assigned a length of 1. It follows that there is a natural
inclusion � W Pic.G/ ,! Pic.�/. As we saw above, the multidegree of a line bundle
L on CK can be identified with a divisor on some subdivision of G, which can in turn
be identified with a divisor on � . One can show that this yields a well-defined map

Trop W Pic.CK/! Pic.�/

whose restriction to Pic.C/ coincides with the previously defined map

Trop W Pic.C/! Pic.G/

via the inclusion �.
One can see from this construction that principal divisors on C specialize to

principal divisors on � . More precisely, there is a natural way to define a map

trop W K.C/� ! PL.�/

on rational functions such that

Trop.div.f // D div.trop.f //

for every f 2 K.C/�. This is known as the Slope Formula, cf. Theorem 6.4 below.
We refer the reader to Sect. 6.3 for a formal definition of the map trop.
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As already discussed in the remarks following Example 3.1, there is also a natural
way to define a map Div.CK/! Div.�/ which induces the map Trop W Pic.CK/!
Pic.�/. As with the map trop on rational functions, the map Trop on divisors is
most conveniently described using Berkovich’s theory of non-Archimedean analytic
spaces, and we defer a detailed discussion to Sect. 6.

3.3 The Tropical Abel–Jacobi Map

A 1-form on a graph G is an element of the real vector space generated by the formal
symbols de, as e ranges over the oriented edges of G, subject to the relations that
if e; e0 represent the same edge with opposite orientations then de0 D �de. After
fixing an orientation on G, a 1-form ! D P

!ede is called harmonic if, for all
vertices v, the sum

P
!e over the outgoing edges at v is equal to 0. Denote by

�.G/ the space of harmonic 1-forms on G. It is well-known that �.G/ is a real
vector space of dimension equal to the genus g of G, which can also be defined
combinatorially as the number of edges of G minus the number of vertices of G plus
one, or topologically as the dimension of H1.G;R/.

If G and G0 are models for the same metric graph � , then �.G0/ is canonically
isomorphic to �.G/. We may therefore define the space �.�/ of harmonic 1-forms
on � as �.G/ for any weighted graph model G. (We also define the genus of a metric
graph � to be the genus of any model for � .) Given an isometric path 	 W Œa; b
! � ,
any harmonic 1-form ! on � pulls back to a classical 1-form on the interval, and
we can thus define the integral

R
	

!. Note that the definition of a harmonic 1-form
does not depend on the metric, but the integral

R
	

! does.
Fix a base point v0 2 � . For any point v 2 � , the integral

Z v

v0

!

is well-defined up to a choice of path from v0 to v. This gives a map

AJv0 W � ! �.�/�=H1.�;Z/

known as the tropical Abel–Jacobi map. Extending linearly to Div.�/ and then
restricting to Div0.�/, we obtain a map

AJ W Div0.�/! �.�/�=H1.�;Z/

which does not depend on the choice of a base point. As in the classical case of
Riemann surfaces, we have (cf. [101]):
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Fig. 4 Two metric graphs �

and � 0 of genus 2

v0 v0

Tropical Abel–Jacobi Theorem. The map AJ is surjective and its kernel is
precisely Prin.�/. Thus there is a canonical isomorphism

AJ W Div0.�/=Prin.�/ Š �.�/�=H1.�;Z/

between the Jacobian of � and a g-dimensional real torus.

Example 3.5. We consider the two metric graphs of genus 2 pictured in Fig. 4. In the
first case, we can choose a basis !1; !2 of harmonic 1-forms by assigning the integer
1 to one of the (oriented) loops, and the integer 0 to the other. We let �1; �2 be the
elements of the dual basis. We then see from the tropical Abel–Jacobi theorem that

Jac.�/ Š R2=.Z�1 C Z�2/:

A similar argument in the second case yields

Jac.� 0/ Š R2=

�
ZŒ�1 C 1

2
�2
C ZŒ

1

2
�1 C �2


�
:

Although the Jacobians of the metric graphs � and � 0 from Example 3.5 are
isomorphic as abstract real tori, they are non-isomorphic as principally polarized
real tori in the sense of Mikhalkin and Zharkov [101]. In fact, there is an analogue
of the Torelli theorem in this context saying that up to certain “Whitney flips,” the
Jacobian as a principally polarized real torus determines the metric graph �; see
[36]. The map AJv0 W � ! �.�/�=H1.�;Z/ is harmonic (or balanced) in a certain
natural sense; see, e.g., [18, Theorem 4.1]. This fact is used in the paper [81], about
which we will say more in Sect. 11.2. Basic properties of the tropical Abel–Jacobi
map are also used in important ways in [41, 52].

4 Ranks of Divisors

4.1 Linear Systems

By analogy with algebraic curves, a divisor D D P
D.v/v on a (metric) graph is

called effective if D.v/ � 0 for all v, and we write D � 0. The complete linear series
of a divisor D is defined to be

jDj D fE � 0 j E � Dg:
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Fig. 5 The linear system
j2v C wj is not
equidimensional vw

Similarly, we write

R.D/ D ff 2 PL.�/ j div.f /C D � 0g

for the set of tropical rational functions with poles along the divisor D.
As explained in [63], the complete linear series jDj has the structure of a

compact polyhedral complex. However, this polyhedral complex often fails to be
equidimensional, as the following example shows.

Example 4.1. Consider the metric graph pictured in Fig. 5, consisting of two loops
attached at a point v. Let D D 2v C w, where w is a point on the interior of the first
loop. The complete linear system is the union of two tori. The first, which consists
of divisors equivalent to D that are supported on the first loop, has dimension two,
while the other, which consists of divisors equivalent to D that have positive degree
on the second loop, has dimension one.

We now wish to define the rank of a divisor on a graph. As the previous example
shows, the appropriate definition should not be the dimension of the linear system
jDj, considered as a polyhedral complex.4 Instead, we note that a line bundle L on
an algebraic curve C has rank at least r if and only if, for every collection of r points
of C, there is a nonzero section of L that vanishes at those points. This motivates the
following definition.

Definition 4.2. Let D be a divisor on a (metric) graph. If D is not equivalent to an
effective divisor, we define its rank to be �1. Otherwise, we define r.D/ to be the
largest nonnegative integer r such that jD � Ej ¤ ; for all effective divisors E of
degree r.

Example 4.3. Even when a linear series is equidimensional, its dimension may not
be equal to the rank of the corresponding divisor. For example, consider the metric
graph pictured in Fig. 6, consisting of a loop meeting a line segment in a vertex v.
The linear system jvj is 1-dimensional, because v is equivalent to any point on the
line segment. The rank of v, however, is 0, because if w lies in the interior of the
loop, then v is not equivalent to w.

4Another natural idea would be to try to define r.D/ as one less than the “dimension” of R.D/

considered as a semimodule over the tropical semiring T consisting of R [ f1g together with the
operations of min and plus. However, this approach also faces significant difficulties. See [73] for
a detailed discussion of the tropical semimodule structure on R.D/.
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Fig. 6 The vertex v moves in
a one-dimensional family, but
has rank zero

v

Remark 4.4. There are several other notions of rank in the literature related to our
setup of a line bundle on a degenerating family of curves. We mention, for example,
the generalized rank functions of Katz and Zureick-Brown [80] and the algebraic
rank of Caporaso [35]. The rank as defined here is sometimes referred to as the
combinatorial rank to distinguish it from these other invariants.

As in the case of curves, we write

Wr
d.�/ WD fD 2 Picd.�/ j r.D/ � rg:

We similarly define the gonality of a graph to be the smallest degree of a divisor of
rank at least one. The Clifford index of the graph is

Cliff.�/ WD minfdeg.D/ � 2r.D/ j r.D/ > maxf0; deg.D/ � gC 1gg:

Remark 4.5. The definition of gonality above is sometimes called the divisorial
gonality, to distinguish it from the stable gonality, which is the smallest degree of
a harmonic morphism from a modification of the given metric graph to a tree. The
divisorial gonality is always less than or equal to the stable gonality, see, e.g., [9].

4.2 Specialization

One of the key properties of the combinatorial rank is its behavior under special-
ization. Note that the specialization map takes effective line bundles to effective
divisors. Combining this with the fact that it takes principal divisors to principal
divisors, we see that, for any divisor D on C, we have

Trop jDj 	 jTrop.D/j and

tropL.D/ 	 R.Trop.D//:

Combining this with the definition of rank yields the following semicontinuity
result.

Specialization Theorem. [17] Let D be a divisor on C. Then

r.D/ � r.Trop.D//:
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Another way of stating this is that Trop.Wr
d.C// 	 Wr

d.�/: The power of the
Specialization Theorem lies in the fact that the rank of the divisor D is an algebro-
geometric invariant, whereas the rank of Trop.D/ is a combinatorial invariant. We
can therefore use techniques from each field to inform the other. For example, an
immediate consequence of specialization is the following fact.

Theorem 4.6. Let � be a metric graph of genus g, and let d; r be positive integers
such that g � .rC 1/.g � dC r/ � 0. Then Wr

d.�/ ¤ ;.
Proof. As we will see in Corollary 7.2, there exist a curve C over a discretely valued
field K, and a semistable R-model C of C such that the dual graph of the central fiber
is isometric to � . A well-known theorem of Kempf and Kleiman–Laksov [84, 86]
asserts that Wr

d.C/ ¤ ;. It follows from Theorem 4.2 that Wr
d.�/ ¤ ; as well.

Corollary 4.7. A metric graph of genus g has gonality at most d gC2

2
e.

Remark 4.8. We are unaware of a purely combinatorial proof of Theorem 4.6. There
are many reasons that such a proof would be of independent interest. For example,
a combinatorial proof could shed some light on whether the analogous statement is
true for finite graphs, as conjectured in [17, Conjectures 3.10, 3.14].5

4.3 Riemann–Roch

Another key property of the combinatorial rank is that it satisfies a tropical analogue
of the Riemann–Roch theorem:

Tropical Riemann–Roch Theorem ([63, 101]). Let � be a metric graph of genus
g, and let K� WDP

v2�.val.v/ � 2/v be the canonical divisor on � . Then for every
divisor D on � ,

r.D/ � r.K� � D/ D deg.D/ � gC 1:

The first result of this kind was the discrete analogue of Theorem 4.3 for finite
(non-metric) graphs proved in [19]. In the Baker–Norine Riemann–Roch theorem,
one defines r.D/ for a divisor D on a graph G exactly as in Definition 4.2, the
subtle difference being that the effective divisor E is restricted to the vertices of
G. Gathmann and Kerber [63] showed that one can deduce Theorem 4.3 from the
Baker–Norine theorem using a clever approximation argument, whereas Mikhalkin
and Zharkov [101] generalized the method of proof from [19] to the metric graph

5Sam Payne has pointed out that there is a gap in the proof of Conjectures 3.10 and 3.14 of
Baker [17] given in [34]. The claim on page 82 that Wr

d;� has nonempty fiber over b0 does not

follow from the discussion that precedes it. A priori, the fiber of Wr
d;� over b0 might be contained

in the boundary Pd
� X Picd

� of the compactified relative Picard scheme.
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setting. Later on, Hladky–Kral–Norine [75] and Luo [96] proved theorems which
imply that one can also deduce Riemann–Roch for graphs from tropical Riemann–
Roch. (We will discuss Luo’s theory of rank-determining sets in Sect. 5.2.) So
in retrospect, one can say that in some sense the Baker–Norine theorem and the
theorem stated above are equivalent.

Baker and Norine’s strategy of proof for Theorem 4.3, as modified by Mikhalkin
and Zharkov, is to first show that if O is an orientation of the graph (i.e., a choice of
a head vertex and tail vertex for each edge of G), then

DO WD
X

v2V.G/

.indegO.v/ � 1/v

is a divisor of degree g�1, and this divisor has rank �1 if and only if the orientation
O is acyclic. This fact helps to establish the Riemann–Roch theorem in the case
of divisors of degree g � 1, which serves as the base case for the more general
argument. It is interesting to note that the tropical Riemann–Roch theorem has thus
far resisted attempts to prove it via classical algebraic geometry. At present, neither
the tropical Riemann–Roch theorem nor the classical Riemann–Roch theorem for
algebraic curves is known to imply the other.

If C is a strongly semistable R-model for a curve C over a discretely valued field
K with the property that all irreducible components of the special fiber C0 have
genus 0, then the multidegree of the relative dualizing sheaf �1

C=R is equal to the
canonical divisor of the graph G. This is a simple consequence of the adjunction
formula, which shows more generally that mdeg.�1

C=R/ D K#
.G;!/ in the terminology

of Sect. 4.4 below. If K is not discretely valued, this is still true with the right
definition of the sheaf �1

C=R (see [81]). This “explains” in some sense why there
is a canonical divisor on a metric graph while on an algebraic curve there is merely
a canonical divisor class.

It is clear from the definition of rank that if D and E are divisors on a metric
graph � having nonnegative rank, then r.D C E/ � r.D/ C r.E/. Combining this
with tropical Riemann–Roch, one obtains a tropical version of Clifford’s inequality:

Tropical Clifford’s Theorem. Let D be a special divisor on a metric graph � , that
is, a divisor such that both D and K� � D have nonnegative rank. Then

r.D/ � 1

2
deg.D/:

Remark 4.9. The classical version of Clifford’s theorem is typically stated in two
parts. The first part is the inequality above, while the second part states that, when
equality holds, either D � 0, D � KC or the curve C is hyperelliptic and the
linear equivalence class of D is a multiple of the unique g1

2. The same conditions
for equality hold in the tropical case as well, by a recent theorem of Coppens, but
the proof is quite subtle as the classical methods do not work in the tropical context.
See [52] for details.
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Fig. 7 Two metric graphs of genus 3, the first of which is hyperelliptic, and the second of which
is not. (All edges have length 1)

Note that, as in the case of curves, the Riemann–Roch theorem significantly
limits the possible ranks that a divisor of fixed degree on a metric graph may have.
For example, a divisor of negative degree necessarily has rank �1, so a divisor
of degree d > 2g � 2 must have rank d � g. It is only in the intermediate range
0 � d � 2g � 2 where there are multiple possibilities for the rank.

Example 4.10. The canonical divisor on a circle is trivial, and it is the only divisor
of degree 0 with nonnegative rank. If D is a divisor of degree d > 0, then by
Riemann–Roch D has rank d� 1. This can also be seen using the fact that the circle
is a torsor for its Jacobian, as in Example 3.4: if E is an effective divisor of degree
d � 1, then there is a unique point P such that D� E � P, and hence r.D/ � d � 1.

Example 4.11. The smallest genus for which the rank of an effective divisor is not
completely determined by the degree is genus 3. Pictured in Fig. 7 are two examples
of genus 3 metric graphs, the first of which is hyperelliptic, meaning that it admits
a divisor of degree 2 and rank 1, and the second of which is not. For the first graph,
one can check by hand that the sum of the two vertices on the left has rank at least 1,
and it cannot have rank higher than 1 by Clifford’s theorem. We will show that the
second graph is not hyperelliptic in Example 5.4, as the argument will require some
techniques for computing ranks of divisors that we will discuss in the next section.

