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We provide lower bounds on the gonality of a graph in terms of its spectral and edge
expansion. As a consequence, we see that the gonality of a random 3-regular graph is
asymptotically almost surely greater than one seventh its genus.
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1. Introduction

In this paper, we study the relationship between the gonality of a graph G and its expansion properties. In particular, we
provide lower bounds on the gonality gon(G) in terms of the Cheeger constant h(G) and a graph invariant Bu(G) thatwe define
here. We refer the reader to Section 2 for definitions of the Cheeger constant and the terms appearing in Definition 1.1.

Definition 1.1. For any u ∈ (0, 1
2 ], we define Bu(G) be the smallest degree of an effective divisor D such that every connected

component of V (G) ∖ supp(D) has size at most u|V (G)|.

Our main result is the following.

Theorem 1.2. Let G be a graph. For any u ∈ (0, 1
2 ], we have

gon(G) ≥ min {Bu(G), h(G)u|V (G)|} .

The function Bu(G) is decreasing in u, while h(G)u|V (G)| is increasing in u. As a consequence of Theorem 1.2, we obtain
the following lower bound on the gonality of a random 3-regular graph.

Theorem 1.3. Let G be a random 3-regular graph on n vertices. Then

gon(G) ≥ 0.072n

asymptotically almost surely.

Note that the genus of a 3-regular graph on n vertices is 1
2n+1. Theorem 1.3 therefore implies that the expected gonality

of a random 3-regular graph is at least one seventh its genus. This result is obtained by bounding the invariants h(G) and
Bu(G) that appear in Theorem 1.2 for random 3-regular graphs. This yields a lower bound on the gonality of such graphs that
depends on u, which is optimized for some u between 0.35 and 0.40.

Our primary motivation for studying the gonality of graphs comes from the theory of algebraic curves. In [3], Baker
develops a theory of specialization of divisors from curves to graphs. This theory allows one to establish results in algebraic
geometry using combinatorial techniques, and conversely, to discover new combinatorics using algebraic geometry. Because
the top-dimensional strata of themoduli space of tropical curves correspond to 3-regular graphs, such graphs are considered
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to be the closest analogues of algebraic curves. It is therefore natural to compare invariants of random 3-regular graphs to
the analogous invariants of general curves. (For more on the moduli space of tropical curves, we refer the reader to [7].)

By [17,18], the gonality of any curve of genus g is atmost ⌊ g+3
2 ⌋.Moreover, the Brill–Noether theorem implies that equality

holds for the general curve [15]. In other words, the set of genus g curves of gonality exactly ⌊
g+3
2 ⌋ is a dense open subset of

the moduli of space of curvesMg . One could hope to address the analogous questions for 3-regular graphs. First, what is the
maximum gonality of a 3-regular graph? Second, what is the expected gonality of a random 3-regular graph? Theorem 1.3
represents progress toward the second of these questions.

Theorem1.3 is an improvement on several earlier results. In [25], vanDobbendeBruyn andGijswijt show that the gonality
of a graph is bounded below by its treewidth. In [19], the authors show that a random 3-regular graph on n vertices almost
surely has bisection width at least 10

99n. As noted in [23], this implies that such a graph almost surely has treewidth at least
5
99n. Amini and Kool use the relation between gonality and treewidth [1, Corollary 5.1] to produce a lower bound on graph
gonality in terms of the algebraic connectivity. They then use this to show that the gonality of a random k-regular graph is
bounded above and below by linear functions in n. While [1] do not attempt to bound the implied constants, their approach
cannot yield a bound higher than 5

99n, due to their reliance on the treewidth bound. In a related direction, [1] shows that
the expected gonality of an Erdős–Rényi random graph on n vertices is also bounded above and below by functions that are
linear in n. An improvement of this result appears in [11], where it is shown that the expected gonality of such graphs is in
fact asymptotic to n.

