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Components of Brill–Noether Loci for Curves with
Fixed Gonality

Kaelin Cook-Powell & David Jensen

Abstract. We describe a conjectural stratification of the Brill–
Noether variety for general curves of fixed genus and gonality. As
evidence for this conjecture, we show that this Brill–Noether variety
has at least as many irreducible components as predicted by the con-
jecture and that each of these components has the expected dimension.
Our proof uses combinatorial and tropical techniques. Specifically,
we analyze containment relations between the various strata of trop-
ical Brill–Noether loci identified by Pflueger in his classification of
special divisors on chains of loops.

1. Introduction

Given a curve C over the complex numbers, the Brill–Noether variety Wr
d (C)

parameterizes line bundles of degree d and rank at least r on C. Brill–Noether
varieties encode a significant amount of geometric information and consequently
are among the most well-studied objects in the theory of algebraic curves. A series
of results in the 1980s concern the geometry of Wr

d (C) when C is general in the
moduli space Mg . In this case the locally closed stratum Wr

d (C) � Wr+1
d (C) is

smooth [Gie82] of dimension

ρ(g, r, d) := g − (r + 1)(g − d + r) [GH80]

and irreducible when ρ(g, r, d) is positive [FL81].
More recent work has focused on the situation where C is general in the Hur-

witz space Hk,g parameterizing branched covers of the projective line of degree
k and genus g. The Hurwitz space Hk,g admits a natural map to the moduli space
Mg , given by forgetting the data of the map to P

1. When k ≥ � g+3
2 �, this map

is dominant, and there is nothing new to show, so we restrict our attention to the
case where k is smaller than � g+3

2 �. We refer to a general point in the Hurwitz
space Hk,g as a general curve of genus g and gonality k. Our main result is the
following:

Theorem 1.1. Let C be a general curve of genus g and gonality k ≥ 2. Then
there exists an irreducible component of Wr

d (C) of dimension

ρ(g,α − 1, d) − (r + 1 − α)k,
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as long as this number is nonnegative, for every positive integer α ≤ min{r +
1, k − 1} satisfying either α ≥ k − (g − d + r) or α = r + 1.

We strongly suspect that Theorem 1.1 identifies all irreducible components of
Wr

d (C) for a reason that we will explain in Section 1.1. Theorem 1.1 is a general-
ization of several previous results. Pflueger [Pfl17a] shows that the dimension of
Wr

d (C) is at most

ρk(g, r, d) := max
α

ρ(g,α − 1, d) − (r + 1 − α)k

and asks whether every component has dimension ρ(g,α − 1, d) − (r + 1 − α)k

for some value of α. In [JR17], Ranganathan and the second author show that the
maximal dimensional component has dimension exactly ρk(g, r, d). Coppens and
Martens [CM99] exhibit components of dimension ρ(g,α − 1, d) − (r + 1 − α)k

for α equal to 1, r , and r + 1. They further expand on this result in [CM02],
constructing components of dimension ρ(g,α − 1, d) − (r + 1 − α)k for all α

dividing r or r + 1.

1.1. The Splitting Type Stratification

Let π : C → P
1 be a branched cover of degree k. Given a line bundle L on C, its

pushforward π∗L is a vector bundle of rank k on P
1. Every vector bundle on P

1

splits as a direct sum of line bundles

π∗L ∼= O(μ1) ⊕ · · · ⊕O(μk)

for some integers μ1, . . . ,μk , which are unique up to permutation.
The vector μ = (μ1, . . . ,μk) is known as the splitting type of the vector bun-

dle, and we write π∗L ∼= O(μ) for ease of notation. We write Wμ(C) for the
locally closed subscheme parameterizing line bundles on C whose pushforward
has splitting type μ:

Wμ(C) := {L ∈ Pic(C)|π∗L ∼= O(μ)}.
The splitting type of π∗L determines not only the degree and rank of the line

bundle L, but also the rank of L ⊗ π∗O(m) for all integers m (see Section 2).
In this way the varieties Wμ(C) stratify Wr

d (C). The number of irreducible com-
ponents of Wr

d (C) and the dimensions of these components are predicted by the
following conjecture. We refer the reader to Definition 2.1 for the partial order on
splitting types and to Definition 2.3 for the magnitude of a splitting type.

Conjecture 1.2. Let C be a general curve of genus g and gonality k ≥ 2. Then:

(1) Wμ(C) is contained in the closure of Wλ(C) if and only if μ ≤ λ;
(2) Wμ(C) is smooth;
(3) Wμ(C) has dimension g − |μ| if g ≥ |μ| and is empty otherwise;
(4) Wμ(C) is irreducible if g > |μ|.
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At the time of writing, we learned of a simultaneous and independent proof of
parts (1)–(3) of Conjecture 1.2, due to Larson [Lar19].

As evidence for Conjecture 1.2, we consider the strata Wμ(C) that the conjec-
ture predicts to be maximal in Wr

d (C). For a given rank r and degree d , the max-
imal elements of the poset of splitting types are in correspondence with positive
integers α ≤ min{r + 1, k − 1} satisfying either α ≥ k − (g − d + r) or α = r + 1.
(See Definition 2.5 and Proposition 2.11 for details.) Let μα denote the splitting
type corresponding to the integer α. Conjecture 1.2 predicts that the irreducible
components of Wr

d (C) are precisely the closures of the strata Wμα (C). We prove
the following stronger version of Theorem 1.1.

Theorem 1.3. Let C be a general curve of genus g and gonality k ≥ 2. If g ≥
|μα|, then Wμα (C) has an irreducible component of dimension g − |μα|. The
closure of this component is an irreducible component of Wr

d (C).

1.2. Approach and Techniques

Our approach is based on tropical techniques developed in [CDPR12; Pfl17a;
Pfl17b; JR17]. Each of these papers establishes results about Brill–Noether vari-
eties by studying the divisor theory of a particular family of metric graphs, known
as the chains of loops. The first of these papers [CDPR12] provides a new proof
of the Brill–Noether theorem. Key to this argument is the classification of special
divisors on chains of loops � with generic edge lengths. Specifically, [CDPR12]
shows that Wr

d (�) is a union of tori T(t), where the tori are indexed by standard
Young tableaux t .

Pflueger [Pfl17b] generalizes this result to chains of loops with arbitrary edge
lengths. In this case, Wr

d (�) is still a union of tori, but here the tori are indexed
by a more general type of tableaux, known as displacement tableaux. (See Def-
inition 3.3 and Theorem 3.5.) Pflueger [Pfl17a] computes the dimension of the
largest of these tori and thus obtains his bound on the dimensions of Brill–Noether
loci for general k-gonal curves.

Instead of studying the tori of maximum dimension, in this paper, we study the
tori that are maximal with respect to containment. The tableaux corresponding to
maximal-dimensional tori belong to a larger family, known as scrollar tableaux;
see Definition 3.8. There is a natural partition of scrollar tableaux into types,
where the types are indexed by positive integers α ≤ min{r + 1, k − 1} satisfying
either α ≥ k − (g − d + r) or α = r + 1. It is shown in [JR17] that, under certain
mild hypotheses, divisor classes corresponding to scrollar tableaux lift to divisor
classes on k-gonal curves in families of the expected dimension.

Our main combinatorial result is the following:

Theorem 1.4. Let � be a k-gonal chain of loops of genus g, and let t be a
k-uniform displacement tableau on [r + 1] × [g − d + r]. The torus T(t) is max-
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imal with respect to containment in Wr
d (�) if and only if t is scrollar. In other

words,

Wr
d (�) =

⋃
t scrollar

T(t).