4.4 Divisors on Vertex-Weighted Graphs

In [6], Amini and Caporaso formulate a refinement of the Specialization Theorem
which takes into account the genera of the components of the special fiber. In this
section we describe their result following the presentation in [5].

A vertex-weighted metric graph is a pair .�; !/ consisting of a metric graph �

and a weight function ! W � ! Z�0 such that !.x/ D 0 for all but finitely many
x 2 � . Following [6], we define a new metric graph �# by attaching !.x/ loops
of arbitrary positive length at each point x 2 � . There is a natural inclusion of �

into �#. The canonical divisor of .�; !/ is defined to be



382 M. Baker and D. Jensen

K# D K� C
X

x2�

2!.x/;

which can naturally be identified with the canonical divisor of K�# restricted to � .
Its degree is 2g# � 2, where g# D g.�/CPx2� !.x/ is the genus of �#.

Following [6], the weighted rank r# of a divisor D on � is defined to be r#.D/ WD
r�#.D/. By [5, Corollary 4.12], we have the more intrinsic description

r#.D/ D min
0�E�W

�
deg.E/C r�.D � 2E/

�
;

where W DPx2� !.x/.x/.
The Riemann–Roch theorem for �# implies the following “vertex-weighted”

Riemann–Roch theorem for �:

r#.D/ � r#.K# � D/ D deg.D/C 1 � g#:

If C is a curve over K, together with a semistable model C over R, we define
the associated vertex-weighted metric graph .�; !/ by taking � to be the skeleton
of C and defining the weight function ! by !.v/ D gv . With this definition, the
genus of the weighted metric graph .�; !/ is equal to the genus of C and we
have trop.KC/ � K# on � [5, Sect. 4.7.1]. The following weighted version of the
Specialization Theorem, inspired by the results of [6], is proved in [5, Theorem
4.13]:

Weighted Specialization Theorem. For every divisor D 2 Div.C/, we have
rC.D/ � r#.trop.D//.

5 Combinatorial Techniques

The tropical approach to degeneration of line bundles in algebraic geometry derives
its power from the combinatorial tools which one has available, many of which have
no classical analogues. We describe some of these tools in this section.

5.1 Reduced Divisors and Dhar’s Burning Algorithm

Definition 5.1. Let G be a finite graph. Given a divisor D 2 Div.G/ and a vertex v

of G, we say that D is v-reduced if

(RD1) D.w/ � 0 for every w ¤ v and
(RD2) for every nonempty set A 	 V.G/ X fvg there is a vertex w 2 A such that

outdegA.w/ > D.w/.
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Here outdegA.w/ denotes the outdegree of w with respect to A, i.e., the number
of edges connecting w 2 A to a vertex not in A. The following important result
(cf. [19, Proposition 3.1]) shows that v-reduced divisors form a distinguished set of
representatives for linear equivalence classes of divisors on G:

Lemma 5.2. Every divisor on G is equivalent to a unique v-reduced divisor.

If D has nonnegative rank, the v-reduced divisor equivalent to D is the divisor in
jDj that is lexicographically “closest” to v. It is a discrete analogue of the unique
divisor in a classical linear series jDj with the highest possible order of vanishing at
a given point p 2 C.

There is a simple algorithm for determining whether a given divisor satisfying
(RD1) above is v-reduced, known as Dhar’s burning algorithm. For w ¤ v, imagine
that there are D.w/ buckets of water at w. Now, light a fire at v. The fire starts
spreading through the graph, burning through an edge as soon as one of its endpoints
is burnt, and burning a vertex w if the number of burnt edges adjacent to w is greater
than D.w/ (that is, there is not enough water to fight the fire). The divisor D is
v-reduced if and only if the fire consumes the whole graph. For a detailed account
of this algorithm, we refer to [55] and the more recent [22, Sect. 5.1].

There is a completely analogous set of definitions and results for metric graphs.
Let � be a metric graph, let D be a divisor on � , and choose a point v 2 �

(which need not be a vertex). We say that D is v-reduced if the two conditions
from Definition 5.1 hold, with the second condition replaced by

(RD20) for every closed, connected, nonempty set A 	 � X fvg there is a point
w 2 A such that outdegA.w/ > D.w/.

It is not hard to see that condition (RD20) is equivalent to requiring that for every
non-constant tropical rational function f 2 R.�/ with a global maximum at v, the
divisor D0 WD DC div.f / does not satisfy (RD1), i.e., there exists w ¤ v in � such
that D0.w/ < 0.

The analogue of Lemma 5.2 remains true in the metric graph context: every
divisor on � is equivalent to a unique v-reduced divisor. Moreover, Dhar’s burning
algorithm as formulated above holds almost verbatim for metric graphs: the fire
starts spreading through � , getting blocked at a point w 2 � iff the number of burnt
tangent directions at w is less than or equal to D.w/; the divisor D is v-reduced if
and only if the fire consumes all of � .

We note the following important fact, which is useful for computing ranks of
divisors.

Lemma 5.3. Let D be a divisor on a finite or metric graph, and suppose that D is
v-reduced for some v. If D has nonnegative rank, then D.v/ � r.D/.

Example 5.4. Let � be the complete graph on 4 vertices endowed with arbitrary
edge lengths. We can use the theory of reduced divisors to show that � is not
hyperelliptic, justifying one of the claims in Example 4.11. Suppose that there exists
a divisor D on � of degree 2 and rank 1 and choose a vertex v. Since D has rank 1,
D � D0 WD v C v0 for some v0 2 � . Now, let w ¤ v; v0 be a vertex. Note that there
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Fig. 8 Using Dhar’s burning algorithm to compute the v5-reduced divisor equivalent to v1 C v2.
The burnt vertices after each iteration are colored white

are at least two paths from w to v that do not pass through v0, and if v D v0, there are
three. It follows by Dhar’s burning algorithm that D0 is w-reduced. But D0.w/ D 0,
contradicting the fact that D (and hence D0) has rank 1.

If a given divisor is not v-reduced, Dhar’s burning algorithm provides a method
for finding the unique equivalent v-reduced divisor. In the case of finite graphs, after
performing Dhar’s burning algorithm, if we fire the vertices that are left unburnt we
obtain a divisor that is lexicographically closer to the v-reduced divisor, and after
iterating the procedure a finite number of times, it terminates with the v-reduced
divisor (cf. [22]). For metric graphs, there is a similar procedure but with additional
subtleties—we refer the interested reader to [96, Algorithm 2.5] and [14].

Example 5.5. Consider the finite graph depicted in Fig. 8, consisting of two trian-
gles meeting at a vertex v3. We let D D v1 C v2, and compute the v5-reduced
divisor equivalent to D. After performing Dhar’s burning algorithm once, we see
that vertices v1 and v2 are left unburnt. Firing these, we see that D is equivalent to
2v3. Performing Dhar’s burning algorithm a second time, all three of the vertices
v1; v2; v3 are not burnt. Firing these, we obtain the divisor v4 C v5. A third run of
Dhar’s burning algorithm shows that v4 C v5 is v5-reduced.

5.2 Rank-Determining Sets

The definition of the rank of a divisor on a finite graph G implies easily that there
is an algorithm for computing it.6 Indeed, since there are only a finite number of
effective divisors E of a given degree on G, we are reduced to the problem of
determining whether a given divisor is equivalent to an effective divisor or not. This
problem can be solved in polynomial time by using the iterated version of Dhar’s
algorithm described above to compute the v-reduced divisor D0 equivalent to D for
some vertex v. If D0.v/ < 0, then jDj D ;, and otherwise jDj ¤ ;.

6Although there is no known efficient algorithm; indeed, it is proved in [85] that this problem is
NP-hard.
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If one attempts to generalize this algorithm to the case of metric graphs, there is
an immediate problem, since there are now an infinite number of effective divisors
E to test. The idea behind rank-determining sets is that it suffices, in the definition
of r.D/, to restrict to a finite set of effective divisors E.

Definition 5.6. Let � be a metric graph. A subset A 	 � is a rank-determining set
if, for any divisor D on � , D has rank at least r if and only if jD � Ej ¤ ; for every
effective divisor E of degree r supported on A.

In [96], Luo provides a criterion for a subset of a metric graph to be rank-
determining. A different proof of Luo’s criterion has been given recently by
Backman [15]. Luo defines a special open set to be a connected open set U 	 �

such that every connected component X 	 � XU contains a boundary point v such
that outdegX.v/ � 2.

Theorem 5.7 ([96]). A subset A 	 � is rank-determining if and only if all
nonempty special open subsets of � intersect A.

Corollary 5.8. Let G be a model for a metric graph � . If G has no loops, then the
vertices of G are a rank-determining set.

There are lots of other interesting rank-determining sets besides vertices of
models.

Example 5.9. Let G be a model for a metric graph � . Choose a spanning tree of
G and let e1; : : : ; eg be the edges in the complement of the spanning tree. For each
such edge ei, choose a point vi in its interior, and let w be any other point of � . Then
the set A D fv1; : : : ; vgg [ fwg is rank-determining. This construction is used, for
example, in [52].

Example 5.10. Let G be a bipartite finite graph, and let � be a metric graph having
G as a model. If we fix a 2-coloring of the vertices of G, then the vertices of one
color are a rank-determining set. This is the key observation in [77], in which the
second author shows that the Heawood graph admits a divisor of degree 7 and
rank 2, regardless of the choice of edge lengths. The interest in this example arises
because it shows that there is a nonempty open subset of the (highest-dimensional
component of the) moduli space Mtrop

8 containing no Brill–Noether general metric
graph. (See Sect. 7.1 for a description of Mtrop

g .)

5.3 Tropical Independence

Many interesting questions about algebraic curves concern the ranks of linear
maps between the vector spaces L.D/. For example, both the Gieseker–Petri
theorem and the Maximal Rank Conjecture are statements about the rank of the
multiplication maps
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� W L.D/˝ L.D0/! L.DC D0/

for certain pairs of divisors D; D0 on a general curve.
One simple strategy for showing that a map, such as �, has rank at least k is

to carefully choose k elements of the image, and then check that they are linearly
independent. To this end, we formulate a notion of tropical independence, which
gives a sufficient condition for linear independence of rational functions on a curve
C in terms of the associated piecewise linear functions on the metric graph � .

Definition 5.11 ([78]). A set of piecewise linear functions ff1; : : : ; fkg on a metric
graph � is tropically dependent if there are real numbers b1; : : : ; bk such that the
minimum

minff1.v/C b1; : : : ; fk.v/C bkg

occurs at least twice at every point v in � .

If there are no such real numbers b1; : : : ; bk, then we say ff1; : : : ; fkg is tropically
independent. We note that linearly dependent functions on C specialize to tropically
dependent functions on � . Although the definition of tropical independence is
merely a translation of linear dependence into tropical language, one can often
check tropical independence using combinatorial methods. The following lemma
illustrates this idea.

Lemma 5.12 ([78]). Let D be a divisor on a metric graph � , with f1; : : : ; fk
piecewise linear functions in R.D/, and let


 D minff1; : : : ; fkg:

Let �j � � be the closed set where 
 D fj, and let v 2 �j. Then the support of
div.
/C D contains v if and only if v belongs to either

1. the support of div.fj/C D or
2. the boundary of �j.

5.4 Break Divisors

Another useful combinatorial tool for studying divisor classes on graphs and
metric graphs is provided by the theory of break divisors, which was initiated
by Mikhalkin–Zharkov in [101] and studied further by An–Baker–Kuperberg–
Shokrieh in [10]. Given a metric graph � of genus g, fix a model G for � . For
each spanning tree T of G, let †T be the image of the canonical map
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Y

e62T

e! Divg
C.�/

sending .p1; : : : ; pg/ to p1 C � � � C pg. (Here Divg
C.�/ denotes the set of effective

divisors of degree g on � and e denotes a closed edge of G, so the points pi are
allowed to be vertices of G.) We call B.�/ WD S

T †T the set of break divisors
on � . The set of break divisors does not depend on the choice of the model G.
The following result shows that the natural map B.�/ � Divg

C.�/ ! Picg.�/ is
bijective:

Theorem 5.13 ([10, 101]). Every divisor of degree g on � is linearly equivalent to
a unique break divisor.

Since B.�/ is a compact subset of Divg
C.�/ and Picg.�/ is also compact, it

follows from general topology that there is a canonical continuous section � to
the natural map � W Divg.�/ ! Picg.�/ whose image is precisely the set of
break divisors. In particular, every degree g divisor class on a metric graph � has
a canonical effective representative. The analogue of this statement in algebraic
geometry is false: when g D 2, for example, the natural map Sym2.C/ D
Div2C.C/ ! Pic2.C/ is a birational isomorphism which blows down the P1

corresponding to the fiber over the unique g1
2, and this map has no section. This

highlights an interesting difference between the algebraic and tropical settings.
The proof of Theorem 5.13 in [101] utilizes the theory of tropical theta functions

and the tropical analogue of Riemann’s theta constant. A purely combinatorial
proof based on the theory of q-connected orientations is given in [10], and the
combinatorial proof yields an interesting analogue of Theorem 5.13 for finite
graphs. If G is a finite graph and � is its regular realization, in which all edges
are assigned a length of 1, define the set of integral break divisors on G to be
B.G/ D B.�/ \ Div.G/. In other words, B.G/ consists of all break divisors for
the underlying metric graph � which are supported on the vertices of G.

Theorem 5.14 ([10]). Every divisor of degree g on G is linearly equivalent to a
unique integral break divisor.

Since Picg.G/ and Pic0.G/ D Jac.G/ have the same cardinality (the former is
naturally a torsor for the latter), it follows from Remark 2.4 that the number of
integral break divisors on G is equal to the number of spanning trees of G, though
there is in general no canonical bijection between the two. A family of interesting
combinatorial bijections is discussed in [23].

If we define CT D �.†T/, then Picg.�/ D S
T CT by Theorem 5.13. It turns

out that the relative interior of each cell CT is (the interior of) a parallelotope, and
if T ¤ T 0, then the relative interiors of CT and CT0 are disjoint. Thus Picg.�/

has a polyhedral decomposition depending only on the choice of a model for � .
The maximal cells in the decomposition correspond naturally to spanning trees, and
the minimal cells (i.e., vertices) correspond naturally to integral break divisors, as
illustrated in Fig. 9.
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Fig. 9 A polyhedral
decomposition of Pic2.�/ for
the metric realization of the
graph G obtained by deleting
an edge from the complete
graph K4

2

2

Remark 5.15. Mumford’s non-Archimedean analytic uniformization theory for
degenerating abelian varieties [102], as recently refined by Gubler and translated
into the language of tropical geometry [67, 68], shows that if G is the dual graph of
the special fiber of a regular R-model C for a curve C, then the canonical polyhedral
decomposition fCTg of Picg.�/ gives rise to a canonical proper R-model for Picg.C/.
Sam Payne has asked (Payne, 2013, Personal communication) whether (up to the
identification of Picg with Pic0) this model coincides with the compactification of
the Néron model of Jac.C/ introduced by Caporaso in [32].