The argument of the present paper borrows heavily from the proof in [25] that gonality is bounded below by treewidth.
The treewidth of a graph can be defined in terms of certain collections of connected subsets of the vertices, known as
brambles. One example of a bramble is the set of all connected subsets of V (G) of size at least 1

2 |V (G)|, which implies that
the treewidth of a graph G, and hence its gonality, is at least B 1

2
(G). To improve on this, we note that [25] in fact uses the

treewidth in two separateways. First, the treewidth is a lower boundon the degree of an effective divisor that intersects every
element of a bramble. Second, it provides a lower bound on the size of a cut that separates two elements of this bramble. If
we consider instead the set of all connected subsets of size at least u|V (G)| for some u < 1

2 (which is not a bramble), then the
minimum size of a cut that separates these subsets decreases, while the minimum size of an effective divisor that intersects
every subset increases. By varying u, it is possible to obtain a higher bound.

The invariant Bu(G) is somewhat mysterious, and much of the paper is devoted to finding bounds for it in terms of more
familiar graph invariants, including the u-Cheeger constant hu(G) and the algebraic connectivityλ2.We again refer the reader
to Section 2 for definitions of these graph invariants. Specifically, we establish the following results.

Theorem 1.4. Let G be a k-regular graph. Then, for any u ∈ (0, 1
2 ], we have

gon(G) ≥ min
{

hu(G)
k + hu(G)

, h(G)u
}

|V (G)|.

Theorem 1.5. Let G be a graph, and let d be the maximum valence of a vertex in G. Then

gon(G) ≥ min
{
1
4
,

1
2λ2

[
−(7λ2 + 9d) + 3

√
9λ2

2 + 14dλ2 + 9d2
]}

|V (G)|.

In the literature there are at least two notions of the gonality of a graph. Our interest here is in the divisorial gonality,
which is the smallest degree of a divisor on the graph with positive rank. A related invariant is the tree gonality, which is the
smallest degree of a harmonic morphism from the graph to a tree. The divisorial gonality of a graph is always less than or
equal to the tree gonality, since the pullback of a vertex via a harmonic morphism has positive rank. Thus, any lower bound
on the divisorial gonality, such as those provided in Theorems 1.2, 1.4 and 1.5, is also a lower bound on the tree gonality.

In [9, Theorem C], the authors provide a lower bound on the stable tree gonality of a graph G, which is the minimal tree
gonality of any refinement ofG, in terms of the algebraic connectivityλ2. Theorem1.5 can be seen as a version of this result for
the gonality of the graph itself, without passing to any refinement. In the case of primary interest to us, namely that of random
3-regular graphs, the bound provided by Theorem 1.4 is stronger than that of Theorem 1.5. Nevertheless, Theorem 1.5 has
at least two advantages. First, while Theorem 1.4 applies only to regular graphs, Theorem 1.5 applies to arbitrary graphs.
Second, while computation of the u-Cheeger constant is NP-hard, the algebraic connectivity can be computed, to any degree
of accuracy, in polynomial time. For this reason we expect that Theorem 1.5 may be more useful for applications, as it is
more efficient.

While this paper is primarily concerned with lower bounds on graph gonality, we make a few brief remarks on upper
bounds. It follows from Baker’s specialization lemma that, if G is a graph of genus g , then there exists a positive integer e
such that the refinement obtained by subdividing each edge of G into e edges has gonality at most ⌊

g+3
2 ⌋. We note that this

argument uses the Kleiman–Laksov result on algebraic curves and to date there is no known purely combinatorial proof.
The question of whether this statement holds without refinement – that is, whether the integer e can always be taken to be
1 – remains open, though it has been proven in small genus cases [2]. Cools and Draisma have shown that, for every 3-regular
graph G, there exists an open cone of edge lengths in RE(G)

>0 whose integer points correspond to discrete graphs with gonality
at most ⌊ g+3