1.3. Outline of the Paper

Sections 2 and 3 contain preliminary material. In Section 2, we review the ba-
sic theory of splitting types and identify those that are maximal with respect to
the dominance order. In Section 3, we review the classification of special divi-
sor classes on chains of loops from [Pfl17a; Pfl17b] and the necessary results on
scrollar tableaux from [JR17]. In Section 4, we discuss the relation between our
combinatorial and geometric results and in particular show that Theorem 1.4 im-
plies Theorem 1.3. In the final two sections, which are purely combinatorial, we
prove Theorem 1.4. In Section 5, we show that if t is a scrollar tableau, then T(t)

is maximal, and in Section 6, we establish the converse.

2. Splitting Types

2.1. Preliminary Definitions

In this section, we review the definition of splitting types and discuss some of
their basic properties. Let π : C → P

1 be a branched cover of degree k and genus
g, and let L be a line bundle on C. As explained in Section 1.1, the pushforward
π∗L is a vector bundle of rank k on P

1, and every vector bundle on P
1 splits as a

direct sum of line bundles

π∗L ∼= O(μ1) ⊕ · · · ⊕O(μk).

The integers μ1, . . . ,μk are unique up to permutation. We will assume throughout
that

μ1 ≤ μ2 ≤ · · · ≤ μk.

The vector μ = (μ1, . . . ,μk) is known as the splitting type of the vector bundle,
and we write π∗(L) ∼= O(μ) for ease of notation. It is helpful to think of a splitting
type μ as a partition with possibly negative parts. This is because, for any �,
the sum of the � smallest entries of μ is a lower semicontinuous invariant. It is
therefore natural to endow the set of splitting types with a partial order, extending
the dominance order on partitions.

Definition 2.1. We define the dominance order on splitting types as follows. Let
μ and λ be splitting types satisfying

∑k
i=1 μi = ∑k

i=1 λi . We say that μ ≤ λ if
and only if

μ1 + · · · + μ� ≤ λ1 + · · · + λ� for all � ≤ k.

The splitting type of π∗L determines the rank and degree of the line bundle L, as
well as the rank of all its twists by line bundles pulled back from the P

1. This can
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be seen by the projection formula as follows:

h0(C,L ⊗ π∗OP1(m)) = h0(P1,π∗L ⊗OP1(m))

=
k∑

i=1

h0(P1,OP1(μi + m))

=
k∑

i=1

max{0,μi + m + 1}. (�)

In particular, we have

h0(L) =
k∑

i=1

max{0,μi + 1} and

degL = g + k − 1 +
k∑

i=1

μi.

This suggests the following definition.

Definition 2.2. Let Wμ(C) denote the locally closed subscheme parameterizing
line bundles on C whose pushforward has splitting type μ:

Wμ(C) := {L ∈ Pic(C)|π∗L ∼= O(μ)}.
The expected codimension of Wμ(C) in Picd(C) is given by the magnitude of μ.

Definition 2.3. The magnitude of a splitting type μ is

|μ| :=
∑
i<j

max{0,μj − μi − 1}.

Example 2.4. Let C be a trigonal curve of genus 5. We will show that W 1
4 (C)

has two irreducible components, both isomorphic to C. First, there is a one-
dimensional family of rank 1 divisor classes obtained by adding a basepoint to
the g1

3 . If D ∈ W 1
4 (C) is not in this one-dimensional family, then D − g1

3 is not
effective. It follows from the basepoint free pencil trick that the multiplication
map

ν : H 0(D) ⊗ H 0(g1
3) → H 0(D + g1

3)

is injective. The divisor class D + g1
3 is therefore special. From this we see that

the Serre dual KC − D is a divisor class in W 1
4 (C) with the property that (KC −

D) − g1
3 is effective.

Therefore we see that W 1
4 (C) has two components, both isomorphic to C, as

pictured in Figure 1. One of these components consists of divisor classes D such
that D − g1

3 is effective, and the other component consists of the Serre duals of
classes in the first component. Since KC − 2g1

3 is effective of degree 2, we see
that these two components intersect in two points.
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Figure 1 Stratification of W1
4 for a general curve of genus 5 and

gonality 3.

Alternatively, this analysis can be carried out by examining the splitting type
stratification of W 1

4 (C). By (�) we see that line bundles in the first component, in
the complement of the two intersection points, have the splitting type (−2,−2,1).
Similarly, line bundles in the second component, in the complement of the two in-
tersection points, have the splitting type (−3,0,0). Finally, the two line bundles
in the intersection have the splitting type (−3,−1,1). Notice that this third split-
ting type is smaller than each of the previous two in the dominance order and that
the codimension of each stratum in Pic4(C) is the magnitude of the splitting type.

2.2. Maximal Splitting Types

For the remainder of this section, we fix positive integers g, r , d , and k such that
r > d − g. Among the possible splitting types of line bundles of degree d and
rank at least r on a k-gonal curve of genus g, we identify those that are maximal
with respect to the dominance order.

Definition 2.5. Let α ≤ min{r + 1, k − 1} be a positive integer. By the division
algorithm there exists a unique pair of integers q , β such that

r + 1 = qα + β, 0 ≤ β < α.

Similarly, there exists a unique pair of integers q ′, β ′ such that

g − d + r = q ′(k − α) + β ′, 0 ≤ β ′ < k − α.

We define the splitting type μα as follows:

μα,i :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−q ′ − 2 if 0 < i ≤ β ′,
−q ′ − 1 if β ′ < i ≤ k − α,

q − 1 if k − α < i ≤ k − β,

q if k − β < i ≤ k.

Heuristically, μα is the “most balanced” splitting type of degree d and rank r ,
subject to the constraint that precisely α of its entries are nonnegative. We show
that the expected codimension of Wμα (C) coincides with the dimensions of irre-
ducible components of Wr

d (C) predicted by [Pfl17a, Question 1.12].



Components of Brill–Noether Loci 25

Lemma 2.6. For any integer α, we have

g − |μα| = ρ(g,α − 1, d) − (r + 1 − α)k.

Proof. First, recall that

|μα| =
∑
i<j

max{0,μα,j − μα,i − 1}.

If i < j ≤ k −α, then μα,j −μα,i ≤ 1, so the pair (i, j) does not contribute to the
sum above. Similarly, if k − α < i < j , then μα,j − μα,i ≤ 1, so again the pair
(i, j) does not contribute to the sum above.

On the other hand, if i ≤ k − α and j > k − α, then the pair (i, j) does
contribute to the sum. There are precisely (k − α)α such pairs; each μα,i with
i ≤ k − α appears in exactly α of these pairs, and each μα,j with j > k − α ap-
pears in exactly k −α of these pairs. It follows that we may rewrite the sum above
as

|μ| = (k − α)

k∑
j=k−α+1

μj − α

k−α∑
i=1

μi − (k − α)α

= (k − α)(r + 1 − α) + α(g − d + r + k − α) − (k − α)α

= α(g − d + α − 1) + (r + 1 − α)k.

Subtracting both sides from g yields the result. �

Recall that the integers g, r , d , and k are fixed. We will say that a splitting type is
maximal if it is maximal with respect to the dominance order among all splitting
types satisfying

k∑
i=1

μi = d + 1 − g − k

and
k∑

i=1

max{0,μi + 1} ≥ r + 1.

