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 BIRATIONAL CONTRACTIONS OF M3|1 AND M41

 DAVID JENSEN

 Abstract. We study the birational geometry of M 3,1 and In particu
 lar, we pose a pointed analogue of the Slope Conjecture and prove it in these
 low-genus cases. Using variation of GIT, we construct birational contractions
 of these spaces in which certain divisors of interest - the pointed Brill-Noether
 divisors - are contracted. As a consequence, we see that these pointed Brill
 Noether divisors generate extremal rays of the effective cones for these spaces.

 1. Introduction

 The moduli spaces of curves are some of the most studied objects in algebraic
 geometry. In recent years, a great deal of progress has been made on understanding
 the birational geometry of these spaces. Examples include the work of Hassett and
 Hyeon on the minimal model program for M g [HH09a], [HH09b] and the discovery
 by Farkas of previously unknown effective divisors on Mg [Far09]. Nevertheless,
 many fundamental questions remain open.

 Many of these questions can be stated in terms of the cone of effective divisors

 NE {Mg). Among the first to study this cone were Eisenbud, Harris and Mumford
 in a series of papers proving that Mg is of general type for g >24 [HM82], [EH87].
 A key element of these proofs is the computation of the class of certain divisors
 on Mg. The original paper of Harris and Mumford focused on the fc-gonal divisor
 in M2fc_i, a specific case of the more general class of Brill-Noether divisors. In
 their argument, they use this calculation to show that the canonical class can be
 written as an effective sum of a Brill-Noether divisor, boundary divisors, and an

 ample divisor, and hence lies in the interior of NE (Mg). The search for effective
 divisors with this property eventually led to the Harris-Morrison Slope Conjecture.

 In their work, Harris and Eisenbud discovered that all of the Brill-Noether di

 visors lie on a single ray in NE (Mg ). One consequence of the Slope Conjecture
 would be that this ray is extremal. The Slope Conjecture has recently been proven
 false in [FP05] and subsequently in [Far09], but the statement is known to hold for
 certain small values of g. In several of these cases, the statement can be proved by
 use of the Contraction Theorem, which states that the set of exceptional divisors of

 a birational contraction X —+ Y spans a simplicial face of NE (X) (see [RulOl]).
 In other words, the Slope Conjecture has been shown to hold for small values of g
 by constructing explicit birational models for the moduli space in which the Brill
 Noether divisor is contracted. Moreover, these models arise naturally as geometric
 invariant theory quotients.
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 2864 DAVID JENSEN

 The purpose of this paper is to carry out a pointed analogue of the discussion
 above in some low genus cases. In [Log03], Logan introduced the notion of pointed
 Brill-Noether divisors.

 Definition 1. Let Ζ = (αο, ■ ■ ■ ,ar) be an increasing sequence of nonnegative in
 tegers with a = Σ,ί=ο(α* ~ Ό· Let BN%z be the closure of the locus of pointed
 curves (ρ, C) S Mg,\ possessing a grd on C with vanishing sequence Ζ at p. When
 g -)-1 = (r + 1)(</ — d + r) + a, this is a divisor in Mg>\, called a pointed Brill
 Noether divisor.

 Logan's original motivation was to prove a pointed version of the Harris-Mumford

 general type result. In this setting, it is natural to consider an analogue of the Slope
 Conjecture:

 Question 1. Is there an extremal ray of NEl(Mgy) generated by a pointed Brill
 Noether divisor?

 We consider this question in certain low-genus cases. When g = 2, this question
 was answered in the affirmative by Rulla [RulOl]. He shows that the Weierstrass

 divisor BN2 ^ 2j generates an extremal ray of NE {M2,1) by explicitly constructing

 a birational contraction of M2,1. Our main result is an extension of this to higher
 genera:

 Theorem 1.1. There is a birational contraction of M31 contracting the Weier
 strass divisor ΒN^Q3y Similarly, there is a birational contraction of con

 tracting the pointed ΒήΙΙ-Noether divisor BN£ 2) .

 As a consequence, we identify an extremal ray of the effective cone.

 Corollary 1.2. For g = 3,4, there is an extremal ray of NE1(M9j 1) generated by
 a pointed Brill-Noether divisor.

 The proof uses variation of GIT. In particular, we consider the following GIT
 problem: let Τ be a surface and fix a linear equivalence class |D| of curves on Y.
 Now, let

 X = {{p,C)&Yx\D\ IpeC}
 be the universal family over this space of curves. In the case where (Y, \D\) is
 (P2, |(9(4)|) or (Ρ1 χ Ρ1, \0(3,3)|), the quotient of X//Aut(y) is a birational model
 for M3,i or respectively. By varying the choice of linearization, we obtain a
 birational model in which the specified divisor is contracted.