2 ⌋ [8]. Without passing to refinements, much less is known. As far as we are aware, the best known upper bound
for the gonality of a graph is its genus. Specifically, if G is a graph of genus g and E is any effective divisor of degree g − 2,
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then by Riemann–Roch the divisor KG − E has rank at least 1. It follows that gon(G) ≤ g . To obtain another upper bound,
note that if G is a simple graph, the complement of an independent set has rank at least 1, and thus gon(G) ≤ |V (G)| − α(G),
where α(G) is the size of the largest independent set in G. For a 3-regular graph G, however, this bound is smaller than g if
and only if G is bipartite. In this case |V (G)|−α(G) = g −1, so for bipartite 3-regular graphs this upper bound differs by only
1 from the bound obtained by Riemann–Roch.

2. Preliminaries

2.1. Divisor theory of graphs

In this section, we outline the basic definitions and properties of divisors on graphs. Throughout, our graphs will always
be assumed to be connectedwith no loops, though possiblywithmultiple edges. Formore details, we refer the reader to [3,4].

Definition 2.1. A divisor D on a graph G is a formal Z-linear combination of vertices of G.

Divisors are alternatively known as ‘‘chip-configurations’’, because we may view a divisor as consisting of stacks of chips
on the vertices of G. We write D(v) for the coefficient of the vertex v in the divisor D, or alternatively the number of chips of
D at v. We define an equivalence relation on the set of divisors on G using chip-firing moves, which we define here.

Definition 2.2. Let D be a divisor on a graph G and fix v ∈ V (G). The divisor D′ obtained from D by firing the vertex v is
defined by

D′(w) =

{
D(v) − val(v) if w = v

D(w) + ε(w, v) if w ̸= v

where ε(w, v) is the number of edges between w and v and val(v) is the valence of v.

If the vertices of a graph G are labeled v1, . . . , vn, we define the Laplacian of G, denoted L(G), to be the n × n matrix with
entries

L(G)ij =

{
val(vi) if i = j
−ε(vi, vj) if i ̸= j.

Two divisors D and D′ are said to be linearly equivalent if D′ can be obtained from D by a sequence of chip-firing moves.
Equivalently, D and D′ are equivalent if their difference is contained in the image of ZV (G) under the graph Laplacian L(G).
This defines an equivalence relation on the set of divisors on G.

We now recall some definitions related to positivity of divisors on graphs.

Definition 2.3. A divisor D is called effective if D(v) ≥ 0 for all v ∈ V (G).

Definition 2.4. The complete linear series of a divisor D is

|D| = {D′
∼ D|D′ is effective}.

The support of an effective divisor D is

supp(D) = {v ∈ V (G)|D(v) > 0}.

Perhaps the most important invariant of a divisor on a graph is its Baker–Norine rank.

Definition 2.5. A divisor D is said to have rank at least r if, for every effective divisor E of degree r , D − E is equivalent to an
effective divisor. The rank of D is the largest integer r such that D has rank at least r .

Our main interest in this paper is a graph invariant known as the gonality.

Definition 2.6. The gonality of a graph G is the smallest degree of a divisor on Gwith positive rank.

While it is NP-hard to compute the gonality of a graph [14], the complexity arises from the sheer number of divisors that
one would be required to check. If we are given a divisor, there is a relatively simple algorithm that determines whether it
has positive rank. To follow the algorithm, one first needs the notion of a reduced divisor.

Definition 2.7. Let v ∈ V (G). A divisor D is said to be v-reduced if:

(1) the divisor D is ‘‘effective away from v’’ – that is, for all w ∈ V (G) ∖ {v}, D(w) ≥ 0, and
(2) for any nonempty U ⊂ V (G) ∖ {v}, the divisor obtained by firing all vertices in U is not effective away from v.
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Each divisor has a unique v-reduced representative. Moreover, if a divisor E is equivalent to an effective divisor, then its
v-reduced representative is effective. With these facts in hand, it becomes relatively easy to check that an effective divisor
E has positive rank. The divisor E has positive rank if and only if the v-reduced divisor equivalent to E − v is effective for all
vertices v. Of course, it is crucial in this process that we be able to compute the v-reduced divisor equivalent to E−v. To find
v-reduced divisors quickly, we have the following algorithm, known as Dhar’s Burning Algorithm. (For a detailed account of
this algorithm, we refer the reader to [12] or the more recent [5].)