In the rest of this section, we show that the maximal splitting types are precisely
the splitting types μα when either α ≥ k − (g −d + r) or α = r +1. We first prove
the following reduction step.

Lemma 2.7. A maximal splitting type μ satisfies

k∑
i=1

max{0,μi + 1} = r + 1.

Proof. For the purposes of this argument, we define

h(μ) =
k∑

i=1

max{0,μi + 1}.
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Let μ be a splitting type satisfying

k∑
i=1

μi = d + 1 − g − k

and h(μ) ≥ r +1. We will show, by induction on h(μ), that there exists a splitting
type λ such that μ ≤ λ and h(λ) = r + 1.

Since r ≥ 0, we see that μk ≥ 0, and since h(μ) ≥ r + 1 > d − g + 1, we see
that μ1 < −1. Therefore there exists an integer i such that μi > μi−1. Let j be the
smallest such integer and j ′ the largest such integer. Since μ1 < −1 and μk ≥ 0,
either j < j ′, or j = j ′ and μj−1 < μj − 1. It follows that the vector μ′ obtained
from μ by adding 1 to μj−1 and subtracting 1 from μj ′ is nondecreasing, and
therefore a valid splitting type. Moreover, we have μ < μ′. Since μj−1 < −1 and
μj ′ ≥ 0, we see that h(μ′) = h(μ) − 1, and the result follows by induction. �

We now show that every maximal splitting type is of the form μα for some α.

Lemma 2.8. Let μ be a splitting type satisfying

k∑
i=1

μi = d + 1 − g − k

and
k∑

i=1

max{0,μi + 1} = r + 1.

Let α denote the number of nonnegative entries of μ. Then μ ≤ μα .

Proof. By assumption we have

k∑
i=k−α+1

μi = r + 1 − α =
k∑

i=k−α+1

μα,i .

It follows that
k−α∑
i=1

μi = −(g − d + r) − (k − α) =
k−α∑
i=1

μα,i .

Because the entries of μ are ordered from smallest to largest, for any � ≤ k − α,
we see that

�∑
i=1

μi ≤ �

k − α

k−α∑
i=1

μi = −�(g − d + r)

k − α
− �.

Similarly, for any � ≤ α, we see that

k−α+�∑
i=k−α+1

μi ≤ �

α

k∑
i=k−α+1

μi = �(r + 1)

α
− �.

Therefore by the definition of μα we have μ ≤ μα . �
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Corollary 2.9. If μ is a maximal splitting type, then μ = μα for some integer α.

Proof. Let μ be a maximal splitting type. By Lemma 2.7 we see that

k∑
i=1

max{0,μi + 1} = r + 1.

Let α denote the number of nonnegative entries of μ. By Lemma 2.8 we have
μ ≤ μα , but since μ is maximal, it follows that μ = μα . �

We now show that if α < min{k − (g − d + r), r + 1}, then μα is not maximal.

Lemma 2.10. If α < min{k − (g − d + r), r + 1}, then μα < μα+1.

Proof. Since g−d +r < k−α, by definition we have μα,k−α = −1. If r +1 is not
divisible by α, then consider the splitting type μ obtained from μα by adding 1 to
μα,k−α and subtracting 1 from μα,k−β+1. On the other hand, if r + 1 is divisible
by α, then since α < r + 1, we must have μα,k−α+1 > 0. In this case, consider the
splitting type μ obtained from μα by adding 1 to μα,k−α and subtracting 1 from
μα,k−α+1. In either case, we see that μ is a splitting type with α + 1 nonnegative
entries satisfying μα < μ. By Lemma 2.8 we have μα < μ ≤ μα+1. �

Finally, we see that the remaining splitting types μα are maximal.

Proposition 2.11. The splitting type μ is maximal if and only if μ = μα for some
integer α satisfying either α ≥ k − (g − d + r) or α = r + 1.

Proof. By Corollary 2.9 every maximal splitting type is of the form μα for some
integer α. By Lemma 2.10, if α < k − (g − d + r) and α = r + 1, then μα is not
maximal. It therefore suffices to show that if α = γ are both greater than or equal
to k − (g − d + r), then μα and μγ are incomparable.

Without loss of generality, assume that α < γ . We write

r + 1 = qαα + βα, 0 ≤ βα < α

= qγ γ + βγ , 0 ≤ βγ < γ.

Since α < γ , we see that qα ≥ qγ . Moreover, since γ ≤ r + 1, we see that both
qα and qγ are positive. It follows that if qα = qγ , then βα > βγ . Thus, if j is
the largest integer such that μα,j = μγ,j , then μα,j > μγ,j . If μα and μγ are
comparable, then we see that μα < μγ .

Since k −α ≤ g − d + r , we see by a similar argument that if j ′ is the smallest
integer such that μα,j ′ = μγ,j ′ , then μα,j ′ > μγ,j ′ . It follows that if μα and μγ

are comparable, then μα > μγ . Combining these two observations, we see that
μα and μγ are incomparable. �

3. Divisor Theory of Chains of Loops

In this section, we survey the theory of special divisors on chains of loops, as
discussed in [Pfl17a; Pfl17b; JR17]. We refer the reader to those papers for more
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Figure 2 The chain of loops �.

details. For a more general overview of divisors on tropical curves, we refer the
reader to [Bak08; BJ16]. For the uninitiated, we will not require most of the ma-
terial of these papers; we will use only the classification of special divisors on
chains of loops from [Pfl17a; Pfl17b].

3.1. Chains of Loops and Torsion Profiles

Let � be a chain of g loops with bridges, as pictured in Figure 2. Each of the g

loops consists of two edges. We denote the lengths of the top and bottom edge of
the j th loop by �j and mj , respectively. The Brill–Noether theory of chains of
loops is governed by the torsion orders of the loops.

Definition 3.1 ([Pfl17b, Definition 1.9]). If �j + mj is an irrational multiple of
mj , then the j th torsion order τj of � is 0. Otherwise, we define τj to be the
minimum positive integer such that τjmj is an integer multiple of �j + mj . The
sequence τ = (τ1, . . . , τg) is called the torsion profile of �.

For the remainder of this paper, we assume that the torsion profile of � is given
by

τi :=
{

0 if i < k or i > g − k + 1,

k otherwise.

This chain of loops with this torsion profile possesses a distinguished divisor class
of rank 1 and degree k, given by g1

k = kvk , where vk is the lefthand vertex of the
kth loop.

Remark 3.2. Note that, unlike [Pfl17a, Definition 2.1], we do not require the
first k − 1 loops or the last k − 1 loops to have torsion order k. This choice does
not affect the gonality, or more generally the Brill–Noether theory, of this metric
graph. A primary reason for this choice is that the space of such metric graphs has
dimension equal to that of the Hurwitz space, namely 2g + 2k − 5.

Pflueger [Pfl17b] classifies the special divisor classes on chains of loops. This
classification generalizes that of special divisor classes on generic chains of loops
in [CDPR12]. Specifically, Pflueger shows that Wr

d (�) is a union of tori, where the
tori are indexed by certain types of tableaux. Whereas Pflueger’s analysis applies



Components of Brill–Noether Loci 29

to chains of loops with arbitrary torsion profiles, we record it only for the torsion
profile above. For ease of notation, given a positive integer a, we write [a] for the
finite set {1, . . . , a}.
Definition 3.3 ([Pfl17a, Definition 2.5]). Let a and b be positive integers. Recall
that a tableau on [a] × [b] with alphabet [g] is a function t : [a] × [b] → [g]
satisfying

t (x, y) < t(x, y + 1) and t (x, y) < t(x + 1, y) for all (x, y).