Break divisors corresponding to the relative interior of some cell CT are called
simple break divisors. They can be characterized as the set of degree g effective
divisors D on � such that �nsupp.D/ is connected and simply connected. Dhar’s
algorithm shows that such divisors are universally reduced, i.e., they are q-reduced
for all q 2 � . A consequence of this observation and the Riemann–Roch theorem
for metric graphs is the following result, which is useful in tropical Brill–Noether
theory (cf. Sect. 9.2).

Proposition 5.16. Let � be a metric graph and let D be a simple break divisor
(or more generally any universally reduced divisor) on � . Then D has rank 0 and
K� � D has rank �1. Therefore:

(1) The set of divisor classes in Picg.�/ having rank at least 1 is contained in the
codimension one skeleton of the polyhedral decomposition

S
T CT.

(2) If T is a spanning tree for some model G of � and D; E are effective divisors
with DCE linearly equivalent to K� , then there must be an open edge eı in the
complement of T such that D has no chips on eı.
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Remark 5.17. The set B.�/ of all break divisors on � can be characterized as the
topological closure in Divg

C.�/ of the set of universally reduced divisors.

Remark 5.18. The real torus Picg.�/ has a natural Riemannian metric. One can
compute the volume of Picg.�/ in terms of a matrix determinant associated with G,
and the volume of the cell CT is the product of the lengths of the edges not in T .
Comparing the volume of the torus to the sums of the volumes of the cells CT yields
a dual version of a weighted form of Kirchhoff’s Matrix-Tree Theorem. See [10]
for details.

Part 2: Advanced Topics

We now turn to the more advanced topics of non-Archimedean analysis, tropical
moduli spaces, and metrized complexes. Each of these topics plays an important
role in tropical Brill–Noether theory, and we would be remiss not to mention them
here. We note, however, that most of the applications we discuss in Part 3 do not
require these techniques, and the casual reader may wish to skip this part on the first
pass.

6 Berkovich Analytic Theory

Rather than considering a curve over a discretely valued field and then examining
its behavior under base change, we could instead start with a curve over an
algebraically closed field and directly associate a metric graph to it. We do this
by making use of Berkovich’s theory of analytic spaces. In addition to being a
convenient bookkeeping device for changes in dual graphs and specialization maps
under field extensions, Berkovich’s theory also allows for clean formulations of
some essential results in the theory of tropical linear series, such as the Slope For-
mula (Theorem 6.4 below). The theory also furnishes a wealth of powerful tools for
understanding the relationship between algebraic curves and their tropicalizations.

6.1 A Quick Introduction to Berkovich Spaces

We let K be a field which is complete with respect to a non-Archimedean valuation

val W K� ! R:

We let R � K be the valuation ring, � the residue field, and j � j D exp.�val/ the
corresponding norm on K.
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A multiplicative seminorm on a nonzero ring A is a function j � j W A ! R such
that for all x; y 2 A we have j0j D 0; j1j D 1; jxyj D jxj � jyj, and jxC yj � jxj C jyj.
A multiplicative seminorm is non-Archimedean if jx C yj � maxfjxj; jyjg for all
x; y 2 A, and is a norm if jxj D 0 implies x D 0. If L is a field, a function j�j W L! R

is a non-Archimedean norm if and only if � log j � j W L ! R [ f1g is a valuation
in the sense of Krull.

If X D Spec .A/ is an affine scheme over K, we define its Berkovich analyti-
fication Xan to be the set of non-Archimedean multiplicative seminorms on the
K-algebra A extending the given absolute value on K, endowed with the weakest
topology such that the map Xan ! R defined by j � jx 7! jf jx is continuous for
all f 2 A. One can globalize this construction to give a Berkovich analytification
of an arbitrary scheme of finite type over K. As we have defined it, the Berkovich
analytification is merely a topological space, but it can be equipped with a structure
similar to that of a locally ringed space and one can view Xan as an object in a larger
category of (not necessarily algebraizable) Berkovich analytic spaces. The space
Xan is locally compact and locally path-connected. It is Hausdorff if and only if X
is separated, compact if and only if X is proper, and path-connected if and only if
X is connected. We refer the reader to [29, 51] for more background information
on Berkovich spaces in general, and [16, 25] for more details in the special case of
curves.

There is an alternate perspective on Berkovich spaces which is often useful and
highlights the close analogy with schemes. If K is a field, points of an affine K-
scheme Spec .A/ can be identified with equivalence classes of pairs .L; �/ where
L is a field extension of K, � W A ! L is a K-algebra homomorphism, and two
pairs .L1; �1/ and .L2; �2/ are equivalent if there are embeddings of L1 and L2 into a
common overfield L0 and a homomorphism �0 W A ! L0 such that the composition
�i W A ! Li ! L is �0. Indeed, to a pair .L; �/ one can associate the prime ideal
ker.�/ of A, and to a prime ideal p of A one can associate the pair .K.p/; �/ where
K.p/ is the fraction field of A=p and � W A! K.p/ is the canonical map.

Similarly, if K is a complete valued field, points of Spec .A/an can be identified
with equivalence classes of pairs .L; �/, where L is a complete valued field extension
of K and � W A ! L is a K-algebra homomorphism. The equivalence relation is as
before, except that L0 should be complete and extend the valuation on the Li. Indeed,
to a pair .L; �/ one can associate the multiplicative seminorm a 7! j�.a/j on A, and
to a multiplicative seminorm j � jx one can associate the pair .H.x/; �/ where H.x/ is
the completion of the fraction field of A=ker.j�jx/ and � W A! H.x/ is the canonical
map.

We will assume for the rest of this section that K is algebraically closed and
nontrivially valued. This ensures, for example, that the set X.K/ is dense in Xan.
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If X=K is an irreducible variety, there is a dense subset of Xan consisting of the set
ValX of norms7 on the function field K.X/ that extend the given norm on K. Within
the set ValX , there is a distinguished class of norms corresponding to divisorial
valuations. By definition, a valuation v on K.X/ is divisorial if there is an R-model
X for X and an irreducible component Z of the special fiber of X such that v.f / is
equal to the order of vanishing of f along Z. The set of divisorial points is known to
be dense in Xan.

Remark 6.1. In this survey we have intentionally avoided the traditional perspective
of tropical geometry, in which one considers subvarieties of the torus .K�/n, and the
tropicalization is simply the image of coordinatewise valuation. We refer the reader
to [98] for a detailed account of this viewpoint on tropical geometry. The Berkovich
analytification can be thought of as a sort of intrinsic tropicalization—the one that
does not depend on a choice of coordinates. This is reinforced by the result that the
Berkovich analytification is the inverse limit of all tropicalizations [62, 108].

6.2 Berkovich Curves and Their Skeleta

If C=K is a complete nonsingular curve, the underlying set of the Berkovich analytic
space Can consists of the points of C.K/ together with the set ValC. We write

valy W K.C/� ! R

for the valuation corresponding to a point y 2 ValC D Can X C.K/. The points in
C.K/ are called type-1 points, and the remaining points of Can are classified into
three more types. We will not define points of type 3 or 4 in this survey article; see,
e.g., [24, Sect. 3.5] for a definition. Note, however, that every point of Can becomes
a type-1 point after base-changing to a suitably large complete non-Archimedean
field extension L=K.

If the residue field of K.C/ with respect to valy has transcendence degree 1 over
�, then y is called a type-2 point. These are exactly the points corresponding to
divisorial valuations. Because it has transcendence degree 1 over �, this residue
field corresponds to a unique smooth projective curve over �, which we denote Cy.
A tangent direction at y is an equivalence class of continuous injections 	 W Œ0; 1
!
Can sending 0 to y, where 	 � 	 0 if 	.Œ0; 1
/\ 	 0.Œ0; 1
/ © fyg. Closed points of Cy

are in one-to-one correspondence with tangent directions at y in Can.
There is natural metric on the set ValC which is described in detail in [25,

Sect. 5.3]. This metric induces a topology that is much finer than the subspace

7Note that there is a one-to-one correspondence between norms on K.X/ and valuations on K.X/,
hence the terminology ValX . It is often convenient to work with (semi-)valuations rather than (semi-
)norms.
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topology on ValC � Can, and with respect to this metric, ValC is locally an R-tree8

with branching precisely at the type-2 points. The type-1 points should be thought
of as infinitely far away from every point of ValC.

The local R-tree structure arises in the following way. If C is an R-model for
C and Z is a reduced and irreducible component of the special fiber of C, then Z
corresponds to a type-2 point yZ of C. Blowing up a nonsingular closed point of Z
(with respect to some choice of a uniformizer $ 2 mR) gives a new point yZ0 of Can

corresponding to the exceptional divisor Z0 of the blowup. We can then blow up a
nonsingular closed point on the exceptional divisor Z0 to obtain a new point of Can,
and so forth. The resulting constellation of points obtained by all such sequences of
blowups, and varying over all possible choices of $ , is an R-tree TZ rooted at yZ ,
as pictured in Fig. 10. The distance between the points yZ and yZ0 is val.$/.

A semistable vertex set is a finite set of type-2 points whose complement is a
disjoint union of finitely many open annuli and infinitely many open balls. There is
a one-to-one correspondence between semistable vertex sets and semistable models
of C. More specifically, the normalized components of the central fiber of this
semistable model are precisely the curves Cy for y in the semistable vertex set,
and the preimages of the nodes under specialization are the annuli. The annulus
corresponding to a node where Cy meets Cy0 contains a unique open segment with
endpoints y and y0, and its length (with respect to the natural metric on ValC) is
the logarithmic modulus of the annulus. The union of these open segments together
with the semistable vertex set is a closed connected metric graph � contained in
Can, called the skeleton of the semistable model C. If C has genus at least 2, then
there is a unique minimal semistable vertex set in Can and a corresponding minimal
skeleton.

Fix a semistable model C of C and a corresponding skeleton � D �C . Each
connected component of Can X � has a unique boundary point in � , and there is a
canonical retraction to the skeleton

� W Can ! �

taking a connected component of Can X � to its boundary point. There is a natural
homeomorphism of topological spaces Can Š lim ��C , where the inverse limit is
taken over all semistable models C (cf. [25, Theorem 5.2]).

Example 6.2. Figure 10 depicts the Berkovich analytification of an elliptic curve
E=K with non-integral j-invariant jE. In this case, the skeleton � associated with a
minimal proper semistable model of R is isometric to a circle with circumference
� val.jE/. There are an infinite number of infinitely branched R-trees emanating
from the circle at each type-2 point of the skeleton. The retraction map takes a point

8See [21, Appendix B] for an introduction to the theory of R-trees. For our purposes, what is most
important about R-trees is that there is a unique path between any two points.
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Fig. 10 The skeleton of an
elliptic curve with
non-integral j-invariant

x 2 Ean to the endpoint in � of the unique path from x to � . The points of E.K/ lie
“out at infinity” in the picture: they are ends of the R-trees.

6.3 Tropicalization of Divisors and Functions on Curves

Restricting the retraction map � to C.K/ and extending linearly give the tropicaliza-
tion map on divisors

Trop W Div.C/! Div.�/:

If K0 is a discretely valued subfield of K over which C is defined and has
semistable reduction, and if D is a divisor on C whose support consists of K0-rational
points, then the divisor mdeg.D/ on G (identified with a divisor on � via the natural
inclusion) coincides with the tropicalization Trop.D/ defined via retraction to the
skeleton.

Example 6.3. Returning to Example 3.1, in which the metric graph � is a closed
line segment of length 1, by considering the divisor cut out by ya D xbza�b for
positive integers a > b we see that a divisor on CK can tropicalize to any rational
point on � .

Given a rational function f 2 K.C/�, we write trop.f / for the real valued function
on the skeleton � given by y 7! valy.f /. The function trop.f / is piecewise linear with
integer slopes, and thus we obtain a map

trop W K.C/� ! PL.�/:

Moreover, this map respects linear equivalence of divisors, in the sense that if
D � D0 on C then trop.D/ � trop.D0/ on � . In particular, the tropicalization map
on divisors descends to a natural map on Picard groups
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Trop W Pic.C/! Pic.�/:

One can refine this observation as follows. Let x be a type-2 point in Can.
Given a nonzero rational function f on C, one can define its normalized reduction
Nfx with respect to x as follows. Choose c 2 K� such that jf jx D jcj. Define
Nfx 2 �.Cx/

� to be the image of c�1f in the residue field of K.C/ with respect to valx,
which by definition is isomorphic to �.Cx/. Although fx is only well-defined up to
multiplication by an element of ��, its divisor div.fx/ is completely well-defined.
We define the normalized reduction of the zero function to be zero.

Given an .r C 1/-dimensional K-vector space H � K.C/, its reduction NHx D
fNfx j f 2 Hg is an .r C 1/-dimensional vector space over �. Given Qf in the function
field of Cx and a closed point � of Cx, we let s�.Qf / WD ord�.Qf / be the order of
vanishing of Qf at �. If Qf D Nfx for f 2 K.C/�, then s�.Qf / is equal to the slope of
trop.f / in the tangent direction at x corresponding to �. This is a consequence of
the non-Archimedean Poincare–Lelong formula, due to Thuiller [116]. Using this
observation, one deduces the following important result (cf. [25, Theorem 5.15]):

Theorem 6.4 (Slope Formula). For any nonzero rational function f 2 K.C/,

Trop.div.f // D div.trop.f //:

6.4 Skeletons of Higher-Dimensional Berkovich Spaces

The construction of the skeleton of a semistable model of a curve given in Sect. 6.2
can be generalized in various ways to higher dimensions. For brevity, we mention
just three such generalizations. In what follows, X will denote a proper variety of
dimension n over K.

1. Semistable models. Suppose X is a strictly semistable model of X over R. Then
the geometric realization of the dual complex �.X / of the special fiber embeds
naturally in the Berkovich analytic space Xan, and as in the case of curves there is
a strong deformation retraction of Xan onto �.X /. These facts are special cases
of results due to Berkovich; see [104] for a lucid explanation of the constructions
in the special case of strictly semistable models, and [70] for a generalization to
“extended skeleta.”

2. Toroidal embeddings. A toroidal embedding is, roughly speaking, something
which looks étale-locally like a toric variety together with its dense big open
torus. When K is trivially valued, Thuillier [117] associates a skeleton †.X/ of U
and an extended skeleton †.X/ of X to any toroidal embedding U � X (see also
[1]). As in the case of semistable models, the skeleton †.X/ embeds naturally
into Xan and there is a strong deformation retract Xan ! †.X/.

3. Abelian varieties. If E=K is an elliptic curve with non-integral j-invariant, the
skeleton associated with a minimal proper semistable model of R can also be
constructed using Tate’s non-Archimedean uniformization theory. In this case,
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the skeleton of Ean is the quotient of the skeleton of Gm (which is isomorphic to R

and consists of the unique path from 0 to1 in .P1/an) by the map x 7! x�val.jE/.
Using Mumford’s higher-dimensional generalization of Tate’s theory [102], one
can define a skeleton associated with any totally degenerate abelian variety A;
it is a real torus of dimension dim.A/. This can be generalized further using
Raynaud’s uniformization theory to define a canonical notion of skeleton for
an arbitrary abelian variety A=K (see, e.g., [68]). If A is principally polarized,
there is an induced tropical principal polarization on the skeleton of A, see [20,
Sect. 3.7] for a definition. It is shown in [20] that the skeleton of the Jacobian of
a curve C is isomorphic to the Jacobian of the skeleton as principally polarized
real tori:

Theorem 6.5 ([20]). Let C be a curve over an algebraically closed field, com-
plete with respect to a nontrivial valuation, such that the minimal skeleton of
the Berkovich analytic space Can is isometric to � . Then there is a canonical
isomorphism of principally polarized real tori Jac.�/ Š †.Jac.C/an/ making the
following diagram commute.