(1) Given a divisor D that is effective away from v (for example, E − v where E is effective), start a fire at the vertex v,
placing it in the set of burnt vertices.

(2) For each burnt vertex, place each edge adjacent to it in the set of burnt edges.
(3) If the number of burnt edges adjacent to a vertex w exceeds the number of chips on w, place w in the set of burnt

vertices. Then repeat step 2. Otherwise, if no such vertex exists, proceed to step 4.
(4) If the entire set of vertices burn, then D is v-reduced. Otherwise, the divisor obtained by firing all unburnt vertices is

effective away from v. Replace D with this equivalent divisor and repeat the process.

2.2. Expander graphs

In this paperwe relate the gonality to the expansion properties of a graph. One of themostwell-knownmeasures of graph
expansion is known variously as the Cheeger constant, isoperimetric number, or edge expansion constant. Throughout, if G
is a graph and U ⊆ V (G), we define ∂U to be the set of edges with exactly one endpoint in U .

Definition 2.8 ([21]). The Cheeger constant of a graph G is defined to be

h(G) := min
0<|U |≤

1
2 |V (G)|

|∂U |

|U |
.

More generally, for any u ∈ (0, 1
2 ], the u-Cheeger constant of G is defined to be

hu(G) := min
0<|U |≤u|V (G)|

|∂U |

|U |
.

For values of u greater than 1
2 , we vacuously define hu(G) to be infinity.

A second measure of graph expansion is the algebraic connectivity, which we define here.

Definition 2.9. The algebraic connectivity λ2 of a graph G is defined to be the second smallest1 eigenvalue of the graph
Laplacian L(G).

Note that the smallest eigenvalue of the graph Laplacian is zero, and by the Matrix Tree Theorem, this eigenvalue has
multiplicity one if and only if the graph is connected. This suggests thatλ2 is ameasure of a graph’s connectivity. For k-regular
graphs, the algebraic connectivity is related to the Cheeger constant by the well-known Cheeger inequalities:

1
2
λ2 ≤ h(G) ≤

√
2kλ2.

One advantage of the algebraic connectivity is that the Cheeger constant is NP-hard to compute (see [21, Theorem 3.1]),
whereas the algebraic connectivity of a graph with n vertices can be computed to any degree of accuracy in O(n3) time. (In
particular, finding the eigenvalues of a matrix has the same computational complexity as matrix multiplication. See [10] for
further discussion.)

The algebraic connectivity can be used to bound the size of vertex separators, which we define below.

Definition 2.10 ([22]). Let G be a graph. A set C ⊂ V (G) is said to separate vertex sets A, B ⊂ V (G) if

(1) A, B and C partition V (G) and
(2) no vertex of A is adjacent to a vertex of B.

Lemma 2.11 ([22, Theorem 2.8]). Let G be a graph and denote by d the maximal valence of a vertex of G. If C separates vertex
sets A and B, then

|C | ≥
4λ2|A||B|

d|V (G)| − λ2|A ∪ B|
.

1 We note with mild exasperation that there is no apparent consistency in the combinatorics literature concerning the indices of the eigenvalues of the
graph Laplacian. They are equally likely to be ordered smallest to largest as largest to smallest, or indexed starting with zero rather than one. Such issues
nevertheless pale in comparison to the wealth of literature that refers simply to the ‘‘second eigenvalue’’ without indicating whether this means second
smallest or second largest.
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An important class of expander graphs is that of random regular graphs. A model for such graphs can be found in [6]. We
say that a property of a random k-regular graph holds asymptotically almost surely if the probability that the property holds
approaches one as n approaches infinity.