A tableau t is standard if t is injective. A tableau t is called a k-uniform displace-
ment tableau if, whenever

t (x, y) = t (x′, y′), we have x − y = x′ − y′ (mod k).

It is standard to depict a tableau on [a] × [b] as a rectangle with a columns and b

rows, where the box in position (x, y) is filled with the symbol t (x, y). We draw
our tableaux according to the English convention, so that the box (1,1) appears
in the upper lefthand corner.

3.2. Coordinates on Pic(�)

A nice feature of the chain of loops is that its Picard group has a natural system
of coordinates. On the j th loop, let 〈ξ 〉j denote the point located ξmj units from
the righthand vertex in the counterclockwise direction. Note that

〈ξ 〉j = 〈η〉j if and only if ξ = η (mod τj ).

By the tropical Abel–Jacobi theorem [BN07] every divisor class D of degree d

on � has a unique representative of the form

(d − g)〈0〉g +
g∑

j=1

〈ξj (D)〉j

for some real numbers ξj (D). Because this expression is unique, the functions ξj

form a system of coordinates on Picd(�). This representative of the divisor class
D is known as the break divisor representative [MZ08; ABKS14].

Definition 3.4 ([Pfl17b, Definition 3.5]). Given a degree d and a k-uniform
displacement tableau t with alphabet [g], we define the coordinate subtorus T(t)

as follows:

T(t) := {D ∈ Picd(�)|ξt (x,y)(D) = y − x (mod k)}.
Note that the coordinate ξj (D) of a divisor class D in T(t) is determined if and
only if j is in the image of t . It follows that the codimension of T(t) in Picd(�)

is the number of distinct symbols in t . The main combinatorial result of [Pfl17b]
is a classification of special divisors on �.
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Theorem 3.5 ([Pfl17b, Theorem 1.4]). For any positive integers r and d satisfy-
ing r > d − g, we have

Wr
d (�) =

⋃
T(t),

where the union is over k-uniform displacement tableaux on [r + 1]× [g − d + r]
with alphabet [g].
Notably, Pflueger does not consider the containment relations between the vari-
ous tori T(t). These containment relations are the primary concern of Sections 5
and 6. We note the following, which will be explored in more detail in these later
sections.

Lemma 3.6. Let t and t ′ be k-uniform displacement tableaux on [a] × [b]. Then
T(t) ⊆ T(t ′) if and only if

(1) every symbol in t ′ is a symbol in t , and
(2) if t (x, y) = t ′(x′, y′), then x − y = x′ − y′ (mod k).

Under Pflueger’s classification of special divisors, there is a natural interpretation
of Serre duality. Given a tableau t on [a] × [b], define the transpose tableau to be
the tableau tT on [b] × [a] given by tT (x, y) = t (y, x).

Lemma 3.7 ([Pfl17b, Remark 3.6]). Let t be a k-uniform displacement tableau on
[r + 1] × [g − d + r] with alphabet [g], and let D ∈ T(t) be a divisor class. Then
the Serre dual K� − D is contained in T(tT ).

3.3. Scrollar Tableaux

In [JR17], Ranganathan and the second author consider a special type of k-
uniform displacement tableaux, known as scrollar tableaux. Throughout this sec-
tion, we fix positive integers a and b, and a positive integer α ≤ min{a, k − 1}
satisfying either α ≥ k − b or α = a. As in Definition 2.5, we write

a = qα + β, 0 ≤ β < α

and
b = q ′(k − α) + β ′, 0 ≤ β ′ < k − α.

Definition 3.8. Let t be a tableau on [a]× [b]. We define t to be scrollar of type
α if it satisfies the following three conditions.

(1) t (x, y) = t (x′, y′) if and only if there exists an integer � such that both

x′ − x = �α and y′ − y = �(α − k).

(2) If α = a, then t (1, y) > t(a, y + a − k) for all y > k − a.
(3) If α = k − b, then t (x,1) > t(x + b − k, b) for all x > k − b.

Remark 3.9. When k − b < α < a, Definition 3.8 agrees with [JR17, Defini-
tion 7.1], but in the edge cases the two definitions disagree. This is because when
α is equal to a or k − b, every standard tableau satisfies [JR17, Definition 7.1]
trivially. In Sections 5 and 6, however, we will see that T(t) is maximal only for
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tableaux satisfying Definition 3.8. We note that when α < a, condition (1) implies
an inequality analogous to that of condition (2), because

t (1, y) = t (α + 1, y + α − k) > t(α, y + α − k).

Similarly, when α > k − b, condition (1) implies an inequality analogous to that
of condition (3).

For the reader interested in comparing the definitions in the two papers, we
provide a brief dictionary. The integer α appearing here is the same as n in [JR17].
The integer β agrees with b in [JR17], and q is equal to � a

α
� = � r+1

n
�.

Example 3.10. A typical example of a scrollar tableau appears in Figure 3. Note
that the boxes in the first α columns necessarily contain distinct symbols, as do
the boxes in the last k −α rows. The symbols in the remaining boxes are obtained
by repeatedly translating the symbols in this L-shaped region α boxes rightward
and k − α boxes upward.

Example 3.11. Figure 4 depicts three different 3-uniform displacement tableaux
on [3] × [2]. The first tableau t is scrollar of type 2. To see this, note that there is
only one pair of boxes whose x coordinates differ by a multiple of 2 and whose
y coordinates differ by the same multiple of −1, and these boxes contain the
same symbol. The second tableau t ′ is scrollar of type 1, because it is standard,
t ′(2,1) > t ′(1,2), and t ′(3,1) > t ′(2,2). The final tableau t∗ is not scrollar of
either type. Specifically, it is not scrollar of type 1 because t∗(2,1) < t∗(1,2),
and it is not scrollar of type 2 because t∗(3,1) = t∗(1,2). By Lemma 3.6 we see
that T(t∗) ⊂ T(t).

The following observation from [JR17] is central to our argument.

Figure 3 A scrollar tableau of type 3, where k = 5.

Figure 4 Three different 3-uniform displacement tableaux. The first
two are scrollar of different types, and the third is not scrollar.
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Proposition 3.12. Let t be a scrollar tableau of type α on [r + 1] × [g − d + r]
with alphabet [g]. Then g ≥ |μα| and

dimT(t) = g − |μα|.
Proof. By [JR17, Proposition 7.4] we have

dimT(t) = ρ(g,α − 1, d) − (r + 1 − α)k.

The result then follows from Lemma 2.6. �
Proposition 3.12 suggests a connection between scrollar tableaux of type α and
the splitting type μα . This connection will be established in Proposition 4.1. The
following lemma is a key to the proof of Proposition 4.1.

Lemma 3.13 ([JR17, Corollary 7.3]). Let t be a scrollar tableau of type α, and let
D ∈ T(t) be a sufficiently general divisor class. Then

(1) rk(D − qg1
k ) = β − 1, and

(2) rk(D − (q + 1)g1
k ) = −1.

Remark 3.14. In Lemma 3.13, when we say that the divisor class D ∈ T(t) is
“sufficiently general”, we mean that D lies in the complement of finitely many
coordinate subtori of codimension at least 1 in T(t). In particular, the set of divisor
classes in T(t) satisfying the conclusion of Lemma 3.13 is open and dense in T(t).