Remark 6.6. Theorem 6.5 has the following interpretation in terms of tropical
moduli spaces, which we discuss in greater detail in Sect. 7. There is a map

trop W Mg ! Mtrop
g

from the moduli space of genus g � 2 curves to the moduli space of tropical curves
of genus g which takes a curve C to its minimal skeleton, considered as a vertex-
weighted metric graph. There is also a map (of sets, for example)

trop W Ag ! Atrop
g

from the moduli space of principally polarized abelian varieties of dimension g to
the moduli space of “principally polarized tropical abelian varieties” of dimension
g, taking an abelian variety to its skeleton in the sense of Berkovich. Finally, there
are Torelli maps Mg ! Ag (resp., Mtrop

g ! Atrop
g ) which take a curve (resp.,

metric graph) to its Jacobian [31]. Theorem 6.5 implies that the following square
commutes:
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This is also proved, with slightly different hypotheses, in [118, Theorem A].

7 Moduli Spaces

7.1 Moduli of Tropical Curves

The moduli space of tropical curves Mtrop
g has been constructed by numerous authors

[1, 33, 64, 87]. In this section, we give a brief description of this object, with an
emphasis on applications to classical algebraic geometry.

Given a finite vertex-weighted graph G D .G; !/ in the sense of Sect. 4.4, the
set of all vertex-weighted metric graphs .�; !/ with underlying finite graph G is
naturally identified with

Mtrop
G WD R

jE.G/j
>0 =Aut.G/

with the Euclidean topology. If G0 is obtained from G by contracting an edge, then
we may think of a metric graph in Mtrop

G0 as a limit of graphs in Mtrop
G in which the

length of the given edge approaches zero. Similarly, if G0 is obtained from v by
contracting a cycle to a vertex v and augmenting the weight of v by one, we may
think of a metric graph in Mtrop

G0 as a limit of graphs in Mtrop
G . In this way, we may

construct the moduli space of tropical curves

Mtrop
g WD

G
Mtrop

G ;

where the union is over all stable9 vertex-weighted graphs G of genus g, and the
topology is induced by gluing Mtrop

G0 to the boundary of Mtrop
G whenever G0 is a

contraction of G in one of the two senses above.
We note that the moduli space Mtrop

g is not compact, since edge lengths in a
metric graph must be finite and thus there is no limit if we let some edge length
tend to infinity. There exists a compactification M

trop
g , known as the moduli space of

extended tropical curves, which parameterizes vertex-weighted metric graphs with
possibly infinite edges; we refer to [1] for details.

9A vertex-weighted finite graph .G; !/ is called stable if every vertex of weight zero has valence
at least 3.
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Let Mg be the (coarse) moduli space of genus g curves and Mg its Deligne–
Mumford compactification, considered as varieties over C endowed with the trivial
valuation. Points of Man

g can be identified with equivalence classes of points of
Mg.L/, where L is a complete non-Archimedean field extension of C (with possibly
nontrivial valuation). There is a natural map Trop W Man

g ! Mtrop
g which on

the level of L-points takes a smooth proper genus g curve C=L to the minimal
skeleton of its Berkovich analytification Can. This map extends naturally to a map
Trop W Man

g ! M
trop
g .

Let †.Mg/ (resp., †.Mg/) denote the skeleton, in the sense of Thuillier, of Man
g

(resp., M
an
g ) with respect to the natural toroidal structure coming from the boundary

strata of Mg X Mg. According to the main result of Abramovich et al. [1], there is
a very close connection between the moduli space of tropical curves Mtrop

g and the
Thuillier skeleton †.Mg/:

Theorem 7.1 ([1]). There is a canonical homeomorphism10

ˆ W †.M
an
g /! Mtrop

g

which extends uniquely to a map

ˆ W †.M
an
g /! M

trop
g

of compactifications in such a way that

commutes, where P W Man
g ! †.M

an
g / is the canonical deformation retraction.

It follows from Theorem 7.1 that the map Trop W M
an
g ! M

trop
g is continuous,

proper, and surjective. From this, one easily deduces:

Corollary 7.2. Let K be a complete and algebraically closed non-Archimedean
field with value group R, and let � be a stable metric graph of genus at least 2.
Then there exists a curve C over K such that the minimal skeleton of the Berkovich
analytic space Can is isometric to � .

10This homeomorphism is in fact an isomorphism of “generalized cone complexes with integral
structure” in the sense of Abramovich et al. [1].
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Remark 7.3. A more direct proof of Corollary 7.2, which in fact proves a stronger
statement by replacing � with an arbitrary metrized complex of curves, and the field
K with any complete and algebraically closed non-Archimedean field whose value
group contains all edge lengths in some model for � , can be found in Theorem
3.24 of [8]. The proof uses formal and rigid geometry. A variant of Corollary 7.2 for
discretely valued fields, proved using deformation theory, can be found in Appendix
B of [17].

Remark 7.4. Let R be a complete DVR with field of fractions K and infinite residue
field �. The argument in Appendix B of [17] shows that for any finite connected
graph G, there exists a regular, proper, flat curve C over R whose generic fiber is
smooth and whose special fiber is a maximally degenerate semistable curve with
dual graph G. One should note the assumption here that � has infinite residue
field. In the case where the residue field is finite—for example, when K D Qp—
the question of which graphs arise in this way remains an open problem. The
significance of this problem is its relation to the rational points of the moduli space
of curves. For example, the existence of Brill–Noether general curves defined over
Q for large g is a well-known open question. Lang’s conjecture predicts that, for
large g, such curves should be contained in a proper closed subset of the moduli
space of curves. One suggested candidate for this closed subset is the stable base
locus of the canonical bundle, which is known to contain only Brill–Noether special
curves.

7.2 Brill–Noether Rank

The motivating problem of Brill–Noether theory is to describe the variety Wr
d.C/

parameterizing divisors of a given degree and rank on a curve C. A first step in
such a description should be to compute numerical invariants of Wr

d.C/, such as its
dimension. Our goal is to use the combinatorics of the dual graph � to describe
Wr

d.�/. Combining this combinatorial description with the Specialization Theorem,
we can then hope to understand the Brill–Noether locus of our original curve.
One might be tempted to think that the tropical analogue of dim Wr

d.C/ should be
dim Wr

d.�/, but as in the case of linear series, the dimension is not a well-behaved
tropical invariant. We note one example of such poor behavior.

Example 7.5. In [93, Theorem 1.1], it is shown that the function that takes a metric
graph � to dim Wr

d.�/ is not upper semicontinuous on Mtrop
g . To see this, the authors

construct the following example. Let � be the loop of loops of genus 4 depicted in
Fig. 11, with edges of length `1 < `2 < `3 as pictured. Suppose that `1 C `2 > `3.
Then dim W1

3 .�/ D 1. If, however, we consider the limiting metric graph �0 as
`1; `2, and `3 approach zero, then on this graph the only divisor of degree 3 and
rank 1 is the sum of the three vertices, hence dim W1

3 .�0/ D 0.
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�1�2

�3w3 v3

v2 w1

w2 v1

Fig. 11 The metric graph � from [93]

The solution to this problem has a very similar flavor to the definition of rank
recorded in Definition 4.2. Specifically, given a curve C, consider the incidence
correspondence

ˆ D f.p1; : : : ; pd; D/ 2 Cd �Wr
d.C/ j p1 C � � � C pd 2 jDjg:

The forgetful map to Wr
d.C/ has fibers of dimension r, so dim ˆ D rC dim Wr

d.C/,
and hence the image of ˆ in Cd has the same dimension. This suggests the following
surrogate for the dimension of Wr

d.C/.

Definition 7.6. Let � be a metric graph, and suppose that Wr
d.�/ is nonempty. The

Brill–Noether rank wr
d.�/ is the largest integer k such that, for every effective divisor

E of degree rC k, there exists a divisor D 2 Wr
d.�/ such that jD � Ej ¤ ;.

Example 7.7. Note that, in the previous example, although dim W1
3 .�/ D 1, the

Brill–Noether rank w1
3.�/ D 0. To see this, it suffices to find a pair of points such

that no divisor of degree 3 and rank 1 passes through both points simultaneously.
Indeed, it is shown in [93, Theorem 1.9] that no divisor of rank 1 and degree 3
contains v3 C w3.

The Brill–Noether rank is much better behaved than the dimension of the Brill–
Noether locus; for example (cf. [93, Theorem 1.6] and [90, Theorem 5.4]):

Theorem 7.8. The Brill–Noether rank is upper semicontinuous on the moduli
space of tropical curves.

The Brill–Noether rank also satisfies the following analogue of the Specialization
Theorem (cf. [93, Theorem 1.7] and [90, Theorem 5.7]):
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Theorem 7.9. If C is a curve over an algebraically closed field K with nontrivial
valuation, and the skeleton of the Berkovich analytic space Can is isometric to � ,
then

dim Wr
d.C/ � wr

d.�/:

We note the following generalization of Theorem 4.6.

Corollary 7.10. Let � be a metric graph of genus g. Then wr
d.�/ � � WD g�.rC1/

.g � dC r/.

Proof. The general theory of determinantal varieties shows that, if Wr
d.C/ is

nonempty, then its dimension is at least �. The result then follows from [84, 86]
and Theorem 7.9.

Remark 7.11. It is unknown whether Wr
d.�/ must have local dimension at least �.

Note, however, that this must hold in a neighborhood of a divisor D 2 Trop Wr
d.C/.

Hence, if Wr
d.�/ has smaller than the expected local dimension in a neighborhood

of some divisor D, then D does not lift to a divisor of rank r on a curve C having �

as its tropicalization.

8 Metrized Complexes of Curves and Limit Linear Series

In this section we describe the work of Amini and Baker [5] on the Riemann–Roch
and Specialization Theorems for divisors on metrized complexes of curves, along
with applications to the theory of limit linear series.

8.1 Metrized Complexes of Curves

Metrized complexes of curves can be thought of, loosely, as objects which interpo-
late between classical and tropical algebraic geometry. More precisely, a metrized
complex of algebraic curves over an algebraically closed field � is a finite metric
graph � together with a fixed model G and a collection of marked complete
nonsingular algebraic curves Cv over �, one for each vertex v of G; the set Av

of marked points on Cv is in bijection with the edges of G incident to v. A metrized
complex over C can be visualized as a collection of compact Riemann surfaces
connected together via real line segments, as in Fig. 12.

The geometric realization jCj of a metrized complex of curves C is defined as the
topological space given by the union of the edges of G and the collection of curves
Cv , with each endpoint v of an edge e identified with the corresponding marked
point xe

v (as suggested by Fig. 12). The genus of a metrized complex of curves C,
denoted g.C/, is by definition g.C/ D g.�/CPv2V gv , where gv is the genus of Cv

and g.�/ is the first Betti number of � .
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A divisor on a metrized complex of curves C is an element D of the free abelian
group on jCj. Thus a divisor on C can be written uniquely as D DPx2jCj ax x where
ax 2 Z, all but finitely many of the ax are zero, and the sum is over all points of �nV
as well as Cv.�/ for v 2 V . The degree of D is defined to be

P
ax.

A nonzero rational function f on a metrized complex of curves C is the data of
a rational function f� 2 PL.�/ and nonzero rational functions fv on Cv for each
v 2 V . We call f� the �-part of f and fv the Cv-part of f. The divisor of a nonzero
rational function f on C is defined to be

div.f/ WD
X

x2jCj
ordx.f/ x;

where ordx.f/ is defined as follows11:

• If x 2 �nV , then ordx.f/ D ordx.f�/, where ordx.f�/ is the sum of the slopes of
f� in all tangent directions emanating from x.

• If x 2 Cv.�/nAv , then ordx.f/ D ordx.fv/.
• If x D xe

v 2 Av , then ordx.f/ D ordx.fv/Cslpe.f�/, where slpe.f�/ is the outgoing
slope of f� at v in the direction of e.

Divisors of the form div.f/ are called principal, and the principal divisors form
a subgroup of Div0.C/, the group of divisors of degree zero on C. Two divisors in
Div.C/ are called linearly equivalent if they differ by a principal divisor. Linear
equivalence of divisors on C can be understood rather intuitively in terms of “chip-
firing moves” on C. We refer the reader to Sect. 1.2 of [5] for details.

A divisor E D P
x2jCj ax.x/ on C is called effective if ax � 0 for all x. The rank

rC of a divisor D 2 Div.C/ is defined to be the largest integer k such that D � E is
linearly equivalent to an effective divisor for all effective divisors E of degree k on
C (so in particular rC.D/ � 0 if and only if D is linearly equivalent to an effective
divisor, and otherwise rC.D/ D �1).

Fig. 12 An example of a
metrized complex

11Note that our sign convention here for the divisor of a rational function on � , which coincides
with the one used in [5], is the opposite of the sign convention used in Sect. 3.2, which is also used
in a number of other papers in the subject. This should not cause any confusion, but it is good for
the reader to be aware of this variability when perusing the literature.
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The theory of divisors, linear equivalence, and ranks on metrized complexes of
curves generalizes both the classical theory for algebraic curves and the correspond-
ing theory for metric graphs. The former corresponds to the case where G consists
of a single vertex v and no edges and C D Cv is an arbitrary smooth curve. The
latter corresponds to the case where the curves Cv have genus zero for all v 2 V .
Since any two points on a curve of genus zero are linearly equivalent, it is easy to
see that the divisor theories and rank functions on C and � are essentially the same.

The canonical divisor on C is

K D
X

v2V

.Kv C
X

w2Av

w/;

where Kv is a canonical divisor on Cv .
The following result generalizes both the classical Riemann–Roch theorem for

algebraic curves and the Riemann–Roch theorem for metric graphs:

Riemann–Roch for Metrized Complexes. Let C be a metrized complex of alge-
braic curves over �. For any divisor D 2 Div.C/, we have

rC.D/ � rC.K �D/ D deg.D/ � g.C/C 1:

As with the tropical Riemann–Roch theorem, the proof of this theorem makes
use of a suitable notion of reduced divisors for metrized complexes of curves.
We note that the proof of the Riemann–Roch theorem for metrized complexes uses
the Riemann–Roch theorem for algebraic curves and does not furnish a new proof
of that result.

8.2 Specialization of Divisors from Curves to Metrized
Complexes

Let K be a complete and algebraically closed non-Archimedean field with valuation
ring R and residue field �, and let C be a smooth proper curve over K. As in Sect. 6,
there is a metrized complex C canonically associated with any strongly semistable
model C of C over R. The specialization map Trop defined in Sects. 2 and 3 can
be enhanced in a canonical way to a map from divisors on C to divisors on C. The
enhanced specialization map, which by abuse of terminology we continue to denote
by Trop, is obtained by linearly extending a map � W C.K/ ! jCj. The map � is
defined as follows:

• For P 2 C.K/ reducing to a smooth point red.P/ of the special fiber C0 of C,
�.P/ is just the point red.P/.