 The outline of the paper is as follows. In section 2 we provide some background
 on variation of GIT. In section 3, we develop a tool for studying GIT quotients of
 families of curves on surfaces. In particular, we construct a large class of divisors
 on these spaces that are invariant under the automorphism group of the surface,
 called Hessians. In sections 4 and 5 we then examine separately curves on P2 and
 on Ρ1 χ P1, yielding our result in the cases of g = 3 and 4.

 We plan on discussing similar results for genus 5 and 6 in a later paper.

 2. Variation of GIT

 The birational contractions that we construct arise naturally as GIT quotients.
 This section contains a brief summary of results of Dolgachev-Hu [DH98] and
 Thaddeus [Tha96] on variation of GIT.
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 BIRATIONAL CONTRACTIONS OF M3?1 AND M4,i 2865

 Given a group G acting on a variety X, the GIT quotient Xj/G is not unique;
 it depends on the choice of a G-ample line bundle. In particular, if £ Ε PicG(X),
 we have

 X//cG = ProjQ)H°(XX®n)G.
 n>0

 Following Dolgachev and Hu, we will call the set of all G-ample line bundles the
 G-ample cone. A study of how the quotient varies with the choice of the G-ample
 line bundle was carried out independently by Dolgachev-Hu [DH98] and Thaddeus
 [Tha96]. The following theorem is a summary of some of the results of those papers:

 Theorem 2.1 ([DH98], [Tha96]). The G-ample cone is divided into a finite number
 of convex cones, called chambers. Two line bundles C and £' lie in the same
 chamber if Xs(£) = XSS(C) = XSS(C) = XS(C). The chambers are bounded
 by a finite number of walls. A line bundle C lies on a wall if Xss(£) Φ XS(C).
 If £ lies on a wall and £' lies is an adjacent chamber, then there is a morphism
 X//cfG —» X//cG. This map is an isomorphism over the stable locus.

 Both Thaddeus and Dolgachev-Hu examine the maps between quotients at a wall
 in the G-ample cone. Specifically, let £+, £_ be G-ample line bundles in adjacent
 chambers of the G-ample cone, and define £(i) — Τ\®ΤιΧι. Suppose that the line
 between them crosses a wall precisely at £(io)· Following Thaddeus, define

 X± = Xss(Ct0)\Xss(C^),

 X° = Xss(£to)\(Ass(£+) U Ass(£_)).

 Theorem 2.2 ([Tha96]). Let χ Ε Χ0 be a smooth point of X. Suppose that G-x is
 closed in Xss(Cto) a,nd that Gx = C*. Then the natural map Xf/c±G -» X//£tQG
 is an isomorphism outside of X±//c±G. Over a neighborhood of χ in X0//ctQG,
 X±//c±G are fibrations whose fibers are weighted projective spaces.

 In order to determine whether a point is (semi)stable, we will make frequent
 use of Mumford's numerical criterion. Given a G-ample line bundle £ and a one
 parameter subgroup λ : C* —ï G, it is standard to choose coordinates so that λ acts
 diagonally on H°(X, £)*. In other words, it is given by diag(fai, t°2,..., t°n). We
 will refer to the af s as the weights of the C*-action. For a point χ € X, Mumford
 defines

 μ\{χ) = min(oj|a:i Φ 0).

 Then χ is stable (semistable) if and only if μ\(χ) < 0 (resp. μ\{χ) < 0) for every
 nontrivial 1-parameter subgroup Λ of G (see Theorem 2.1 in [MFK94]).

 3. Hessians

 Here we set up the GIT problem that appears in sections 4 and 5. We also
 identify a collection of G-invariant divisors that will be useful for analyzing this
 problem.

 Let Τ be a smooth projective surface over C, £' an effective line bundle on Υ,
 and Z = ¥H°{Y,C). Let

 X = {{p,C)eYxZ\PeC}.
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 We denote the various maps as in the following diagram:

 X Uy χ Ζ

 If £' is base-point free, then X is a projective space bundle over Y, so it is smooth
 and PicX = PicY χ Ζ. We will later study the GIT quotients of X by the natural
 action of Aut(y).