3. Gonality and edge expansion

Our main observation is the following. If, for every representative of a divisor class D on a graph G, there exists a ‘‘large’’
connected component of V (G) ∖ supp(D), then D cannot have positive rank. This is made precise by Theorem 1.2.

Proof of Theorem 1.2. Let D be a divisor of positive rank and assume that deg(D) < Bu(G). For any representative D′
∈ |D|,

we let UD′ denote the union of all connected components of V (G) ∖ supp(D′) of size greater than u|V (G)|. Note that, by the
definition of Bu(G), for any representative D′, the set UD′ is nonempty.

Choose D0 ∈ |D| such that UD0 is minimal. That is, for any D′
∈ |D|, UD′ is not strictly contained in UD0 . Now, pick a vertex

v ∈ UD0 . By [25, Lemma 1.3], there exist firing sets A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ V (G) ∖ {v} such that the divisor obtained from
Di−1 by firing Ai is an effective divisor Di, and Dn is v-reduced. Since by assumption D has positive rank, Dn(v) > 0.

Since firing these sets Ai eventually puts at least one chip in UD0 , there must exist an index i such that UDi ̸= UD0 . Let i be
the smallest such index. Since UD0 was chosen to beminimal, UDi ̸⊂ UD0 = UDi−1 . It follows that there exists some connected
component U ⊂ UDi that intersects the support of Di−1. Since U does not intersect the support of Di, we conclude from [25,
Lemma 2.2] that U ⊂ Ai. Because of this containment, we have |U | ≤ |Ai|. At the same time, by the definition of UDi , every
connected component of UDi has size strictly greater than u|V (G)|, hence |Ai| ≥ |U | > u|V (G)|.

Let U ′
⊂ UD0 be the connected component that contains v, and note that by assumption we have U ′

⊂ V (G) ∖ Ai. Since
|Ai| ≤ |V (G) ∖ U ′

|, we have |V (G) ∖ Ai| ≥ |U ′
| > u|V (G)|. Since ∂Ai = ∂(V (G) ∖ Ai) and both Ai and V (G) ∖ Ai have size

greater than u|V (G)|, we see that |∂Ai| > h(G)u|V (G)|. Finally, since Di is effective, we must have Di−1(w) ≥ outdegwAi for
every vertex w ∈ Ai. Thus, deg(D) > |∂Ai|, and so deg(D) > h(G)u|V (G)|. □

We note the following, which follows directly from the proof of Theorem 1.2. This is slightly stronger than the statement
that the gonality is bounded below by B 1

2
(G), because it determines a property of a divisor that realizes the gonality.

Corollary 3.1. Let D be a divisor class of positive rank on a graph G. Then there exists a representative for D such that every
connected component of V (G) ∖ supp(D) has size at most 1

2 |V (G)|.

Proof. If not, then in the proof of Theorem 1.2, we see that both Ai and V (G) ∖ Ai have size greater than 1
2 |V (G)|, which is

impossible. □

The following lemma provides a bound, for regular graphs, on the invariant Bu(G) introduced in Definition 1.1.

Lemma 3.2. Let G be a k-regular graph, and let D be an effective divisor such that

deg(D) <
hu(G)

k + hu(G)
|V (G)|.

Then there exists a connected component of V (G) ∖ supp(D) with size greater than u|V (G)|.

Proof. Assume that every connected component of V (G)∖supp(D) has size less than or equal to u|V (G)|. LetU be a connected
component of V (G) ∖ supp(D). Note that the number of edges with at least one end in U , here denoted e(U), is

e(U) =
1
2
(k|U | + |∂U |) ≥

k + hu(G)
2

|U |.