• For P 2 C.K/ reducing to a singular point, �.P/ is the point Trop.P/ in the
relative interior of the corresponding edge of the skeleton � of C.

The motivation for the definitions of Trop W C.K/! jCj and div.f/ comes in part
from the following extension of the Slope Formula (Theorem 6.4):



Degenerations of Linear Series from the Tropical Point of View 403

Proposition 8.1. Let f be a nonzero rational function on C and let f be the
corresponding nonzero rational function on C, where f� is the restriction to � of the
piecewise linear function log jf j on Can and fv 2 �.Cv/ for v 2 V is the normalized
reduction of f to Cv (cf. Sect. 6.1). Then

Trop.div.f // D div.f/:

In particular, we have Trop.Prin.C// 	 Prin.C/.
The Specialization Theorem from Sect. 4.2 generalizes to metrized complexes as

follows:

Specialization Theorem for Metrized Complexes. For all D 2 Div.C/, we have

rC.D/ � rC.trop.D//:

Since rC.trop.D// � r�.trop.D//, the specialization theorem for metrized
complexes is a strengthening of the analogous specialization result for metrized
graphs. In conjunction with a simple combinatorial argument, this theorem also
refines the Specialization Theorem for vertex-weighted graphs.

A simple consequence of the Riemann–Roch and Specialization Theorems for
metrized complexes is that for any canonical divisor KC on C, the divisor trop.KC/

belongs to the canonical class on C. Indeed, the Specialization Theorem shows that
rC.trop.KC// � g � 1, while Riemann–Roch shows that a divisor of degree 2g � 2

and rank at least g � 1 must be equivalent to K.
There is also a version of specialization in which one has equality rather

than just an inequality. One can naturally associate to a rank r divisor D on C a
collection H D fHvgv2V of .r C 1/-dimensional subspaces of �.Cv/, where Hv is
the normalized reduction of L.D/ to Cv (cf. Sect. 6). If F D fFvgv2V , where Fv

is any �-subspace of the function field �.Cv/, then for D 2 Div.C/ we define the
F-restricted rank of D, denoted rC;F .D/, to be the largest integer k such that for
any effective divisor E of degree k on C, there is a rational function f on C whose
Cv-parts fv belong to Fv for all v 2 V , and such that D � E C div.f/ � 0.

Theorem 8.2 (Specialization Theorem for Restricted Ranks). With notation as
above, the H-restricted rank of the specialization of D is equal to the rank of D, i.e.,
rC;H.trop.D// D r.

8.3 Connections with the Theory of Limit Linear Series

The theory of linear series on metrized complexes of curves has close connections
with the Eisenbud–Harris theory of limit linear series for strongly semistable curves
of compact type, and allows one to generalize the basic definitions in the Eisenbud–
Harris theory to more general semistable curves. The Eisenbud–Harris theory, which
they used to settle a number of longstanding open problems in the theory of
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algebraic curves, only applies to a rather restricted class of reducible curves, namely,
those of compact type (i.e., nodal curves whose dual graph is a tree). It has been an
open problem for some time to generalize their theory to more general semistable
curves.12

Recall that the vanishing sequence of a linear series L D .L; W/ at p 2 C, where
W � H0.C; L/ is the ordered sequence

aL
0.p/ < � � � < aL

r .p/

of integers k with the property that there exists some s 2 W vanishing to order
exactly k at p. For strongly semistable curves of compact type, Eisenbud and Harris
define a notion of crude limit gr

d L on C0, which is the data of a (not necessarily
complete) degree d and rank r linear series Lv on Cv for each vertex v 2 V with the
following property: if two components Cu and Cv of C0 meet at a node p, then for
any 0 � i � r;

aLv

i .p/C aLu
r�i.p/ � d :

We can canonically associate to a proper strongly semistable curve C0 a metrized
complex C of �-curves, called the regularization of C0, by assigning a length of 1 to
each edge of G. This is the metrized complex associated with any regular smoothing
C of C0 over any discrete valuation ring R with residue field �.

Theorem 8.3. Let C be the metrized complex of curves associated with a strongly
semistable curve C0=� of compact type. Then there is a bijective correspondence
between the following:

1. Crude limit gr
d’s on C0 in the sense of Eisenbud and Harris.

2. Equivalence classes of pairs .H;D/, where H D fHvg, Hv is an .r C 1/-
dimensional subspace of �.Cv/ for each v 2 V, and D is a divisor of degree
d supported on the vertices of C with rC;H.D/ D r. Here we say that .H;D/ �
.H0;D0/ if there is a rational function f on C such that D0 D D C div.f/ and
Hv D H0

v � fv for all v 2 V, where fv denotes the Cv-part of f.

Theorem 8.3, combined with the Riemann–Roch theorem for metrized com-
plexes of curves, provides a new proof of the fact, originally established in [58],
that limit linear series satisfy analogues of the classical theorems of Riemann and
Clifford. The point is that rC;H.D/ � rC.D/ for all D 2 Div.C/, and therefore
upper bounds on rC.D/ which follow from Riemann–Roch imply corresponding
upper bounds on the restricted rank rC;H.D/.

Motivated by Theorem 8.3, Amini and Baker propose the following definition.

Definition 8.4. Let C0 be a strongly semistable (but not necessarily compact type)
curve over � with regularization C. A limit gr

d on C0 is an equivalence class of pairs

12Brian Osserman [107] has recently proposed a different framework for doing this.
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.fHvg;D/ as above, where Hv is an .rC 1/-dimensional subspace of �.Cv/ for each
v 2 V , and D is a degree d divisor on C with rC;H.D/ D r.

As partial additional justification for Definition 8.4, Amini and Baker prove,
using specialization, that a gr

d on the smooth general fiber C of a semistable family
C gives rise in a natural way to a crude limit gr

d on the central fiber.

Part 3: Applications

In this part, we discuss several recent applications of tropical Brill–Noether theory
to problems in algebraic and arithmetic geometry. These sections are largely
independent of each other, so the reader should be able to peruse them according
to his or her interest.

9 Applications of Tropical Linear Series to Classical
Brill–Noether Theory

Recent years have witnessed several applications of tropical Brill–Noether theory to
problems in classical algebraic geometry. In this section, we survey the major recent
developments in the field.

9.1 The Brill–Noether Theorem

The Brill–Noether theorem predicts the dimension of the space Wr
d.C/ parameter-

izing divisor classes (or, equivalently, complete linear series) of a given degree and
rank on a general curve C.

Brill–Noether Theorem ([66]). Let C be a general curve of genus g over C. Then
Wr

d.C/ has pure dimension �.g; r; d/ D g� .rC1/.g�dC r/, if this is nonnegative,
and is empty otherwise.

The original proof of the Brill–Noether theorem, due to Griffiths and Harris,
involves a subtle degeneration argument [66]. The later development of limit linear
series by Eisenbud and Harris led to a simpler proof of this theorem [57, 58]. The
literature contains several other proofs, some of which work in any characteristic.
One that is often referenced is due to Lazarsfeld, because rather than using
degenerations, Lazarsfeld’s argument involves vector bundles on K3 surfaces [89].

The first significant application of tropical Brill–Noether theory was the new
proof of the Brill–Noether theorem by Cools, Draisma, Payne, and Robeva [48],
which successfully realized the program laid out in [17]. In [48], the authors
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v1

w1

v2 wg−1

vg wg

�i

mi

Fig. 13 The graph �

consider the family of graphs pictured in Fig. 13, colloquially known as the chain
of loops.13 The edge lengths are further assumed to be generic, which in this case
means that, if `i; mi are the lengths of the bottom and top edges of the ith loop, then
`i=mi is not equal to the ratio of two positive integers whose sum is less than or
equal to 2g � 2.

Using Theorem 4.6 as the only input from algebraic geometry, the authors of [48]
employ an intricate combinatorial argument to prove the following:

Theorem 9.1 ([48]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . Then dim Wr

d.C/ D �.g; r; d/ if this number is
nonnegative, and Wr

d.C/ D ; otherwise.

We note that such a curve C exists by Corollary 7.2. The Brill–Noether theorem
(over an arbitrary algebraically closed field) then follows from Theorem 9.1 using
the theory of Brill–Noether rank discussed in Sect. 7.2.

In fact, [48] proves more. Theorem 4.6 of [48] completely describes Wr
d.�/,

explicitly classifying all divisors of given degree and rank on a generic chain of
loops. Indeed, it is shown that Wr

d.�/ is a union of �-dimensional tori. The set
of tori is in bijection with the so-called lingering lattice paths, which in turn are
in bijection with standard Young tableaux on a rectangle with r C 1 columns and
g � d C r rows containing the numbers 1; : : : ; g. From this, one can compute the
number of tori to be

 
g

�

!
.g � �/Š

rY

iD0

iŠ

.g � dC rC i/Š

if � � 0, and 0 if � < 0.
We briefly discuss the argument here. Given an effective divisor D, we may

assume that D is v1-reduced. The divisor D then has some number d1 of chips at

13In fact, they consider the graph in which the lengths of the bridge edges between the loops are all
zero. There is, however, a natural rank-preserving isomorphism between the Jacobian of a metric
graph with a bridge and the Jacobian of the graph in which that bridge has been contracted, so their
argument works equally well in this case. We consider the graph with bridges because of its use in
[78, 79].
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v1

γ1

w1

br1

· · ·

γi

bri

· · ·

γg

wg

Fig. 14 A decomposition of �

v1, and by Dhar’s burning algorithm D has at most 1 chip on each of the half-open
loops 	k pictured in Fig. 14, and no chips on the half-open bridges brk.

The associated lingering lattice path is a sequence of vectors pi 2 Zr, starting at
p1 D .d1; d1 � 1; : : : ; d1 � rC 1/, with the ith step given by

piC1 � pi D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

.�1;�1; : : : ;�1/ if D has no chip on 	i

ej if D has a chip on 	i, the distance from vi

to this chip is precisely .pi.j/C 1/miC1;

and both pi and pi C ej are in W
0 otherwise

9
>>>>>=

>>>>>;

Here, the distance from vi is in the counterclockwise direction. Since the chip lies on
a circle of circumference mi C `i, this distance should be understood to be modulo
.miC `i/. The symbols e0; : : : er�1 represent the standard basis vectors in Zr and W
is the open Weyl chamber

W D fy 2 Zrjy0 > y1 > � � � > yr�1 > 0g:

The steps where piC1 D pi are known as lingering steps. The basic idea of the
lingering lattice path is as follows. By Theorem 5.7, the set fv1; v2; : : : ; vg; wgg is
rank-determining. Hence, if D fails to have rank r, there is an effective divisor E
of degree r, supported on these vertices, such that jD � Ej D ;. Starting with
the v1-reduced divisor D, we move chips to the right and record the vi-degree of
the equivalent vi-reduced divisor. The number pi.j/ is then the minimum, over all
effective divisors E of degree j supported at v1; : : : ; vi, of the vi-degree of the vi-
reduced divisor equivalent to D � E. From this it follows that, when D has rank at
least r, we must have pi.j/ � r � j, so the corresponding lingering lattice path must
lie in the open Weyl chamber W .

The corresponding tableau is constructed by placing the moves in the direction
ei in the ith column of the rectangle, and the moves in the direction .�1; : : : ;�1/ in
the last column. If the kth step is lingering, then the integer k does not appear in the
tableau. Given this description, we see that each tableau determines the existence
and position of the chip on the half-open loop 	k if and only if the integer k appears
in the tableau. Otherwise, the chip on the kth loop is allowed to move freely. The
number of chips that are allowed to move freely is therefore � D g�.rC1/.g�dCr/.
Indeed, we see that not only is the Brill–Noether rank wr

d.�/ equal to �, but in fact
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dim Wr
d.�/ D � as well. Theorem 9.1 then follows from the specialization result for

Brill–Noether rank, Theorem 7.9.

9.2 The Gieseker–Petri Theorem

Assume that �.g; r; d/ � 0. The variety Wr
d.C/ is singular along WrC1

d .C/. Blowing
up along this subvariety yields the variety Gr

d.C/ parameterizing (not necessarily
complete) linear series of degree d and rank r on C. A natural generalization of the
Brill–Noether theorem is the following:

Gieseker-Petri Theorem ([65]). Let C be a general curve of genus g. If �.g; r; d/ �
0, then Gr

d.C/ is smooth of dimension �.g; r; d/.

It is a standard result, following [12, Sect. IV.4], that the Zariski cotangent space
to Gr

d.C/ at a point corresponding to a complete linear series L.D/ is naturally
isomorphic to the cokernel of the adjoint multiplication map

�D W L.D/˝ L.KC � D/! L.KC/:

Thus the cotangent space has dimension �.g; r; d/ C dim ker �D, and in particular,
Gr

d.C/ is smooth of dimension �.g; r; d/ at such a point if and only if the
multiplication map �D is injective. More generally, if P 2 Gr

d.C/ corresponds to
a possibly incomplete linear series W � L.D/, then Gr

d.C/ is smooth of dimension
�.g; r; d/ at P if and only if the multiplication map W ˝ L.KC � D/ ! L.KC/ is
injective. One deduces that the Gieseker–Petri theorem is equivalent to the assertion
that if C is a general curve of genus g, then �D is injective for all divisors D on C.

A recent application of tropical Brill–Noether theory is the following result [78],
which yields a new proof of the Gieseker–Petri theorem:

Theorem 9.2 ([78]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . Then the multiplication map

�D W L.D/˝ L.KC � D/! L.KC/

is injective for all divisors D on C.

The argument has much in common with the tropical proof of the Brill–Noether
theorem, using the same metric graph with the same genericity conditions on edge
lengths. The new ingredient is the idea of tropical independence, as defined in
Sect. 5.3. Given a divisor D 2 Wr

d.C/, the goal is to find functions

f0; : : : ; fr 2 trop.L.D//

g0; : : : ; gg�dCr�1 2 trop.L.KC � D//

such that ffi C gjgi;j is tropically independent.
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There is a dense open subset of Wr
d.�/ consisting of divisors D with the following

property: given an integer 0 � i � r, there exists a unique divisor Di � D such that

Di � iwg � .r � i/v1 � 0:

These are the divisors referred to as vertex-avoiding in [41].
We first describe the proof of Theorem 9.2 in the case that D is vertex-avoiding.

If D is the specialization of a divisor D 2 Wr
d.C/, and p1; pg 2 C are points

specializing to v1; wg, respectively, then there exists a divisor Di � D such that

Di � ipg � .r � i/p1 � 0;

and, by the uniqueness of Di, Di must specialize to Di. It follows that there is a
function fi 2 trop.L.D// such that div.fi/ D Di � D.