 If C is a curve on Y and £ is another line bundle on Y, then for every point ρ G C
 there are n+1 = h°(C, C\c) different orders of vanishing of sections s € H°(C, £|c)·

 Definition 2. When written in increasing order,

 «ο (p) < ··· < a£(p),

 the orders of vanishing are called the vanishing sequence of £ at p. The weight
 of £ at ρ is defined to be wc(p) — Σ™=0(«f (ρ) — i). A point is said to be an £-flex
 if the weight of £ at the point is nonzero.

 In other words, ρ is an £-flex if the vanishing sequence of £ at ρ is anything
 other than 0 < 1 < · · · < n.

 Definition 3. The divisor of £-flexes is J2Pec wC(p)P· It corresponds to a
 section Wc of a certain line bundle called the Wronskian of £. We say that a
 curve if on Τ is an £-Hessian if the restriction of H to C is precisely the divisor
 of £-flexes.

 Returning to our family of curves / : X -> Ζ above, suppose that £ is a line
 bundle on Y such that the pushforward /«(πι oi)*C is locally free of rank η4-1. We
 define a relative £-Hessian to be a divisor H C X whose restriction to each fiber is

 the divisor of /»(πχ ο ζ)*£-flexes. Relative £-Hessians were studied by Cukierman
 [Cuk97], who shows:

 Proposition 3.1 ([Cuk97]). The class of the relative C-Hessian is

 (n + l)cx(πχ ο i)*£ + ^χΩχ/ζ - Ci/*/*(i"i ° i)*£
 In our particular case, we can determine this class more explicitly.

 Corollary 3.2. For X, Y, and Ζ as above, the class of the relative C-Hessian is

 (n + 1)οχ(πχ ο i)*C + ^ ^ (οχπ*Ω^|χ + ΰχ(πχ ο i)*£ + cif*Oz{ 1))
 -h°(Y, £ ® C'*)(cif*Oz(l))·

 Proof. We follow the proof in [Cuk97]. If I is the ideal sheaf of X in Ζ χ Y, then
 we have the exact sequence

 0 —¥ I/I2 -A X*Qy|y —^ t 0,
 so we have

 ci Ωχ/ζ = οχπχΩ^Ιχ - οχΐ/ϊ1.
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 Also, X is the scheme of zeros of a section of the line bundle Ε = (πι ο i)*C' <S>
 f*Oz{ 1) on y χ Ζ. Note that I/I2 ^E*®Ox = E*\x. It follows that

 ciΩχ/Ζ = Ciο + c\E
 = ci (πχ ο z)*fiy|x + ci (πι ο i)*C + ci/*Cz(l).

 Now, consider the exact sequence on y χ Ζ

 0 —y 7t*L ® E* —y tt*L —y k\L\x —^ 0.

 Prom the projection formula, we see that

 k2*(k{C<S>E*) = H\Y,C®C'*)®Oz(- 1)

 and Λ1π2*(π^Ζ/ <g> Ε*) = 0. This gives us the exact sequence on Ζ

 0 -* π2*(πιΤ <g> Ε*) ->■ π2»πΐΤ -> π2*(πίΤ|χ) -> 0.

 Since the middle term is a trivial bundle, the result follows from Proposition 3.1. □

 For the remainder of this section, we identify specific examples that will appear
 in the arguments to follow.

 In section 4 we consider the case that Υ — Ρ2 and C — Oy(d) for some d > 3.
 By the above, we see that for every m and d, a relative Oy (m)-Hessian Hm exists.
 Since c^fiylx = Ox(-3,0), if m < d, Hm is cut out by a G-invariant section
 Wm of

 Ox{{n + l)m+ ^(d-3),
 where n + l — h°(Y, £) — (m^~2)·

 In particular, Hi is cut out by a section W\ G H°(Ox(3(d-2), 3)). W\ vanishes
 at (p,C) if C is smooth at ρ and the tangent line to C at ρ intersects C with
 multiplicity at least 3, or if ρ is a singular point of C. Similarly, H2 is defined by a
 section of W2 G H°(Ox(l5d - 33,15)). W2 vanishes at (p, C) if C is smooth at ρ
 and the osculating conic to C at ρ intersects C with multiplicity at least 6, or if ρ
 is a singular point of C.

 It is known that H2 = H\ U H'2 is reducible (see Proposition 6.6 in [CF91]).
 Indeed, if a line meets C with multiplicity 3 at p, then the double line meets C
 with multiplicity 6 at p. The points of H'2 Π G are classically known as the sextatic
 points of G, and H2 is cut out by a G-invariant section W2 of Ox(l2(d — |), 12).
 A simple calculation shows that H2 Π G also contains those points of G where
 yj°c^(p) > 1. These include singular points and points where the tangent line to
 G is a hyperflex (a line that intersects G at ρ with multiplicity > 4).