To see this, note that the number of half-edges with one end in U is exactly k|U |. Since the internal edges of U contribute
twice to this sum and the edges that leave U contribute only once, we arrive at the equality above. The inequality is given
by the definition of the u-Cheeger constant.

Note that e(V (G) ∖ supp(D)) is the number of edges with at most one endpoint in the support of D. Thus

e(V (G) ∖ supp(D)) =

∑
U

e(U),

where the sum is over connected components of V (G) ∖ supp(D). By the above, therefore, we have

e(V (G) ∖ supp(D)) ≥

∑
U

k + hu(G)
2

|U |

=
k + hu(G)

2
|V (G) ∖ supp(D)|

>
k + hu(G)

2

(
1 −

hu(G)
k + hu(G)

)
|V (G)| =

k
2
|V (G)|.
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Since the total number of edges in G is k
2 |V (G)|, this is impossible. Therefore, there exists a connected component of the

complement of supp(D) of size greater than u|V (G)|. □

Together, Theorem 1.2 and Lemma 3.2 yield a lower bound on the gonality of regular graphs in terms of the Cheeger
constant.

Proof of Theorem 1.4. By Lemma 3.2, for any effective divisor D with deg(D) <
hu(G)

k+hu(G)
|V (G)|, there exists a connected

component of V (G) ∖ supp(D) of size greater than u|V (G)|. Since all effective divisors of this degree have this property, we
see that

hu(G)
k + hu(G)

|V (G)| ≤ Bu(G).

The result then follows from Theorem 1.2. □

Proof of Theorem 1.3. By [19], the Cheeger constant of a random 3-regular graph is asymptotically almost surely bounded
below by 1

4.95 . Similarly, [20, Theorem 3] provides lower bounds above which the u-Cheeger constant of a random regular
graph is bounded asymptotically almost surely. For 3-regular graphs, this bound is optimized for u ≈ 0.36, at which point it
is 0.24. By Theorem 1.4, therefore, the gonality of a random 3-regular graph is asymptotically almost surely greater than or
equal to

min
{
0.24
3.24

,
0.36
4.95

}
|V (G)| = 0.072|V (G)|. □

While our main interest is in 3-regular graphs, we note the following amusing fact.

Proposition 3.3. Let gon(k) be the supremum over all ℓ such that the gonality of a random k-regular graph on n vertices is
asymptotically almost surely at least ℓn. Then

lim
k→∞

gon(k) ≥
1
3
.

Proof. Let i(k) be the supremum over all ℓ such that the Cheeger constant of a random k-regular graph is asymptotically
almost surely at least ℓk. By [6], limk→∞i(k) ≥

1
2 . It follows that

lim
k→∞

gon(k) ≥ lim
k→∞

i(k)k
k + i(k)k

=

1
2

1 +
1
2

=
1
3
. □

4. Gonality and spectral expansion

Determining the Cheeger constant of a graph is an NP-complete problem [16]. Using the algebraic connectivity, however,
we can provide a lower bound on graph gonality that can be computed in polynomial time. This bound also does not require
the graph to be regular, and can therefore be applied in a more general setting than Theorem 1.4. To obtain this bound, we
first prove a proposition about divisors that act as separators.

Proposition 4.1. Let D be a divisor on a graph G such that all connected components of V (G) ∖ supp(D) have size less than
1
2 |V (G)|. If deg(D) ≤

1
4 |V (G)|, then there exist sets A, B ⊂ V (G) such that supp(D) separates A and B and

1
3
|V (G) ∖ supp(D)| ≤ |A| ≤

2
3
|V (G) ∖ supp(D)|.

Proof. Let A be the maximal union of connected components of V (G) ∖ supp(D) such that |A| ≤
2
3 |V (G) ∖ supp(D)|, and let

B be the union of the remaining connected components. If 1
3 |V (G) ∖ supp(D)| ≤ |A|, then we are done. We may therefore

suppose that |A| < 1
3 |V (G) ∖ supp(D)|. In this case, we move a component U of B into A.