For this open subset of divisors, the argument then proceeds as follows. By the
classification in [48], the divisor Di fails to have a chip on the kth loop if and only
if the integer k appears in the ith column of the corresponding tableau. The adjoint
divisor E D K� � D corresponds to the transpose tableau [2, Theorem 39], so the
divisor Di C Ej fails to have a chip on the kth loop if and only if k appears in the
.i; j/ position of the tableau. Since for each k at most one of these divisors fails to
have a chip on the kth loop, we see that if


 D minffi C gj C bi;jg

occurs at least twice at every point of � , then the divisor

� D div.
/C K�

must have a chip on the kth loop for all k.
To see that this is impossible, let pk be a point of � in 	k, and let

D0 D p1 C � � � C pg:

Then by construction K� �D0 is equivalent to an effective divisor, so by the tropical
Riemann–Roch theorem we see that r.D0/ � 1. On the other hand, Dhar’s burning
algorithm shows that D0 is universally reduced, so by Proposition 5.16 we have
r.D0/ D 0, a contradiction.

It is interesting to note that this obstruction is, at heart, combinatorial. Unlike the
earlier proofs via limit linear series, which arrive at a contradiction by constructing
a canonical divisor of impossible degree (larger than 2g � 2), this argument arrives
at a contradiction by constructing a canonical divisor of impossible shape.

The major obstacle to extending this argument to the case where D is not vertex-
avoiding is that the containment trop.L.D// 	 R.Trop.D// is often strict. Given an
arbitrary divisor D 2 Wr

d.C/ and function f 2 R.Trop.D//, it is difficult to determine
whether f is the specialization of a function in L.D/. To avoid this issue, the authors
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make use of a patching construction, gluing together tropicalizations of different
rational functions in a fixed algebraic linear series on different parts of the graph, to
arrive at a piecewise linear function in R.K�/ that may not be in trop.L.KC//. Once
this piecewise linear function is constructed, the argument proceeds very similarly
to the vertex-avoiding case.

9.3 The Maximal Rank Conjecture

One of the most well-known open problems in Brill–Noether theory is the Maximal
Rank Conjecture, which predicts the Hilbert function for sufficiently general
embeddings of sufficiently general curves. This conjecture is attributed to Noether
in [11, p. 4] (see [105, Sect. 8] and [43, pp. 172–173] for details), was studied
classically by Severi [112, Sect. 10], and popularized by Harris [71, p. 79].

Maximal Rank Conjecture. Fix nonnegative integers g; r; d, let C be a general
curve of genus g, and let V � L.D/ be a general linear series of rank r and degree
d on C. Then the multiplication maps

�m W SymmV ! L.mD/

have maximal rank for all m. That is, each �m is either injective or surjective.

While the Maximal Rank Conjecture remains open in general, several important
cases are known [27, 61, 115, 119]. For example, it is shown in [27] that the Maximal
Rank Conjecture holds in the non-special range d � g C r. When d < g C r, the
general linear series of degree d and rank r on a general curve is complete, and
for this reason, most of the work in the subject focuses on the case where V D
L.D/. We note that the arguments of Ballico and Ellia [27] and Farkas [61] involve
degenerations to unions of two curves that meet in more than one point. Since such
curves are not of compact type, the arguments do not make use of limit linear series.

In [79], tropical Brill–Noether theory is used to prove the m D 2 case of the
Maximal Rank Conjecture.

Theorem 9.3 ([79]). Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops � . For a given r and d, let D be a general divisor of rank
r and degree d on C. Then the multiplication map

�2 W Sym2L.D/! L.2D/

has maximal rank.

The genericity conditions placed on the edge lengths of � in Theorem 9.3
are stricter than those appearing in the tropical proofs of the Brill–Noether and
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Gieseker–Petri theorems. First, the bridges between the loops are assumed to be
much longer than the loops themselves, and second, one must assume that certain
integer linear combinations of the edge lengths do not vanish.

A simplifying aspect of the Maximal Rank Conjecture is that it concerns a
general, rather than arbitrary, divisor. It therefore suffices to prove that the maximal
rank condition holds for a single divisor of the given degree and rank on C. The
main result of Cartwright et al. [41] is that every divisor on the generic chain of
loops is the specialization of a divisor of the same rank on C. We are therefore
free to choose whatever divisor we wish to work with, and in particular we may
choose one of the vertex-avoiding divisors described in the previous section. Recall
that, if D 2 Wr

d.�/ is vertex-avoiding, then we have an explicit set of piecewise
linear functions fi 2 R.D/ that are tropicalizations of a basis for the linear series on
the curve C. The goal, in the case where the multiplication map is supposed to be
injective, is to show that the set ffiC fjgi�j is tropically independent. In the surjective
case, we must choose a subset of the appropriate size, and then show that this subset
is tropically independent.

The basic idea of the argument is as follows. Assume that


 D minffi C fj C bi;jg

occurs at least twice at every point of � , and consider the divisor

� D div.
/C 2D:

To arrive at a contradiction, one studies the degree distribution of the divisor �

across the loops of � . More precisely, one defines

ık WD deg.�j	k /:

The first step is to show that ık � 2 for all k. One then identifies intervals Œa; b
 for
which this inequality must be strict for at least one k 2 Œa; b
. As one proceeds from
left to right across the graph, one encounters such intervals sufficiently many times
to obtain deg � > 2 deg D, a contradiction.

10 Lifting Problems for Divisors on Metric Graphs

In this section we discuss the lifting problem in tropical Brill–Noether theory: given
a divisor of rank r on a metric graph � , when is it the tropicalization of a rank r
divisor on a smooth curve C? There are essentially two formulations of this problem,
one in which the curve C is fixed, and one in which it is not.

Throughout this section, we let K be a complete and algebraically closed
nontrivially valued non-Archimedean field.
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Question 10.1. Given a metric graph � and a divisor D on � , under what conditions
do there exist a curve C=K (together with a semistable model R) and a divisor of the
same rank as D tropicalizing to � and D, respectively?

Question 10.2. Given a curve C=K (together with a semistable model R) tropical-
izing to a metric graph � , and given a divisor D on � , under what conditions does
there exist a divisor on C of the same rank as D tropicalizing to D?

These are very difficult questions. Even for the earlier theory of limit linear series
on curves of compact type, the analogous questions remain open. A partial answer
in that setting is given by the Regeneration Theorem of Eisenbud and Harris [58],
which says that if the space of limit linear series has local dimension equal to the
Brill–Noether number �, then the given limit linear series lifts in any one-parameter
smoothing. At the time of writing, there is no corresponding theorem in the tropical
setting.14

10.1 Specialization of Hyperelliptic Curves

One of the first results concerning lifting of divisors is the classification of vertex-
weighted metric graphs that are the specialization of a hyperelliptic curve. Recall
from Sect. 4.4 that given a curve C=K and a semistable model C=R for C, there is a
natural way to associate to C a vertex-weighted metric graph .�; !/. We call such a
pair minimal if there is no vertex v with val.v/ D 1 and !.v/ D 0.

Theorem 10.3 ([9, 34]). Let .�; !/ be a minimal vertex-weighted metric graph.
There is a smooth projective hyperelliptic curve over a discretely valued field with a
regular, strongly semistable model whose special fiber has dual graph � if and only
if the following conditions hold:

(HYP1) there exists an involution s on � such that the quotient �=s is a tree and
s.v/ D v for all v 2 � with !.v/ > 0 and

(HYP2) for every point v 2 � , the number of bridge edges adjacent to v is at
most 2!.v/C 2.

Kawaguchi and Yamaki show moreover that, when � satisfies these conditions,
there is a smoothing C for which every divisor on � lifts to a divisor of the same
rank on C [83].

We outline the necessity of the conditions above in the special case where ! D 0,
which is equivalent to requiring that g.C/ D g.�/. Note that if C is a hyperelliptic
curve, then by the Specialization Theorem any divisor of degree 2 and rank 1 on C
specializes to a divisor D of rank at least 1 on � , and by tropical Clifford’s theorem D
must have rank exactly 1. Now, if P 2 � is not contained in a bridge, then jPj D fPg.

14Amini has apparently made substantial progress in this direction.
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Fig. 15 A hyperelliptic
metric graph of genus 3 that
is not the skeleton of any
hyperelliptic curve of genus 3

On the other hand, if P 2 � is contained in a bridge, a simple analysis reveals that
D � 2P. In this way we obtain an involution s on � mapping each point P to the
P-reduced divisor equivalent to D � P.

To see why (HYP2) holds, note that for each type-2 point v 2 � , the linear series
of degree 2 and rank 1 on C specializes to a linear series of degree 2 and rank 1
on the corresponding curve Cv . Each of the bridges adjacent to v corresponds to
ramification points of this linear series, but such a linear series has only 2g.Cv/ C
2 D 2 ramification points.

To see that the conditions (HYP1) and (HYP2) are sufficient requires signifi-
cantly more work.

Example 10.4. Consider the metric graph � pictured in Fig. 15, consisting of a tree
with a loop attached to each leaf, with all edge lengths being arbitrary. Then � is
hyperelliptic, because any divisor of degree 2 supported on the tree has rank 1. On
the other hand, this graph is not the dual graph of the limit of any family of genus 3
hyperelliptic curves, because the vertex of valence 3 in the tree is adjacent to more
than 2 bridges.

For metric graphs of higher gonality, the lifting problem is significantly harder.
In [97], Luo and Manjunath describe an algorithm for smoothability of rank one
generalized limit linear series on metrized complexes.

10.2 Lifting Divisors on the Chain of Loops

For some specific families of graphs, such as the chain of loops discussed Sect. 9,
one can show that the lifting problem is unobstructed.

Theorem 10.5 ([41]). Let C=K be a smooth projective curve of genus g. If the dual
graph of the central fiber of some regular model of C is isometric to a generic chain
of loops � of genus g, then every divisor class on � that is rational over the value
group of K lifts to a divisor class of the same rank on C.

The general strategy for proving Theorem 10.5 is to study the Brill–Noether loci
as subschemes

Wr
d.C/ � Jac.C/:
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Since C is maximally degenerate, the universal cover of Jac.C/an gives a uniformiza-
tion

Tan ! Jac.C/an

by an algebraic torus T of dimension g. The tropicalization of this torus is the
universal cover of the skeleton of Jac.C/, which as discussed in Sect. 6 is canonically
identified with the tropical Jacobian of � [20].

A key tool in the proof of Theorem 10.5 is Rabinoff’s lifting theorem [110],
which can be applied to the analytic preimages in T of algebraic subschemes of
Jac.C/. This lifting theorem says that isolated points in complete intersections of
tropicalizations of analytic hypersurfaces lift to points in the analytic intersection
with appropriate multiplicities. This theorem can be applied to translates of the
preimage of the theta divisor ‚� D W0

g�1.�/, as follows.
When � is the generic chain of loops, one can use the explicit description

of Wr
d.�/ from [48] to produce explicit translates of ‚C whose tropicalizations

intersect transversally and locally cut out Wr
d.�/. By intersecting with � additional

translates of ‚C, one obtains an isolated point in a tropical complete intersection,
to which we may apply Rabinoff’s lifting theorem. This complete intersection
is typically larger than Wr

d.�/, but the argument shows that the tropicalization
map from a 0-dimensional slice of Wr

d.C/ to the corresponding slice of Wr
d.�/ is

injective. Using again the explicit description of Wr
d.�/, one then shows that the

two finite sets have the same cardinality, and hence the map is bijective.

Remark 10.6. As mentioned in the section on the Maximal Rank Conjecture,
Theorem 10.5 is one of the key ingredients in the proof of Theorem 9.3 (the Maximal
Rank Conjecture for quadrics). In particular, in order to show that the maximal rank
condition holds for a generic line bundle of a given degree and rank, it suffices to
show that it holds for a single line bundle. Since every divisor of a given rank on the
chain of loops lifts to a line bundle on C of the same rank, one is free to work with
any divisor of this rank on the chain of loops.

10.3 Examples of Divisors That Do Not Lift

Among the results on lifting divisors, there is a plethora of examples of divisors
that do not lift. For example, in [53], Coppens defines a base-point free divisor on
a metric graph � to be a divisor D such that r.D � p/ < r.D/ for all p 2 � . He
then shows that the Clifford and Riemann–Roch bounds are the only obstructions
to the existence of base-point free divisors on metric graphs of arbitrary genus. This
is in contrast to the case of algebraic curves, where, for example, a curve of genus
greater than 6 cannot have a base-point free divisor of degree 5 and rank 2.

Another example of divisors that do not lift comes from the theory of matroids.
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Theorem 10.7 ([40]). Let M be any rank 3 matroid. Then there exist a graph GM

and a rank 2 divisor DM on GM such that, for any infinite field k, there are a curve C
over k..t// (together with a semistable model C of C over kŒŒt

) and a rank 2 divisor
on C tropicalizing to GM and DM, respectively, if and only if M is realizable over k.

Combining this with the scheme-theoretic analogue of Mnëv universality, due to
Lafforgue [88], one obtains the following.

Corollary 10.8 ([40]). Let X be a scheme of finite type over SpecZ. Then there
exist a graph G and a rank 2 divisor D on G such that, for any infinite field k, G,
and D are the tropicalizations of a curve C=k..t// and a rank 2 divisor on C if and
only if X has a k-point.

In other words, the obstructions to lifting over a valued field of the form k..t//
are essentially as general as possible.

Cartwright’s construction is as follows. Recall that a rank 3 simple matroid on
a finite set E consists of a collection of subsets of E, called flats, such that every
pair of elements is contained in exactly one flat. (Here we are abusing language,
using the word flat to refer to the maximal, or rank 2, flats.) The bipartite graph
GM is the Levi graph of the matroid M, where the vertices correspond to elements
and flats, and there is an edge between two vertices if the corresponding element is
contained in the corresponding flat. The divisor DM is simply the sum of the vertices
corresponding to elements of E. A combinatorial argument then shows that the rank
of DM is precisely 2.

If M is realizable over k, then by definition, there exists a configuration of lines in
P2

k where the lines correspond to the elements of E, and the flats correspond to points
where two or more of the lines intersect. If we blow up the plane at the intersection
points, the dual graph of the resulting configuration is the Levi graph GM , and the
pullback of the hyperplane class specializes to the divisor DM . After some technical
deformation arguments, one then sees that the pair .GM; DM/ admits a lifting when
M is realizable over k.

For the converse, one must essentially show that the above construction is the
only possibility. That is, if C is a regular semistable curve over kŒŒt

, the dual graph
of the central fiber is GM and the divisor DM is the specialization of a rank 2 divisor
on C, then in fact the image of the central fiber under the corresponding linear series
must provide a realization of the matroid M in P2

k .

11 Bounding the Number of Rational Points on Curves

By Faltings’ theorem (née the Mordell conjecture), if C is a curve of genus g � 2

over a number field K, then the set C.K/ of rational points on C is finite. Shortly
after Faltings proved this theorem, Vojta published a new proof which furnishes an
effective upper bound on the number of points in C.K/. However, the Vojta bound is
completely theoretical—to our knowledge no one has ever written down the bound
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explicitly (and the bound is surely quite far from optimal). None of the existing
proofs of the Mordell conjecture gives an algorithm—even in theory!—to compute
the set C.K/. And in practice the situation is even worse—it seems safe to say that no
one has ever used the Faltings or Vojta proofs of the Mordell conjecture to compute
C.K/ in a single nontrivial example.