 Similarly, in section 5 we consider the case that Υ = Ρ1 χ Ρ1, and C =
 Oy(d,d). Note that, for every (mi,m2,d) with ml < d, ά relative Oy(mi,m2)
 Hessian Hi, exists. In this case, our formulas show that the rank of /it 1 )//12

 /„(πι οί)*Ογ{τηι,τη2) is

 η + 1 = h°(Oy(mi,m2)) = (mi + l)(m2 + 1).
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 Also, since θιπ|Ωγ|χ = Οχ(—2, -2,0), we see that H'mi m2 is cut out by a section
 Wmi,m2 ^ H°(Ox(ai,a,2,b)) for

 ai = (n + 1 )rrii + (Η * Λ (d - 2), 2

 η + 1

 »-■ 2

 Since Ρ1 χ Ρ1 has a natural involution, we know that Wfli„l2 cannot be G
 invariant if mi φ mi. Notice, however, that lTn2 ® W^2mi is a G-invariant
 section of Ο χ (a, a, b) for

 τι + 1 = (mi + l)(m2 + 1),

 a = (n + l)(mi + m2) + 2^" ^ ^(d - 2),

 »-cr
 We will use WmijTn2 to denote the G-invariant section described here, and Hmi fn^
 to denote its zero locus.

 In particular, W0ii € H0(Ox(2(d — l),2(d — 1), 2)). It vanishes at a point
 (p, G) if G intersects one of the two lines through ρ with multiplicity at least 2
 (or, equivalently, if the osculating (1,1) curve is a pair of lines). Similarly, W\^ €
 Η°(Οχ(2(3ά — 4), 2(3d — 4), 6)). It vanishes at a point (p, C) if there is a curve of
 bidegree (1,1) that intersects G with multiplicity 4 or more at p.

 4. Contraction of M3,i

 In this section, we prove our main result in the genus 3 case:

 Theorem 4.1. There is a birational contraction of M3)ι contracting the Weier
 strass divisor BN^ ^ 3j.

 In order to construct a birational model for M3ii, we consider GIT quotients of
 the universal family over the space of plane quartics. The image of the Weierstrass
 divisor in this model is precisely the Hessian Hi, and we exhibit a GIT quotient
 in which this locus is contracted. For most of this section we will consider, more
 generally, plane curves of any degree d > 3.

 Specifically, following the setup of the previous section, we let

 X — {(p> C) e Ρ2 χ \0(d)\ I pec}.

 Then π2 : X —> \0(d)\ is the family of all plane curves of degree d. Our goal is to
 study the GIT quotients of X by the action of G = PSL(3, C). By the above, we
 know that PicX = Ζ χ Ζ, so the quotient X//cG depends on a single parameter t
 which we call the slope of C.

 Definition 4. We say a line bundle C has slope t if C = π* Ο (a) <g> πΐ,0{ύ) with
 t = f. We write Xs (f) and Xss(t) for the sets of stable and semistable points, and
 X//tG for the corresponding GIT quotient.
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 Here we describe the numerical criterion for points in X. Let ρ — (xq, xi,x2)
 and

 C = Σ aij^xlx^.
 i+j+k=d

 Then a basis for H°(Ox(a,b)) consists of monomials of the form
 a b

 Π Xla Π ab>j?>k0·
 a=l /3=1

 The one-parameter subgroup with weights (i"o,ri,r2) acts on the monomial above
 with weight

 a b

 Σ ri° ~ Σ(^Γο + + kpr2).
 a=l β=1

 In our case, we will only be interested in maximizing or minimizing this weight, so it
 suffices to consider monomials of the form fe. In this case, the one-parameter
 subgroup acts with weight ari - b(iro + jr\ + kr2), which is proportional to

 μχ{χι,α·ί,j,k) ■■= trt - {iro+jrx + kr2).

 The G-ample cone of X has two edges, one of which occurs when t = 0. In
 the case where d = 4, we obtain the well-known moduli space of plane quartics.
 Descriptions of Xs(0) and Xss(0) appear in [MFK94], and the quotient X//oG
 plays an important role in the birational geometry of M3. For example, Hyeon
 and Lee show that this quotient is a log canonical model for M3 [HL10], and the
 space also appears in work on moduli of If 3 surfaces [Art09] and cubic threefolds
 [CML09].
 We will see that, when t is large, stability conditions reflect the inflectionary

 behavior of linear series at the marked point. Thus, as t increases, the curve is
 allowed to have more complicated singularities, but vanishing sequences at the
 marked point become more well-behaved.
 Our first result is to identify the other edge of the G-ample cone. It is determined

 by the Wronksian Wj.