Note that, by our assumption that A is maximal, we must have |A ∪ U | > 2
3 |V (G)∖ supp(D)|. Then, since each connected

component of V (G) ∖ supp(D) has size less than half the vertices of G, we see that 1
3 |V (G) ∖ supp(D)| ≤ |U | ≤

1
2 |V (G)|. By

assumption, we have
1
2
|V (G)| ≤

2
3
[|V (G)| − deg(D)] ≤

2
3
|V (G) ∖ supp(D)|.

Thus, we may let A = U , and let B be the union of the remaining connected components. □

We now use Proposition 4.1 in conjunction with Lemma 2.11 to find a lower bound for the gonality entirely in terms of
the algebraic connectivity, the maximum valence of a vertex in G, and |V (G)|.
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Proof of Theorem1.5. LetD be a divisor class onG of positive rank. If deg(D) ≥
1
4 |V (G)|, there is nothing to prove. Otherwise,

by Corollary 3.1, there exists a representative for D such that every connected component of V (G)∖ supp(D) has size at most
1
2 |V (G)|. Without loss of generality, we will assume that D is this representative. By Proposition 4.1 we have that supp(D)
separates vertex sets A and B such that

1
3
|V (G) ∖ supp(D)| ≤ |A| ≤

2
3
|V (G) ∖ supp(D)|.

Let x =
|A|

|V (G)∖supp(D)| . By assumption, 1
3 ≤ x ≤

2
3 , and

|A||B| = x(1 − x)|V (G) ∖ supp(D)|2.

On the interval [ 13 ,
2
3 ], the function x(1−x) has a single critical point at x =

1
2 , but since this is a downward opening parabola

we know this critical point is a maximum. Therefore, x(1− x) attains its minimum value at the endpoints x =
1
3 ,

2
3 . Thus we

have that

x(1 − x)|V (G) ∖ supp(D)|2 ≥
2
9
(|V (G)| − |supp(D)|)2.

Employing Lemma 2.11 we have

|supp(D)| ≥
4λ2|A||B|

d|V (G)| − λ2|A ∪ B|
≥

8λ2
9 (|V (G)| − |supp(D)|)2

d|V (G)| − λ2(|V (G)| − |supp(D)|)
.

Solving for |supp(D)|, we obtain:

λ2|supp(D)|2 + (7λ2 + 9d)|V (G)||supp(D)| − 8λ2|V (G)|2 ≥ 0.

Wemay now apply the quadratic formula.

|supp(D)| ≥
1

2λ2

[
−(7λ2 + 9d)|V (G)| +

√
(7λ2 + 9d)2|V (G)|2 + 32λ2

2|V (G)|2
]

=
|V (G)|
2λ2

[
−(7λ2 + 9d) + 3

√
9λ2

2 + 14dλ2 + 9d2
]

. □

Note that the Laplacian of a graph can be constructed easily given a set of vertices and edge relations, and using the QR
algorithm, eigenvalues of the Laplacian can be approximated to any degree of accuracy in O(n3) time. This means that given
an arbitrary graph, we can use Theorem 1.5 to obtain a lower bound on the gonality in a relatively small amount of time.

Although it is not as good as our previous bound, we record here what Theorem 1.5 can tell us about random 3-regular
graphs.

Corollary 4.2. Let G be a random 3-regular graph. Then, for any ϵ > 0, we have

gon(G) ≥ (0.0486 − ϵ)|V (G)|

asymptotically almost surely.

Proof. By [13], for any ϵ > 0, the algebraic connectivity of a random k-regular graph is asymptotically almost surely bounded
below by k − 2

√
k − 1 − ϵ. Taking k = 3, we evaluate the right hand side of the inequality in Theorem 1.5 to obtain:

gon(G) ≥
|V (G)|

2(3 − 2
√
2)

[
−(7(3 − 2

√
2) + 27) + 3

√
9(3 − 2

√
2)2 + 42(3 − 2

√
2) + 81 − ϵ

]
= (0.0486 − ϵ)|V (G)|. □

5. An example

As an example, we compute these bounds for the Pappus graph pictured in Fig. 1. The Pappus graph is notable for having
the largest Cheeger constant of any 3-regular graph with at most 20 vertices [24]. As such, it is a good candidate for testing
our results.