Much of [JR17] is devoted to a lifting result for divisor classes in T(t) when t is a
scrollar tableau. Unfortunately, [JR17] does not establish this lifting result for all
scrollar tableaux, but only for those that satisfy the following condition.

Definition 3.15. We say that a tableau t has no vertical steps if

t (x, y + 1) = t (x, y) + 1 for all x, y.

We note that if g ≥ |μα| and α > 1, then there exists a scrollar tableau of type
α with no vertical steps. For example, the transpose of the tableau defined in the
proof of [Pfl17a, Lemma 3.5] has no vertical steps. Another example of such a
tableau appears in Figure 5.

The following proposition is one of the main technical results of [JR17]. In
this proposition and throughout Section 4, we let K be an algebraically closed,
non-Archimedean-valued field of equicharacteristic zero.

Figure 5 A scrollar tableau of type 3, where k = 5, with no vertical steps.
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Proposition 3.16 ([JR17, Proposition 9.2]). Let t be a scrollar tableau of type
α with no vertical steps, and let D ∈ T(t) be a sufficiently general divisor class.
Then there exist a curve C of genus g and gonality k over K with skeleton � and
a divisor class D ∈ Wr

d (C) specializing to D.

4. Connections Between Combinatorics and Algebraic Geometry

In this section, we demonstrate the connection between our combinatorial and
geometric results. Specifically, we show that Theorem 1.4 implies Theorem 1.3.
To begin, we establish the connection between scrollar tableaux of type α and the
splitting types μα .

Proposition 4.1. Let C be a curve of genus g and gonality k over K with skele-
ton �. Let t be a scrollar tableau of type α, let D ∈ T(t) be a sufficiently gen-
eral divisor class, and let D ∈ Wr

d (C) be a divisor that specializes to D. Then
D ∈ Wμα (C).

Proof. Let μ denote the splitting type of π∗O(D). By Lemma 3.13 we have

rk(D − qg1
k ) = β − 1,

rk(D − (q + 1)g1
k ) = −1.

By Baker’s specialization lemma [Bak08] it follows that

h0(D − qg1
k ) ≤ β, (1)

h0(D − (q + 1)g1
k ) = 0. (2)

Recall that if tT denotes the transpose of t , then the Serre dual K� −D is con-
tained in T(tT ). Note that tT is also a scrollar tableau. Therefore by Lemma 3.13,
since K� − D is sufficiently general, we see that

rk(K� − D − q ′g1
k ) = β ′ − 1,

rk(K� − D − (q ′ + 1)g1
k ) = −1.

By Baker’s specialization lemma it follows that

h0(KC −D − q ′g1
k ) ≤ β ′, (3)

h0(KC −D − (q ′ + 1)g1
k ) = 0. (4)

By (�), (2) implies that μk ≤ q , and (1) implies that μk−β ≤ q − 1. It follows
that

μk−α+1 + · · · + μk−α+� ≤ μα,k−α+1 + · · · + μα,k−α+� for all � ≤ α.

Similarly, (4) implies that μ1 ≥ −q ′ −2, and (3) implies that μβ ′+1 ≥ −q ′ −1.
It follows that

μ1 + · · · + μ� ≥ μα,1 + · · · + μα,� for all � ≤ k − α.

Putting these together, we see that μ ≥ μα . By Proposition 2.11, however, μα is
maximal, and hence μ = μα . �
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Corollary 4.2. Let t be a scrollar tableau of type α with no vertical steps, and
let D ∈ T(t) be a sufficiently general divisor class. Then there exist a curve C of
genus g and gonality k over K with skeleton � and a divisor class D ∈ Wμα(C)

specializing to D.

Proof. By Proposition 3.16 there exists a curve C of genus g and gonality k over
K with skeleton �, and a divisor class D ∈ Wr

d (C) specializing to D. By Propo-
sition 4.1, the divisor class D is in Wμα(C). �

We now show that Theorem 1.4 implies Theorem 1.3. We do this in two steps.
First, we obtain an upper bound on a particular component of Wr

d (C).

Proposition 4.3. Let C and D be as in Corollary 4.2, and let Y be any irre-
ducible component of Wr

d (C) containing D. Then

dimY ≤ g − |μα|.
Proof. By [Gub07, Theorem 6.9]

dimY = dim TropY .

By Baker’s specialization lemma we see that TropY ⊆ Wr
d (�). It follows that

dimY cannot exceed the local dimension of Wr
d (�) in a neighborhood of D. By

Theorem 1.4, T(t) is maximal with respect to containment in Wr
d (�), and since

D ∈ T(t) is sufficiently general, the local dimension of Wr
d (�) in a neighborhood

of D is equal to that of T(t). Finally, by Proposition 3.12 we have

dimY ≤ dimT(t) = g − |μα|. �

Proof that Theorem 1.4 implies Theorem 1.3. The case k = 2 is classical, so we
assume that k ≥ 3. Let α ≤ min{r + 1, k − 1} be a positive integer satisfying
either α ≥ k − (g − d + r) or α = r + 1. If α ≥ k − (g − d + r), then applying
Serre duality exchanges α with k − α, so we may assume that α > 1.

Since |μ| ≤ g and α > 1, there exists a scrollar tableau t of type α with no ver-
tical steps. Let D ∈ T(t) be a sufficiently general divisor class. By Corollary 4.2
there exist a curve C of genus g and gonality k over K with skeleton � and a
divisor class D ∈ Wμα(C) specializing to D. If Y is an irreducible component of
Wμα(C) containing D, then by Proposition 4.3 we have

dimY ≤ g − |μα|.
It therefore suffices to prove the reverse inequality.

The rest of the proof is identical to that of [JR17, Theorem 9.3], which we
reproduce here for completeness. Let Mk

g be the moduli space of curves of genus

g that admit a degree k map to P
1, let Ck be the universal curve, and let Wμα be the

universal splitting-type locus over Mk
g . Let W̃μα be the locus in the symmetric

d th fiber power of Ck parameterizing divisors D such that π∗O(D) has splitting
type μα .
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We work in the Berkovich analytic domain of k-gonal curves whose skeleton
is a k-gonal chain of loops. By Corollary 4.2 the tropicalization of W̃μα,an has
dimension at least

3g − 5 + 2k − |μα| + r.

If π∗O(D) ∼= O(μα), then D has rank exactly r . It follows that Wμα has dimen-
sion at least

3g − 5 + 2k − |μα|.
By Corollary 4.2 there is an irreducible component of Wμα whose tropicalization
contains pairs of the form (�,D) where � is a k-gonal chain of loops and D ∈ T(t)

is sufficiently general. The image of this component in Mk,trop
g has dimension

2g − 5 + 2k. It follows that this component dominates Mk
g , and the fibers have

dimension at least g − |μα|.
Combining the two bounds, we see that there exists an irreducible component

Y of Wμα (C), containing D, of dimension g − |μα|. If Z is a component of
Wr

d (C) containing Y , then by Proposition 4.3 we see that

dimZ = dimY .

It follows that Z is the closure of Y . �

5. Maximality of Scrollar Tableaux

Having established that Theorem 1.3 follows from our combinatorial results, it
remains to prove the combinatorial results. The goal of this section is to prove the
following:

Theorem 5.1. Let t be a scrollar tableau of type α on [a] × [b]. Then T(t) is
maximal with respect to containment.