 Proposition 4.2. An edge of the G-ample cone occurs at t = d — 2.

 Proof. It suffices to show that Xss(d — 2) φ Xs(d — 2) = 0. It is clear that
 Xss(d — 2) φ 0, since W\ is a G-invariant section of Οχ{3(d - 2), 3).
 To show that Xs (d — 2) = 0, we invoke the numerical criterion. Let (p, C) S X.

 By change of coordinates, we may assume that ρ = (0,0,1) and the tangent line to G
 at ρ is xo = 0. So in the coordinates described above, we have αο,ο,d = «ο,Μ-ι = 0.
 Now consider the 1-parameter subgroup with weights (—1,0,1). We have

 Μλ(·^2) o»,j,k) — d-2 + ί — k,

 which is negative whenever i — k — 2 < —d— —i — j — k, or 2i + j < 2. This only
 occurs when both i = 0 and j < 2, in other words, when either ao,o,d or a0,i,d-i is
 nonzero. By assumption, however, this is not the case, so (p, C) ^ Xs(d — 2). Since
 (p, G) was arbitrary, it follows that Xs(d — 2) = 0. □

 Next, we identify the adjacent chamber in the G-ample cone. It lies between the
 slopes corresponding to W\ and Wj. In what follows, we let S denote the set of all
 pointed curves (p, G) admitting the following description: G consists of a smooth

This content downloaded from 128.163.238.104 on Tue, 07 May 2024 17:33:54 +00:00
All use subject to https://about.jstor.org/terms



 2870 DAVID JENSEN

 conic together with d - 2 copies of the tangent line through a point q φ ρ on C.
 Notice that S C H'2.

 Proposition 4.3. For any t £ (d — |, d — 2), Xs{t) = Xss(t) = Χ\(Ηχ U S).

 Proof. We first show that Xss(t) Ç Χ\Ηχ. Suppose that (p, C) £ Ηχ. As before, by
 change of coordinates, we may assume that ρ = (0,0,1) and the tangent line to C at
 ρ is Xo = 0. Since (p, C) £ Ηχ, either ρ is a singular point of C or this tangent line
 intersects C at ρ with multiplicity at least 3. Thus we have ao,o,d = ao,i,d-i = 0,
 and either a^o.d-i = 0 (if ρ is singular) or ao,2,d-2 = 0 (if ρ is a flex).
 We first examine the case where ρ is a flex. In this case, consider the 1-parameter
 subgroup with weights (—5,1,4). Then

 μχ(χ2, a-i,j,k) = 4t + 5i — j — 4fc > Ad — 9 + 5i — j - = 9i + 3j — 9,

 which is nonnegative when 3i + j > 3. Since, by assumption, C has no nonzero
 terms with both i — 0 and j < 3, we see that (p, C) φ Xs" (t).
 Next we look at the case where ρ is a singular point. Consider the 1-parameter
 subgroup with weights (—1, -1,2). Then we have

 9 9
 μ\{ζ2, aitj,k) = 2i + i + j - 2k > 2d — - + i +j - 2k = 3i + 3j — -,

 which is nonnegative when i + j > |. By assumption, C has no nonzero terms
 where one of i,j is 0 and the other is at most 1, so (p, C) φ Xss(t). It follows that
 Xs" (t) C X\HV
 Next we show that Xss(t) Ç X\S. Suppose that (p, C) £ S. Without loss of
 generality, we may assume that C is of the form

 C = xo 2(ad,ο,ο^ο + αα-ιχοΧοΧι + o-d-2,2,0^1 + α<ί-ι,0,1^0^2)·

 Now, consider the 1-parameter subgroup with weights (-1,0,1). Then

 μ\{χι, cn,j,k) >-t + i- k>2-d + i-k,
 which is nonnegative when i — k > d — 2. It follows that (p, C) φ Xss(t).
 Now we show that Χ\(Ηχ U S) C Xs(t). Suppose that (p, C) φ Xs(t). Then
 there is a nontrivial 1-parameter subgroup that acts on (p, C) with nonnegative
 weight. By change of basis, we may assume that this subgroup acts with weights
 (ro,t*i, 7*2), with r0 < ri < Γ2· Since this is a nontrivial subgroup of PSL(3, C), we
 know that ro < 0 < r2 and r0 + ri + r2 = 0. We then have

 μχ{χι, aid<k) = tri - (r0i + nj + r2k) > 0.