11.1 The Katz–Zureick-Brown Refinement
of Coleman’s Bound

One of the first significant results in the direction of the Mordell conjecture was
Chabauty’s theorem that C.K/ is finite provided that the rank of the finitely
generated abelian group Jac.C/.K/ is less than g. Much later, Coleman used his
theory of p-adic integration to give an effective upper bound on C.K/ in this
situation. Coleman’s bound has the advantage of being sharp in certain cases, and
the method of proof can be used to compute C.K/ in a wide range of concrete
examples. For simplicity, we state the results in this section for K D Q only,
but everything extends with minor modifications to curves over a number field K.
Coleman’s theorem is as follows.

Theorem 11.1 ([50]). Let C be a curve of genus g over Q, and suppose that the
Mordell–Weil rank r of Jac.C/.Q/ is strictly less than the genus g. Then for every
prime p > 2g of good reduction for C, we have

#C.Q/ � #C.Fp/C 2g � 2: (2)

Coleman’s theorem was subsequently strengthened in different ways. In [95],
Lorenzini and Tucker (see also McCallum–Poonen [99]) generalized Theorem 11.1
to primes of bad reduction, replacing C.Fp/ in (2) by the smooth Fp-points of the
special fiber of the minimal proper regular model for C over Zp. Stoll replaced the
quantity 2g � 2 in (2) by 2r when C has good reduction at p, and asked if this
improvement could be established in the bad reduction case as well. Stoll’s question
was answered affirmatively by Katz and Zureick-Brown in [80] by supplementing
Stoll’s method with results from the theory of linear series on tropical curves:

Theorem 11.2 ([80]). Let C be a curve of genus g over Q and suppose that the
rank r of Jac.C/.Q/ is less than g. Then for every prime p > 2rC 2, we have

#C.Q/ � #Csm.Fp/C 2r;

where C denotes the minimal proper regular model of C over Zp.

In order to explain the relevance of linear series on tropical curves to such a result,
we need to briefly explain the basic ideas underlying the previous work of Coleman
et al. Let us first outline a proof of Theorem 11.1. Fix a rational point P 2 C.Q/
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(if no such point exists, then the theorem is vacuously true) and let � W C ,! J be
the corresponding Abel–Jacobi embedding. Coleman’s theory of p-adic integration
of 1-forms associates to each ! 2 H0.C; �1

C/ and Q 2 C.Qp/ a (definite) p-adic
integral

R Q
P ! 2 Qp, obtained by pulling back a corresponding p-adic integral on

J via the map �. Locally on C, such p-adic integrals can be computed by formally
integrating a power series expansion f!.T/ for ! with respect to a local parameter
T on some residue disc U. One can show fairly easily that the p-adic closure J.Q/

of J.Q/ in J.Qp/ has dimension at most r as a p-adic manifold. The formalism
of Coleman’s theory implies that forcing the p-adic integral of a 1-form on J to
vanish identically on J.Q/ imposes at most r linear conditions on H0.J; �1

J/. The
functoriality of Coleman integration implies that the Qp-vector space Vchab of all
! 2 H0.C; �1

C/ such that
R Q

P ! D 0 for all Q 2 C.Q/ has dimension at least
g � r > 0.

The condition p > 2g implies, by a p-adic analogue of Rolle’s theorem which
can be proved in an elementary way with Newton polygons, that if f!.T/ has n
zeroes on U then

R
f!.T/ dT has at most nC 1 zeroes on U. Using this observation,

Coleman deduces, by summing over all residue classes, that if ! is a nonzero 1-form
in H0.C; �1

C/ vanishing on all of C.Q/ then

#C.Q/ �
X

Q2 NC.Fp/

�
1C ordQ!

�
;

where ! denotes the reduction of ! to NC. Since the 1-form ! on NC has a total of
2g � 2 zeros counting multiplicity, we have

X

Q2 NC.Fp/

ordQ! � 2g � 2;

which yields Coleman’s bound.
Stoll observed in [113] that one could do better than this by adapting the

differential ! to the point Q rather than using the same differential ! for all residue
classes. Define the Chabauty divisor

Dchab D
X

Q2 NC.Fp/

nQ.Q/;

where nQ is the minimum over all nonzero ! in Vchab of ordQ!, and let d be the
degree of Dchab. Since Dchab and K NC�Dchab are both equivalent to effective divisors,
Clifford’s inequality (applied to the smooth proper curve NC) implies that

h0.K NC � Dchab/ � 1 � 1

2
.2g � 2 � d/:
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On the other hand, the semicontinuity of h0.D/ D r.D/ C 1 under specialization
shows that h0.Dchab/ � dimVchab � g � r. Combining these inequalities gives

g � r � 1 � 1

2
.2g � 2 � d/

and thus d � 2r, giving Stoll’s refinement of Coleman’s bound.
Lorenzini and Tucker [95] had shown earlier that one can generalize Coleman’s

bound to the case of bad reduction as follows. Since points of C.Q/ specialize to the
set NCsm.Fp/ of smooth Fp-points on the special fiber of C under the reduction map,
one obtains by an argument similar to the one above the bound

#C.Q/ �
X

Q2 NCsm.Fp/

�
1C nQ

�
; (3)

where ! denotes the reduction of ! to the unique irreducible component of the
special fiber of C containing Q. Choosing a nonzero ! 2 Vchab as in Coleman’s
bound, the fact that the relative dualizing sheaf for C has degree 2g � 2 gives
the Lorenzini–Tucker bound. A similar argument was found independently by
McCallum and Poonen [99].

We now explain where the subtlety occurs when one tries to combine the bounds
of Stoll and Lorenzini–Tucker. As above, we define the Chabauty divisor

Dchab D
X

Q2 NCsm.Fp/

nQ.Q/

and we let d be its degree. As in the case where C has good reduction, the goal is to
show that d � 2r. When C has good reduction, Stoll proves this by combining
the semicontinuity of h0 and Clifford’s inequality. For singular curves, one can
still define h0 of a line bundle and it satisfies the desired semicontinuity theorem.
However, even when C has semistable reduction, it is well-known that Clifford’s
inequality does not hold in the form needed here. Katz and Zureick-Brown replace
the use of Clifford’s inequality in Stoll’s argument by a hybrid between the classical
Clifford inequality and Clifford’s inequality for linear series on tropical curves. In
this way, they are able to obtain the desired bound d � 2r.

We briefly highlight the main steps in the argument, following the reformulation
in terms of metrized complexes given in [5].

1. As noted by Katz and Zureick-Brown, if one makes a base change from Qp

to an extension field over which there is a regular semistable model C0 for C
dominating the base change of C, the corresponding Chabauty divisors satisfy
D0

chab � Dchab. We may therefore assume that C is a regular semistable model
for C.

2. Let s D dim Vchab � 1. We can identify Vchab with an .sC 1/-dimensional space
W of rational functions on C in the usual way by identifying H0.C; �1

C/ with



Degenerations of Linear Series from the Tropical Point of View 419

L.KC/. The divisor Dchab on NCsm defines in a natural way a divisor D of degree d
on the metrized complex C associated with C. We can promote the divisor KC�D
to a limit linear series .KC�D; fHvg/ by defining Hv to be the reduction of W to
Cv for each v 2 V.G/. By the definition of Dchab, each element of Hv vanishes to
order at least nQ at each point Q in supp.Dchab/\Cv . The Specialization Theorem
for limit linear series on metrized complexes then shows that

rC.KC �D/ � s � g � r � 1:

3. On the other hand, Clifford’s inequality for metrized complexes implies that

rC.KC �D/ � 1

2
.2g � 2 � d/:

Combining these inequalities gives d � 2r as desired.

11.2 The Uniformity Theorems
of Katz–Rabinoff–Zureick-Brown

Together with Rabinoff, Katz, and Zureick-Brown have recently used linear series
on tropical curves to refine another result due to Stoll. In [37], Caporaso, Harris,
and Mazur proved that if one assumes the Bombieri–Lang conjecture then there is
a uniform bound M.g; K/ depending only on g and the number field K such that
jC.K/j � M.g; K/ for every curve C of genus g � 2 over K. The Bombieri–Lang
conjecture, which asserts that the set of rational points on a variety of general type
over a number field is not Zariski dense, remains wide open, and until recently little
progress had been made in the direction of unconditional proofs of the Caporaso–
Harris–Mazur result. In [114], Stoll proved that a uniform bound M.g; K/ exists for
hyperelliptic curves provided that one assumes in addition that the Mordell–Weil
rank of Jac.C/.K/ is at most g � 3. Katz, Rabinoff, and Zureick-Brown succeeded
in removing the hypothesis in Stoll’s theorem that C is hyperelliptic, obtaining the
following result.

Theorem 11.3 ([81]). There is an explicit bound N.g; d/ such that if C is a curve of
genus g � 3 defined over a number field K of degree d over Q and having Mordell–
Weil rank r � g � 3, then

#C.K/ � N.g; d/:

When K D Q, one can take N.g; 1/ D 76g2 � 82gC 22.

Note that the bound in Theorem 11.2 is not uniform, because the quantity
jCsm.Fp/j can be arbitrarily large for a given prime p of bad reduction, and the
smallest prime p of good reduction can be arbitrarily large as a function of g.
Stoll’s main new idea was to apply the Chabauty–Coleman method on residue
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annuli instead of just on discs. Stoll’s proof exploits the concrete description of
differentials on a hyperelliptic curve as f .x/dx=y; the restriction of such a differential
to an annulus has a bounded numerator, and Stoll is able to analyze the zeroes of the
resulting p-adic integral via explicit computations with Newton polygons.

For general curves, such an explicit description of differentials and the Newton
polygons of their p-adic integrals is not possible. This is where the theory of linear
systems on metric graphs becomes useful. To circumvent the difficulty posed by not
having an explicit description of differentials on C, Katz, Rabinoff, and Zureick-
Brown generalize the Slope Formula (Theorem 6.4) to sections of a metrized line
bundle. For a differential !, the associated tropical function F D log j!j on the
skeleton � of C belongs to the space R.K#

�/ of tropical rational functions G with
K#

� C div.G/ � 0. (The absolute value here comes from a natural formal metric on
the canonical bundle.) Belonging to R.K#

�/ gives strong constraints on the slopes of
F, and hence on the number of zeroes of the p-adic integral of !. The Slope Formula
thus replaces the Newton polygons in Stoll’s arguments, and estimates on the slopes
of the Newton polygon are replaced by properties of the tropical linear series jK#

� j.
A major issue one faces in trying to establish Theorem 11.3 (which also shows

up in the earlier work of Stoll) is that when C has bad reduction at p, there are two
different kinds of p-adic integrals which need to be considered. On the one hand,
there are the p-adic abelian integrals studied by Colmez, Zarhin, and Vologodsky,
which have no periods and are obtained by pulling back the logarithm map on the
p-adic Lie group Jac.C/.Qp/ to C. These are the integrals for which one knows that
dim.Vchab/ � g � r. On the other hand, there are the p-adic integrals of Berkovich
and Coleman–de Shalit which do have periods but also have better functoriality
properties. These are the integrals which are given locally on residue annuli of
a semistable model C by formally integrating a local Laurent series expansion
of ! 2 H0.C; �1/. In order to prove Theorem 11.3, one needs to study the
difference between the two kinds of p-adic integrals. One of the new discoveries
of Katz, Rabinoff, and Zureick-Brown is that the difference can be understood
quite concretely using tropical geometry by combining Theorem 6.5 with Raynaud’s
uniformization theory.

The methods used by Katz–Rabinoff–Zureick-Brown in [81] also provide new
results in the direction of a “uniform Manin-Mumford conjecture.” The Manin–
Mumford conjecture, proved by Raynaud, asserts that if C is a curve of genus at
least 2 embedded in its Jacobian via an Abel–Jacobi map � W C ! Jac.C/, then
�.C/ \ Jac.C/.K/tors is finite. One can ask whether there is a uniform bound on
the size of this intersection as one varies over all curves of a fixed genus g. The
following uniform result for the number of K-rational points on C which are torsion
on J is proved in [81]:

Theorem 11.4. There is an explicit bound N.g; d/tors (which one can equal to the
bound N.g; d/ above) such that if C is a curve of genus g � 3 defined over a number
field K of degree d over Q and � W C! Jac.C/ is an Abel–Jacobi embedding defined
over K, then

#�.C/ \ Jac.C/.K/tors � N.g; d/tors:
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Note that in Theorem 11.4 there is no restriction on the Mordell–Weil rank of
Jac.C/. It has been conjectured that #A.K/tors is bounded uniformly in terms of
ŒK W Q
 and g for all abelian varieties of dimension g over K, which would of course
imply Theorem 11.4 as a special case, but this is known only for g D 1 [100] and
the general case seems far out of reach at present.

Katz, Rabinoff, and Zureick-Brown also prove a uniformity result concerning
the number of geometric (K-rational) torsion points lying on C, under a technical
assumption about the structure of the stable model at some prime p. We refer to [81]
for the precise statement.

12 Limiting Behavior of Weierstrass Points
in Degenerating Families

The theory discussed in this paper has interesting applications to the behavior of
Weierstrass points under specialization. To motivate this kind of question, we begin
with a seemingly unrelated classical result due to Andrew Ogg [106].

12.1 Weierstrass Points on Modular Curves

Let N be a positive integer. The finite-dimensional space S D S2.�0.N// of weight
2 cusp forms for the congruence subgroup �0.N/ of SL2.Z/ is an important object
in number theory. An element f 2 S has a q-expansion of the form f DP1

nD1 anqn

with an 2 C, which uniquely determines f . For f ¤ 0 in S, define

ord.f / D inffn j an ¤ 0g � 1: (4)

If g D g0.N/ D dim.S/, then by Gaussian elimination there exists an element f 2 S
with ord.f / � g�1. Is there any unexpected cancellation? Under certain restrictions
on the level N, the answer is no:

Theorem 12.1 ([106]). If N D pM with p prime, p − M, and g0.M/ D 0, then there
is no nonzero element f of S2.�0.N// with ord.f / � g. (In particular, this holds if
N D p is prime.)

One can give an enlightening proof of Ogg’s theorem using specialization of
divisors from curves to metric graphs; the following argument is taken from [17].

First of all, Ogg’s theorem can be recast in the following purely geometric way,
which is in fact how Ogg formulated and proved the result in [106]:

Theorem 12.2. If N D pM with p prime, p − M, and g0.M/ D 0, then the cusp1
is not a Weierstrass point on the modular curve X0.N/.
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Recall that a point P on a genus g curve X is called a Weierstrass point if
there exists a holomorphic differential ! 2 H0.X; �1

X/ vanishing to order at least
g at P. To see the equivalence between Theorems 12.1 and 12.2, recall that q is an
analytic local parameter on X0.N/ at the cusp 1 and the map f 7! f .q/ dq

q gives
an isomorphism between S2.�0.N// and the space of holomorphic differentials on
X0.N/. Under this isomorphism, the function ord defined in (4) becomes the order of
vanishing of the corresponding differential at1. So there is a nonzero element f of
S2.�0.N// with ord.f / � g if and only if there is a nonzero holomorphic differential
! vanishing to order at least g at1.