Before proving Theorem 5.1, we first make two simple observations. These will
be useful because if T(t) ⊆ T(t ′), then by Lemma 3.6, for every box (n,m) in
[a]× [b], there exists a box (x, y) such that t ′(n,m) = t (x, y). Our argument will
break into cases, depending on the location of (x, y) relative to that of (n,m).

Lemma 5.2. Let α be a positive integer and (n,m) any box in [a] × [b]. For any
box (x, y) in [a] × [b], there exists an integer � such that one of the following
holds:

(1) x ≤ n − �α and y ≤ m + �(k − α),
(2) x ≥ n − �α and y ≥ m + �(k − α), or
(3) n − (� + 1)α < x < n − �α and m + �(k − α) < y < m + (� + 1)(k − α).

Proof. By the division algorithm, there exists an integer � such that

n − (� + 1)α < x ≤ n − �α.

If y ≤ m+�(k−α), then case (1) holds. If y ≥ m+(�+1)(k−α), or if x = n−�α

and y ≥ m + �(k − α), then case (2) holds. Otherwise, x = n − �α, and case (3)
holds. �
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Figure 6 The three regions described in Lemma 5.2.

Figure 7 When α = k − b, the integer � can be taken to be one of
−1, 0, or 1.

Lemma 5.2 is illustrated in Figure 6. Boxes of the form (n − �α,m + �(k − α))

are labeled with stars, and the three cases of Lemma 5.2 are depicted in gray. Note
that every box is contained in one of the three gray regions.

Remark 5.3. If α is equal to either a or k − b, then the integer � in Lemma 5.2
can be taken to be one of −1, 0, or 1, as illustrated in Figure 7. If � = ±1, then
the box (n − �α,m + �(k − α)) is not contained in [a] × [b].
The following simple lemma is key to our argument.

Lemma 5.4. Let α be a positive integer, let (n,m) be any box in [a] × [b], and let
(x, y) be a box satisfying condition (3) of Lemma 5.2. Then

x − y ≡ n − m (mod k).

Proof. Since
n − (� + 1)a < x < n − �a

and
m + �(k − a) < y < m + (� + 1)(k − a),

we have
(n − m) − (� + 1)k < x − y < (n − m) − �k.

Hence x − y ≡ n − m (mod k). �

We are now prepared to prove the main result of this section, the maximality of
scrollar tableaux.

Proof of Theorem 5.1. Let t ′ be a k-uniform displacement tableau such that
T(t) ⊆ T(t ′). We will show that t = t ′. We first demonstrate, by induction, that
t ′(n,m) ≥ t (n,m) for all (n,m) ∈ [a]× [b]. The base case t ′(1,1) ≥ t (1,1) holds
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because, by Lemma 3.6, t ′(1,1) must be a symbol in t , and t (1,1) is the smallest
symbol in t .

For our inductive hypothesis, suppose that t ′(x, y) ≥ t (x, y) for all (x, y) such
that x ≤ n and y ≤ m, not both equal. We will show that t ′(n,m) ≥ t (n,m).
By Lemma 3.6 there exists (x, y) ∈ [a] × [b] such that t ′(n,m) = t (x, y). By
Lemma 5.2, there exists an integer � such that one of the following holds:

(1) x ≤ n − �α and y ≤ m + �(k − α),
(2) x ≥ n − �α and y ≥ m + �(k − α), or
(3) n − (� + 1)α < x < n − �α and m + �(k − α) < y < m + (� + 1)(k − α).

If (x, y) satisfies (3), then by Lemma 5.4, x −y ≡ n−m (mod k), a contradiction
to Lemma 3.6. Hence (x, y) must satisfy either (1) or (2).

There are now two cases to consider, the case where the box (n − �α,m +
�(k − α)) is contained in [a] × [b], and the case where it is not. We first consider
the case where (n − �α,m + �(k − α)) is contained in [a] × [b]. Notice that if α

is equal to a or k − b, then in this case, we must have � = 0. If (x, y) satisfies (2),
then

t (x, y) ≥ t (n − �α,m + �(k − α)) = t (n,m),

and hence t ′(n,m) ≥ t (n,m), as desired. If (x, y) satisfies (1) and (x, y) = (n −
�α,m + �(k − α)), then we have either

t ′(n,m) = t (x, y) ≤ t (n − �α − 1,m + �(k − α)) or

t ′(n,m) = t (x, y) ≤ t (n − �α,m + �(k − α) − 1).

First, assume that n,m > 1. Since t is scrollar, we have

t (n − �α − 1,m + �(k − α)) = t (n − 1,m) and

t (n − �α,m + �(k − α) − 1) = t (n,m − 1).

By our inductive hypothesis, however, we have t (n − 1,m) ≤ t ′(n − 1,m) and
t (n,m − 1) ≤ t ′(n,m − 1). This guarantees that either t ′(n,m) ≤ t ′(n − 1,m) or
t ′(n,m) ≤ t ′(n,m − 1), a contradiction. It follows that

t ′(n,m) = t (x, y) = t (n − �α,m + �(k − α)) = t (n,m).

Now suppose that m = 1 and n > 1. The case where n = 1 will follow from a
similar argument. Without loss of generality, let � be the smallest integer such
that (x, y) is above and to the right of (n− �α,m+ �(k −α)). If x < n− �α, then
the conclusion follows from the argument above. On the other hand, if x = n−�α,
then since

m + (� − 1)(k − α) < y < m + �(k − α),

we see that x − y = n − m (mod k), a contradiction to Lemma 3.6.
We now turn to the case where (n − �α,m + �(k − α)) is not contained in

[a] × [b]. First, suppose that (x, y) satisfies (2). In this case, either n − �α ≤ 0
or m + �(k − α) ≤ 0, but not both. We will assume that n − �α ≤ 0; the other
case follows by a similar argument. If � is any integer satisfying n − �α ≤ 0, then
(x, y) is below and to the right of (1,m + �(k − α)). We may therefore assume
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Figure 8 An illustration of the case where (n − �α,m + �(k − α)) is
not contained in [a] × [b].

without loss of generality that � is the minimal integer such that n − �α ≤ 0. If α

is equal to a, then � = 1. Because t is scrollar, we observe that

t ′(n,m) = t (x, y) ≥ t (1,m + �(k − α)) > t(α,m + (� − 1)(k − α))

≥ t (n − (� − 1)α,m + (� − 1)(k − α)) = t (n,m).

Now suppose that (x, y) satisfies (1). In this case, either b < m + �(k − α) or
a < n − �α, but not both. We will assume that b < m + �(k − α). The other case
follows by a similar argument. Without loss of generality, assume that � is the
minimal integer such that b < m + �(k − α). As before, if α = k − b, then � = 1.
If y ≤ m + (� − 1)(k − α), then by replacing � with � − 1 we may reduce to the
case where (n − �α,m + �(k − α)) is in [a] × [b]. We may therefore assume that

m + (� − 1)(k − α) < y ≤ b < m + �(k − α).

This situation is illustrated in Figure 8. The boxes (n − �α,m + �(k − α)) and
(n − (� − 1)α,m + (� − 1)(k − α)) are labeled with stars, the box (n − �α, b) is
labeled with a diamond, and the box (x, y) is located somewhere in the shaded
region.

If x = n − �α, then since

m + (� − 1)(k − α) < y < m + �(k − α),

we see that x − y ≡ n − m (mod k), a contradiction to Lemma 3.6. We may
therefore assume that x < n − �α. Because t is scrollar, we have

t ′(n,m) = t (x, y) ≤ t (n − �α − 1, b) < t(n − (� − 1)α − 1, b + 1 − (k − α))

≤ t (n − (� − 1)α − 1,m + (� − 1)(k − α)) = t (n − 1,m).