As a first estimate of the gonality of the Pappus graph, we apply Theorem 1.4. The u-Cheeger constants for the Pappus
graph are provided in Table 1. Evaluating the expression

min
{

hu(G)
3 + hu(G)

|V (G)|, h(G)u|V (G)|
}

for all u in Table 1, we find that the bound given by Theorem 1.4 is optimized for u =
1
3 , giving a bound of 1

4 |V (G)|. Thus
gon(G) ≥ 4.5.
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Table 1
u-Cheeger constants of the Pappus graph.

u hu(G)

1/18 3
2/18 2
3/18 5/3
4/18 3/2
5/18 7/5
6/18 1
7/18 1
8/18 1
9/18 7/9

Fig. 1. The Pappus graph, together with a divisor of degree 6 and rank 1, highlighted in white.

Applying Theorem 1.5, we obtain the same estimate. The second smallest eigenvalue of the Pappus graph is λ2 = 3−
√
3.

We may now evaluate the bound given by Theorem 1.5.

gon(G) ≥ min
{
18
4

,
18

2(3 −
√
3)

[
−7(3 −

√
3 + 27) + 3

√
9(3 −

√
3)2 + 42(3 −

√
3) + 81

]}
= min {4.5, 5.04} = 4.5.

By refining our approach, we obtain a better estimate. In the proof of Proposition 4.1, it is necessary to assume that
deg(D) ≤

1
4 |V (G)| because otherwise the connected componentU of V (G)∖supp(D), which has size atmost 1

2 |V (G)|, may not
necessarily have size at most 2

3 |V (G)∖ supp(D)|. In the case of the Pappus graph, however, if deg(D) = 5 then no connected
component of V (G) ∖ supp(D) can have size exactly 9. Thus, in this case we may replace the assumption that deg(D) ≤ 4.5
by the assumption that deg(D) < 6. Theorem 1.5 then shows that gon(G) ≥ min{6, 5.04} > 5.

Since the gonality is an integer, we know that the gonality of the Pappus graph is at least 6. As discussed in the
introduction, it is expected that this is the highest possible gonality of a graph of genus 10. Specifically, it follows from
Brill–Noether theory and Baker’s specialization lemma that, for any graph G of genus 10, there exists a refinement of Gwith
gonality at most ⌊

10+3
2 ⌋ = 6. In general, it is unknown whether the bound of ⌊

g+3
2 ⌋ holds for the original graph, without

refinement. We now show that the gonality of the Pappus graph is exactly 6.

Proposition 5.1. Let G be the Pappus graph. Then gon(G) = 6.

Proof. We have already shown that gon(G) ≥ 6, so it suffices to exhibit a divisor of degree 6 and rank at least 1 on G.
Let D be the sum of the white vertices on the Pappus graph illustrated in Fig. 1. Note that if we fire every vertex in the

complement of the outer ring once, these chips will migrate to the outer ring. Therefore it suffices to show that we can get at
least one chip to any vertex in the innermost ring. By symmetry it suffices to check that we can get a chip to a single vertex
in the innermost ring. To do this, we will employ Dhar’s burning algorithm on D, with v being a vertex in the innermost ring.

Now, the fire burns the edge connecting v to an adjacent vertex in the inner ring. Each of these vertices is connected to
two distinct vertices in the middle ring by one edge each. Since the support of our divisor is the middle ring, the fire must
stop having only burned v and the adjacent vertex, so we fire all other vertices once. This chip firing move puts a chip on v,
which shows that D has rank at least 1. □
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