The reduction of X D X0.N/ modulo p when p exactly divides N D pM is
well-understood; the special fiber of the so-called Deligne–Rapoport model for
X0.N/ over Zp consists of two copies of X0.M/ intersecting transversely at the
supersingular points in characteristic p. This model is always semistable but is not
in general regular. (It is very easy to describe the minimal regular model, but we will
not need this here.) In any case, the skeleton � of X0.N/ over Qp is a “metric banana
graph” consisting of two vertices connected by a number of edges, as pictured in
Fig. 16, and the cusp1 specializes to one of the two vertices, call it P. Under the
hypotheses of Theorem 12.1, each X0.M/ is a rational curve and so the genus of �

is equal to the genus of X0.N/. That is, there are gC 1 edges. By the Specialization
Theorem, if there is a nonzero global section of KX vanishing to order at least g at
1, then r.K� � gP/ � 0. However, since K� D .g � 1/PC .g � 1/Q, where Q is
the other vertex, we have K� � gP D .g � 1/Q � P, which is P-reduced by Dhar’s
algorithm and non-effective. Therefore r.K� � gP/ D �1, and Ogg’s theorem is
proved.

12.2 Specialization of Weierstrass Points

The essence of the above argument is that if C is a totally degenerate curve, meaning
that the genus of its minimal skeleton � equals the genus of C, then the Weierstrass
points on C must specialize to Weierstrass points on � , where a Weierstrass point
on � is a point P such that r.K� � gP/ � 0. It follows from the Specialization
Theorem and the corresponding fact from algebraic geometry that if � is a metric
graph of genus g � 2 then the set of Weierstrass points on � is nonempty. A purely
combinatorial proof of this fact was given by Amini [3].

The specialization of Weierstrass points is also a natural thing to study from
the purely algebro-geometric point of view, where one is asking about the limiting

Fig. 16 The “Banana” graph
of genus 2
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behavior of the Weierstrass points in a semistable one-parameter family of curves.
This subject, which was previously studied by Eisenbud–Harris [59], Esteves–
Medeiros [60], and several other authors, has seen important recent advances by
Amini [4]. We now summarize the main results proved in Amini’s paper.

Let L be a line bundle of degree d and rank r � 0 on a curve C of genus g
over an algebraically closed field k of characteristic zero. Given a point P 2 C.k/,
we define the vanishing set SP.L/ of L at P to be the set of orders of vanishing of
global sections of L at P. We have jSP.L/j D r C 1 for all P 2 C.k/, and for all but
finitely many P 2 C.k/ the vanishing set is Œr
 WD f0; 1; : : : ; rg. A point P 2 C.k/

whose vanishing set is not Œr
 is called a Weierstrass point for L. Equivalently, P is
a Weierstrass point for L if there exists a global section of L vanishing to order at
least rC 1 at P. A Weierstrass point of C is by definition a Weierstrass point for the
canonical bundle KC.

The L-weight of a point P 2 C.k/ is

wtP.L/ D
0

@
X

m2SP.L/

m

1

A �
 

rC 1

2

!
D

X

m2SP.L/

m �
X

i2Œr


i:

Thus wtP.L/ � 0 for all P 2 C.k/ and wtP.L/ > 0 if and only if P is a Weierstrass
point for L. The Weierstrass divisor for L is W D W.L/ D P

P2C.k/ wtP.L/.P/.
If we fix a basis F for H0.C; L/, the corresponding Wronskian WrF is a nonzero

global section of L˝.rC1/˝K
˝ r.rC1/

2

C whose divisor is precisely W.L/. In particular,
the degree of W.L/ (i.e., the total number of Weierstrass points counted according
to their weights) is W.L/ WD d.rC 1/C .g � 1/r.rC 1/.

We seek an explicit formula for Trop.W/. For this, it is convenient to fix a divisor
with L D L.D/, and to define as usual L.D/ D ff 2 k.C/� j div.f / C D � 0g.
Let D� D P

x2� dx.x/ be the specialization Trop.D/ of D to � . Let K#
� be the

canonical divisor of � considered as a vertex-weighted metric graph, as in Sect. 4.4.
Concretely, we have K#

� D
P

x2� .2gx � 2C val.x// x.
For a tangent direction � at x, define S�.D/ to be the set of integers occurring

as s�.f / for some f 2 L.D/, where s�.f / is defined as in Sect. 6 to be the slope of
trop.f / in the tangent direction �. Since s�.f / coincides with the order of vanishing
of the normalized reduction Nfx at the point of Cx corresponding to �, one sees easily
that jS�.D/j D rC 1.

For x 2 � , let

Sx.D/ D
( P

�2Tx.�/

�P
s2S� .D/ s

	
if x is of type-2

0 otherwise,
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where Tx.�/ denotes the set of tangent directions at x in � , and let

S.D/ D
X

x2�

Sx.D/ x:

Note that deg.S.D// D 0, since if f 2 k.C/� then the slope of F D � log jf j
along an oriented edge Ee of � is the negative of the slope of F along the same edge
with the orientation reversed.

The following formula is due to Amini. When � is the skeleton of a semistable
R-model C for C, the formula shows how the Weierstrass points of the generic fiber
C specialize to the various components of the special fiber of C, providing a simple
and satisfying answer to a question of Eisenbud and Harris.

Theorem 12.3 ([3]). Let Trop W Div.C NK/! Div.�/ be the natural map. Then

Trop.W.L// D .rC 1/ Trop.D/C
 

rC 1

2

!
K#

� � S.D/: (5)

Note that since deg.S.D// D 0, the degree of the right-hand side of (5) is W.L/ D
deg.W.L// as expected. Amini also proves an analogue of (5) when the residue field
of k has positive characteristic. As this is more technical to state, we will not discuss
this here.

Remark 12.4. A metric graph can have infinitely many Weierstrass points; this
happens, for example, with the banana graphs of genus g � 3 discussed above
(see [17]). In general, the set of Weierstrass points on a metric graph � is a finite
disjoint union of closed connected sets. It is an open problem to determine whether
there are intrinsic multiplicities m.A/ attached to each connected component A of
the Weierstrass locus on a metric graph � such that for any curve C having � as a
skeleton, exactly m.A/ Weierstrass points of C tropicalize to A.

12.3 Distribution of Weierstrass Points

Amini uses formula (5) to prove a non-Archimedean analogue of the Mumford–
Neeman equidistribution theorem, previously conjectured by Baker. We first recall
the statement of the latter result, and then present Amini’s analogous theorem.

Let C be a compact Riemann surface of genus at least 1. There is a natural volume
form !Ar on C, called the Arakelov form, which can be defined as follows. Let
!1; : : : ; !g be a orthonormal basis of L.KC/ with respect to the Hermitian inner
product

h!; �i D i

2

Z

C
! ^ N�:
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Then the .1; 1/-form !C D i
2

Pg
jD1 !j ^ N!j does not depend on the choice of

!1; : : : ; !g and has total mass g. We define

!Ar WD 1

g
!C:

Geometrically, the curvature form of !C is the pullback of the curvature form
of the flat metric on the Jacobian J of C with respect to any Abel–Jacobi map
C! J. Since the flat metric on J is translation-invariant, the pullback in question is
independent of the choice of base point in the definition of the Abel–Jacobi map.

The Mumford–Neeman theorem [103] asserts that for any ample line bundle L
on C, the Weierstrass points of L˝n become equidistributed with respect to !Ar as n
tends to infinity:

Theorem 12.5. Let C be a compact Riemann surface of genus at least 1 and let L
be an ample line bundle on C. Let

ın D 1

W.L˝n/

X

P2C

wtP.L˝n/ıP

be the probability measure supported equally on the Weierstrass points of L˝n. Then
as n tends to infinity, the measures ın converge weakly15 to the Arakelov metric !Ar.

In order to state Amini’s non-Archimedean analogue of Theorem 12.5, we
will first define the analogue of the Zhang measure on vertex-weighted metric
graphs/Berkovich curves following [18].

Let � be a metric graph of genus g. We fix a weighted graph model G of � and
for each edge e of G let `.e/ denote the length of e. For each spanning tree T of G,
let e1; : : : ; eg denote the edges of G not belonging to T , and let

�T D
gX

jD1

�.ej/

where �.e/ is Lebesgue measure along e, normalized to have total mass 1 (so that
�T has total mass g). We also let w.T/ DQg

jD1 `.ej/, and let

w.G/ D
X

T

w.T/

be the sum of w.T/ over all spanning trees T of G. Then the measure

�� D
X

T

w.T/

w.G/
�T

is a weighted average of the measures �T over all spanning trees T , and in particular
has total mass g.

15This means that for every continuous function f W C ! R, we have
R

C f ın D R
C f !Ar.
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In other words, a random point in the complement of a random spanning tree of
G is distributed according to the probability measure 1

g �� .
Now let .�; !/ be a vertex-weighted metric graph, in the sense of Sect. 4.4, of

genus g D g.�/CPx2� !.x/. Then the measure

�.�;!/ WD �� C
X

x2�

!xıx

has total mass g. If g � 1, we define the Zhang measure on .�; !/ to be the
probability measure

�Zh WD 1

g
�.�;!/:

Theorem 12.6 ([4]). Let C be an algebraic curve of genus at least 1 over the non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle on
C. Let C be a strongly semistable model of C over the valuation ring of k, let .�; !/

be the weighted graph associated with C in the sense of Sect. 4.4, and let �Zh be the
Zhang measure associated with .�; !/. Finally, let

ın D 1

W.L˝n/

X

P2C

wtP.L˝n/ıTrop.P/

be the probability measure on � supported equally on the tropicalizations of the
Weierstrass points of L˝n (taken with multiplicities). Then as n tends to infinity, the
measures ın converge weakly on � to �Zh.

A new and concrete consequence of Theorem 12.6 is the following:

Corollary 12.7. Let C be an algebraic curve of genus at least 1 over a non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Fix a strongly semistable model C for C over the valuation ring of k, let Z be
an irreducible component of the special fiber of C, and let gZ be the genus of Z. Let
WZ.L˝n/ be the set of Weierstrass points of L˝n specializing to a nonsingular point
of Z. Then

lim
n!1

jWZ.L˝n/j
jW.L˝n/j D

gZ

g
:

It is convenient and enlightening to rephrase Theorem 12.6 in terms of the
Berkovich analytic space Can. If � is any skeleton of Can and ! is the corresponding
weight function defined by !.x/ D gx, we define the Zhang measure on Can to be
the probability measure

�Zh WD 1

g
���.�;!/
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with respect to the natural inclusion � W � ! Can. This measure on Can is easily seen
to be independent of the choice of � , and has total mass equal to the genus g of C.
Using the fact that Can Š lim ��C (cf. Sect. 6.2), one deduces using standard results
from real analysis that Theorem 12.6 is equivalent to the following reformulation,
which more closely resembles Theorem 12.5:

Theorem 12.8 ([4]). Let C be an algebraic curve of genus at least 1 over the non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Let

ın D 1

W.L˝n/

X

P2C

wtP.L˝n/ıP

be the probability measure on Can supported equally on the Weierstrass points of
L˝n. Then as n tends to infinity, the measures ın converge weakly on Can to the
Zhang measure �Zh.

Remark 12.9. The measure �Zh, which was first introduced in the context of
vertex-weighted metric graphs by Shouwu Zhang in [120], plays the role in the non-
Archimedean setting of the Arakelov volume form. Using a result of Heinz [74]
and the recent work of Chambert-Loir–Ducros [44] and Gubler–Kunnemann [69]
on non-Archimedean Arakelov theory, one can show that, as in the Archimedean
case, �C is obtained by pulling back the curvature form of a canonical translation-
invariant metric on J via an Abel–Jacobi map. There is also evidently a close
connection between the measure �� and the polyhedral decomposition fCTg of
Picg.�/ associated with G (cf. Sect. 5.4) which is deserving of further study.

The proof of Theorem 12.6 (and its equivalent formulation Theorem 12.8) is
based on formula (5) together with the theory of Okounkov bodies. The rough idea
is that fixing a type-2 point x of Can and a tangent direction � at x, as well as a
divisor D with L D L.D/, the rational numbers 1

n S�.nD/ defined above become
equidistributed in a real interval of length d D deg.L/ as n ! 1. Combining this
“local” equidistribution result with (5) and a careful analysis of the variation of the
minimum slope along edges of � give the desired result.

13 Further Reading

There are many topics closely related to the contents of this paper which we have
not had space to discuss. Here is a brief and non-exhaustive list of some related
topics and papers which we recommend to the interested reader:

1. Harmonic morphisms. In algebraic geometry, a base-point free linear series of
rank r on a curve C is more or less the same thing as a morphism C ! Pr.
In tropical geometry, the situation is much more subtle, and no satisfactory
analogue of this correspondence is known. For r D 1, there is a close relationship
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(although not a precise correspondence) between tropical g1
d’s on a metric graph

� and degree d harmonic morphisms from � to a metric tree. The theory of
harmonic morphisms of metric graphs and metrized complexes of curves is
explored in detail in the papers [8, 9, 45, 97], among others.

2. Spectral bounds for gonality. In [49], Cornelissen et. al. establish a spectral
lower bound for the stable gonality (in the sense of harmonic morphisms) of
a graph G in terms of the smallest nonzero eigenvalue of the Laplacian of G.
This is a tropical analogue of the Li–Yau inequality for Riemann surfaces. They
give applications of their tropical Li–Yau inequality to uniform boundedness of
torsion points on rank two Drinfeld modules, as well as to lower bounds on the
modular degree of elliptic curves over function fields. The spectral bound from
[49] was subsequently refined by Amini and Kool in [7] to a spectral lower bound
for the divisorial gonality (i.e., the minimal degree of a rank 1 divisor) of a metric
graph � . In [7], as well as in the related paper [54], this circle of ideas is applied
to show that the expected gonality of a random graph is asymptotic to the number
of vertices.

3. Tropical complexes. In [39], Cartwright formulates a higher-dimensional ana-
logue of the basic theory of linear series on graphs, including a Specialization
Theorem for the rank function. He calls the objects on which his higher-
dimensional linear series live tropical complexes. A generalization of the Slope
Formula to the context of non-Archimedean varieties and tropical complexes is
proved in [70].

4. Abstract versus embedded tropical curves. In this paper we have dealt exclusively
with linear series on abstract tropical curves (thought of as metric graphs) and
have eschewed the more traditional perspective of tropical varieties as non-
Archimedean amoebas associated with subvarieties of tori. The two approaches
are closely related, however: see, for example, [24, 42, 70]. The theory of linear
series on abstract tropical curves has concrete consequences for embedded trop-
ical curves, e.g., with respect to the theory of bitangents and theta characteristics
as in [26, 46].

5. Algebraic rank. In [35], Caporaso introduces a notion of rank for divisors on
graphs known as the algebraic rank, which is defined geometrically by varying
over all curves with the given dual graph and all line bundles with the given
specialization. The algebraic rank differs in general from the combinatorial rank
[38], but the two invariants agree for hyperelliptic graphs and graphs of genus 3
[82]. Many of the results we have discussed also hold for the algebraic rank. For
example, there are specialization, Riemann–Roch, and Clifford’s theorems for
algebraic rank [35], and Mnëv universality holds for obstructions to the lifting
problem for algebraic rank [91].
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