By induction, however, we have t (n − 1,m) ≤ t ′(n − 1,m), and hence t ′(n,m) ≤
t ′(n − 1,m), a contradiction.

Thus, in every case, we see that t ′(n,m) ≥ t (n,m). We now show that
t ′(n,m) ≤ t (n,m) for all (n,m) ∈ [a] × [b]. Combining the two inequalities, we
see that t ′ = t . Given a tableau t , define the “rotated” tableau tR as follows:

tR(x, y) = g + 1 − t (a + 1 − x, b + 1 − y)

(see Figure 9 for an example). Returning to our tableaux t and t ′, we see that
by definition both tR and t ′R are k-uniform displacement tableaux, the tableau tR
is scrollar, and T(tR) ⊆ T(t ′R). By the argument above, we see that t ′R(n,m) ≥
tR(n,m) for all (n,m) ∈ [a]× [b], hence t ′(n,m) ≤ t (n,m) for all (n,m) ∈ [a]×
[b], and the conclusion follows. �
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Figure 9 To obtain the “rotation” of the tableau on the left, first rotate
180 degrees and then subtract each entry from g + 1.

6. Non-existence of Other Maximal Tableaux

In this section, we prove the following:

Theorem 6.1. Let t be a k-uniform displacement tableau on [a]×[b]. Then there
exists a scrollar tableau t ′ on [a] × [b] such that T(t) ⊆ T(t ′).

Together with Theorem 5.1, this establishes Theorem 1.4.
To prove Theorem 6.1, we will describe an algorithm that, starting with t ,

produces a scrollar tableau t ′ by replacing certain symbols in t with other sym-
bols in t . We first introduce a statistic on the boxes in a k-uniform displacement
tableau.

Definition 6.2. Let t be a k-uniform displacement tableau on [a] × [b]. Given a
box (x, y) such that x + y ≥ k, we define a statistic St (x, y) as follows. Consider
the symbols appearing above (x, y) in column x and to the left of (x, y) in row y.
Among these symbols, the k − 1 largest ones form a hook of width α and height
k − α. We define St (x, y) to be α.

Remark 6.3. Note that if x + y < k, then St (x, y) is undefined. In this case the
box (x, y) is left empty. Additionally, the statistic α cannot appear in any box
(x, y) with x < α or y < k − α. In particular, for any k-uniform displacement
tableau t , we have St (α, k − α) = α.

Note also that St is well-defined. To see this, let i be the smallest positive
integer such that t (x − i, y) = t (x, y − j) for some positive integer j . By the
definition of a k-uniform displacement tableau, i + j must be a multiple of k. It
follows that the hook from (x − i, y) to (x, y − j) contains at least k − 1 distinct
symbols, all greater than t (x − i, y).

Example 6.4. Figure 10 depicts an example of a 5-uniform displacement tableau
t on [4]×[4]. The first figure is t , the second is St , and the last two depict example
hooks of width 2 and 3, respectively.

Before proceeding further, we will first need the following property of the statistic
St .



40 Kaelin Cook-Powell & David Jensen

Figure 10 A 5-uniform displacement tableau, its associated statis-
tics, and some example hooks.

Lemma 6.5. Let t be a k-uniform displacement tableau. We have the following
inequalities on statistics:

St (x + 1, y) ≤ St (x, y) + 1,

St (x, y − 1) ≤ St (x, y) + 1,

St (x + 1, y − 1) ≤ St (x, y) + 1.

Proof. Let H be the hook containing the k − 1 largest symbols appearing above
(x, y) in column x and to the left of (x, y) in row y. By the definition of St , H

contains the boxes

(x, y + 1 − k + St (x, y)) and (x + 1 − St (x, y), y),

but not the boxes

(x, y − k + St (x, y)) or (x − St (x, y), y).

It follows that

t (x − St (x, y), y) < t(x, y + 1 − k + St (x, y)) and

t (x + 1 − St (x, y), y) > t(x, y − k + St (x, y)).

If St (x + 1, y) > St (x, y) + 1, then

t (x − St (x, y), y) ≥ t (x + 2 − St (x + 1, y), y)

> t(x + 1, y − k + St (x + 1, y))

> t(x, y + 1 − k + St (x, y)),

a contradiction.
Similarly, if St (x, y − 1) > St (x, y) + 1, then

t (x + 1 − St (x, y), y) < t(x − St (x, y − 1), y − 1)

< t(x, y − k + St (x, y − 1))

≤ t (x, y − k + St (x, y)),

a contradiction.
Finally, if St (x + 1, y − 1) > St (x, y) + 1, then

t (x − St (x, y), y) > t(x + 2 − St (x + 1, y − 1), y − 1)

> t(x + 1, y − 1 − k + St (x + 1, y − 1))

> t(x, y − k + St (x, y)),

another contradiction. �
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Figure 11 Two admissible paths of type 3.

Definition 6.6. Let t be a k-uniform displacement tableau on [a] × [b], and
suppose that a + b ≥ k. An admissible path P of type α in t is a sequence of
boxes

P = (x0, y0), (x1, y1), . . . , (xa+b−k, ya+b−k)

satisfying the following conditions:

(1) (x0, y0) = (α, k − α) and (xa+b−k, ya+b−k) = (a, b).
(2) For all i, (xi, yi) is equal to either (xi−1 + 1, yi−1) or (xi−1, yi−1 + 1).
(3) If (xi, yi) = (xi−1 + 1, yi−1), then St (xi, yi) ≤ α.
(4) If (xi, yi) = (xi−1, yi−1 + 1), then St (xi, yi) ≥ α.

In other words, an admissible path is a sequence of pairwise adjacent boxes start-
ing at (α, k − α) and ending in the bottom right corner of the tableau. Every time
the path moves right, the statistic in the new box must be at most α, and every
time the path moves down, the statistic in the new box must be at least α.

Example 6.7. Figure 11 depicts the statistics St for the tableau t from Exam-
ple 6.4, together with two admissible paths of type 3 shaded. Note that the first
path is admissible because the box labeled 2 is to the right of the previous box in
the path.

Note that an admissible path of type a is completely vertical and that an ad-
missible path of type k − b is completely horizontal. If there is an admissible
path of type a in a tableau t , then St (a, y) = a for all y ≥ k − a. It follows that
t (1, y + k − a) > t(a, y) for all y > k − a, so t is scrollar of type a. Similarly, if
there is an admissible path of type k − b in a tableau t , then t is scrollar of type
k − b.

The first main goal of this section is to prove the existence of admissible paths.
That is, given a k-uniform tableau t on [a]× [b], we show that there exist an inte-
ger α and a admissible path P of type α. Our argument will require the following
lemma.

Lemma 6.8. Let t be a k-uniform displacement tableau. If P1 and P2 are two
admissible paths in t of types α1 and α2, respectively, then α1 = α2.

Proof. First, note that the last box in any admissible path is (a, b), so any two
admissible paths intersect. Let (x, y) be the box in the intersection that minimizes
x + y. Without loss of generality, assume that α1 > α2. Note that P1 starts at
(α1, k − α1), which is above and to the right of (α2, k − α2). Because (x, y) is
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the first box at which the two paths cross, we see that P1 must contain the box
(x, y − 1) and P2 must contain the box (x − 1, y). By the definition of admissible
paths, we have

α1 ≤ St (x, y) ≤ α2,

contradicting our assumption that α1 > α2. �

We now prove that admissible paths exist.

Proposition 6.9. Let t be a k-uniform displacement tableau on [a] × [b], and
suppose that a + b ≥ k. Then there exists an admissible path in t .

Proof. We proceed by induction on a + b. In the base case b = k − a the admis-
sible path consists of the single box (a, b).

If a + b > k, then by induction the tableau t1 obtained by deleting the last row
of t contains an admissible path P1 of type α1. Similarly, the tableau t2 obtained
by deleting the last column of t contains an admissible path P2 of type α2. We
will show that either the path P ′

1 obtained by appending (a, b) to P1 or the path
P ′

2 obtained by appending (a, b) to P2 is admissible. Note that P ′
1 is admissible if

and only if St (a, b) ≥ α1 and P ′
2 is admissible if and only if St (a, b) ≤ α2.

If St (a, b) < St (a, b − 1), then by Lemma 6.5 we have

St (a, b − 1) = St (a, b) + 1 and

St (a − 1, b) ≥ St (a, b − 1) − 1 = St (a, b).

It follows that either St (a, b) ≥ St (a, b−1) or St (a, b) ≤ St (a −1, b). We assume
that St (a, b) ≥ St (a, b − 1); the case where St (a, b) ≤ St (a − 1, b) follows by a
similar argument. If St (a, b) ≥ α1, then P ′

1 is an admissible path of type α1, and
we are done. If P1 contains the box (a, b − 2), then St (a, b) ≥ St (a, b − 1) ≥ α1
by the definition of an admissible path. We may therefore assume that P1 contains
the box (a − 1, b − 1), and St (a, b) < α1.

Now consider the path P2. If the paths P1 and P2 intersect, let (x, y) be a box in
the intersection, and let t3 be the tableau obtained by restricting t to [x]×[y]. The
restrictions of P1 and P2 to t3 are both admissible, and it follows from Lemma 6.8
that α1 = α2. Since St (a, b) < α1, we see that P ′

2 is an admissible path.
If P1 and P2 do not intersect, then P1 lies entirely above and to the right of P2,

so α1 > α2. Let (x, b−1) be the leftmost box of P1 in row b−1. Because the two
paths do not intersect, the boxes (x − 1, b) and (x, b) must be contained in P2. By
the definition of admissible paths, we have α1 ≤ St (x, b − 1) and α2 ≥ St (x, b).
By Lemma 6.5, however, we have

α1 ≤ St (x, b − 1) ≤ St (x, b) + 1 ≤ α2 + 1.

It follows that α1 = α2 + 1. Since St (a, b) < α1, we see that St (a, b) ≤ α1 + 1 =
α2, and hence P ′

2 is an admissible path. �

Now that we know admissible paths exist, we can use them to construct a scrollar
tableau from an arbitrary tableau.
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Figure 12 Construction of a scrollar tableau from a given k-uniform
displacement tableau and admissible path.

Example 6.10. Before proving Theorem 6.1, we first illustrate the idea with an
example. Figure 12 depicts an example of a 5-uniform displacement tableau t and
an admissible path of type α = 3 from Example 6.7. The proof of Theorem 6.1
provides us with an iterative procedure for constructing a scrollar tableau t ′ of
type 3 such that T(t) ⊆ T(t ′). This procedure begins with the subtableau on [α]×
[k − α] = [3] × [2]. It then follows the admissible path, extending the tableau
one row or one column at a time. Every time we extend the tableau by a column,
we replace each symbol in the new column with the symbol appearing α boxes
to the left and k − α boxes below in the previous tableau. Similarly, every time
we extend the tableau by a row, we replace each symbol in the new row with
the symbol appearing α boxes to the right and k − α boxes above in the previous
tableau. The definition of admissible paths guarantees that this construction yields
a tableau.

Proof of Theorem 6.1. First, note that if a + b ≤ k, then t is scrollar of type a for
trivial reasons. We therefore assume that a+b > k. By Proposition 6.9 there exists
an admissible path P in t of type α. We will prove, by induction on a + b, that
there exists a scrollar tableau t ′ of type α on [a] × [b] such that T(t) ⊆ T(t ′). In
addition, we will see that t ′(a − i, b) = t (a − i, b) for all i < α and t ′(a, b − j) =
t (a, b − j) for all j < k − α. We assume that P contains the box (a − 1, b); the
case where P contains the box (a, b − 1) follows by a similar argument. By the
definition of admissible paths this implies that St (a, b) ≤ α.

Let t1 be the tableau obtained by deleting the last column from t . The re-
striction of P to t1 is an admissible path of type α in t1. By induction, there-
fore, there exists a scrollar tableau t ′1 on [a − 1] × [b] such that T(t1) ⊆ T(t ′1).
Moreover, we have that t ′1(a − 1 − i, b) = t1(a − 1 − i, b) for all i < α and
t ′1(a − 1, b − j) = t1(a − 1, b − j) for all j < k −α. By Lemma 3.6 every symbol
in t ′1 is a symbol in t1, and if t1(x, y) = t ′1(x′, y′), then x − y = x′ − y′ (mod k).

We now define a tableau t ′ on [a] × [b]:

t ′(x, y) =

⎧⎪⎨⎪⎩
t ′1(x, y) if x < a,

t ′1(x − α,y + k − α) if x = a and y ≤ b − k + α,

t (x, y) if x = a and y > b − k + α.

We first show that t ′ is a tableau. Let (x, y) ∈ [a] × [b]. If x < a, then since
t ′1 is a tableau, we see that t ′(x, y) > t ′(x − 1, y) and t ′(x, y) > t ′(x, y − 1). If
y ≤ b − k + α, then because t ′1 is a tableau, we have t ′(a, y) > t ′(a, y − 1), and
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because t ′1 is scrollar of type α, we have

t ′(a − 1, y) < t ′(a − α,y + k − α) = t ′(a, y).

If y > b − k + α, then since t is a tableau and t ′1(a − 1, y) = t (a − 1, y), we have
t ′(a − 1, y) < t ′(a, y). If y > b + 1 − k + α, then since t is a tableau, we have
t ′(a, y − 1) < t ′(a, y). Finally, since St (a, b) ≤ α, we have

t ′(a, b − k + α) = t (a − α,b) < t(a, b + 1 − k + α) = t ′(a, b + 1 − k + α).

To see that t ′ is scrollar, we show that if b > k − α, then t ′(x, y) = t ′(x +
α,y − k + α) for all pairs (x, y). This is clear if x + α < a, because t ′1 is scrollar
of type α. On the other hand, if x + α = a, then this holds by construction. If
α = k − b, then t ′(x,1) > t ′(x + b − k, b) for all x < a because t ′1 is scrollar, and
t ′(a,1) > t ′(a + b − k, b) because St (a, b) ≤ α = k − b.

Finally, we show that T(t) ⊆ T(t ′). Note that the symbol t ′(x, y) is also a
symbol in t1 if and only if x < a or y ≤ b − k + α. By construction every symbol
in t1 is also a symbol in t , and if

t ′(x, y) = t1(x
′, y′) = t (x′′, y′′),

then
x − y = x′ − y′ = x′′ − y′′ (mod k).

On the other hand, if y > b − k + α, then the symbol t ′(a, y) = t (a, y) appears
only in one box, and there is nothing to prove. By Lemma 3.6 it follows that
T(t) ⊆ T(t ′). �
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