 We divide this into three cases, depending on p.
 Case 1 -p = (0,0,1): In this case, r; = r2. If ri > 0, thenir2 < (d-2)r2 < 2ri +
 (d - 2)r2. On the other hand, if ri < 0, then ir2 <{d- 2)r2 < r0 + (d - l)r2. Since
 the subgroup acts with nonnegative weight, it follows that ao,o,d = «ο,Μ-i = 0,
 and either ali0,d-i = 0 or a0,2,d-2 = 0. Hence, (p,C) £ Ηχ.
 Case 2 - ρ lies on the line xq = 0, but not on the line Χχ = 0: In this case,
 ri — n. If rχ > 0, then since ri < r2, we have trx < drx < rxj + r2(d — j), so we
 see that ao,o,d = ao,i,d-i = · · · = ao,d,o — 0. This means that ρ lies on a linear
 component of C, and therefore (p, C) £ Ηχ.
 On the other hand, if r\ < 0, then since r2 > —2ri, we see that trx < (d —3)ri <
 (d - l)n +r2 < rxj + (d — j)r2 + r2 for j < d - 1. Note furthermore that if Γχ < 0,
 then the first of these inequalities is strict, whereas if ri = 0, the second inequality
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 is strict. It follows that οο,ο,ίΐ = ao,i,d-i = · · · = ao,d-i,i = 0. This means that
 either ρ lies on a linear component of C or the only point of C lying on the line
 xq = 0 also lies on the line x\ — 0. Again, we see that (p,C) £ Hi.

 Case 3 - p does not lie on the line xq = 0: In this case, r; = tq. Since ro < 0 and
 To < ri < r2, we see that tr0 < (d — 3)r0 — (d- 2)ro + Γχ + r2 < r0i + r\j + r2k for
 i < d—2, fc Φ 0. Now, if ro > 4ri, then we have tro < (d— |)ro = (d— |)ro+ri+r2 <
 (d — l)ro + r2. It follows that C is of the form

 C=z Σ αί,ίΡχοχ\·
 i+j=d

 In other words, C is a union of d lines. In this case, the tangent line to every point
 of C is a component of C itself, so (p,C) £ Hi.

 On the other hand, if r0 < 4ri, then tr0 < (d — |)ro = (d — 3)ro + §r0 <
 (d — 3)r0 + 3ri. It follows that C is of the form

 C = X0 2(ad,0,0^0 + a«J-l,l,0®0®l + ad-2,2,0^1 + Od-1, 0,1^0^2);

 hence C £ S. □

 We now consider the wall in the G-ample cone determined by W'2.

 Proposition 4.4. A wall of the G-ample cone occurs att — d-1. More specifically,
 Xss{t) = Χ\((Ηι Π H'2) U S), and Xs{t) Ç Χ\(ίίχ U S).

 Proo/. First, notice that if (p, C) H'2, then (p, C) G Xss(t), since W2 is a G
 invariant section of Ox(12(d- |), 12) that does not vanish at (p, C). Moreover, by
 general variation of GIT we know that, when passing from a chamber to a wall, we
 have

 r(i+e)cr(t),
 Xs{t) C xs(t + e).

 Thus, Xs(t) C X\{Hi U S) and X\{{Hx Π H'2) U S) Ç Xas(t).
 Now, suppose that (p, C) € S. Using the same argument as above with the same

 1-parameter subgroup, we see that (p, C) Xs" (t).
 Next, suppose that (p, C) £ Hi. If ρ is a singular point of C, then we see that

 (p,C) ^ Xss(t) by the same argument as before, using the subgroup with weights
 (-1'"1'2)·

 The only other possibility is that ρ is a flex. In this case, we again consider the
 1-parameter subgroup with weights (—5,1,4). As before, we have

 μχ(χ2, = 4d - 9 + 5i - j - 4k = 9i + 3j - 9,

 which is nonnegative when 3i + j > 3. As before, we see that (p, C) ^ Xs{t)·
 Notice furthermore that if (p, C) £ Hi ΓιΗ2, then either ao,3,d-3 = 0 or ayo^-i =

 0. Now consider the 1-parameter subgroup with weights (—5-e, 1+e, 4). For e > 0,
 we see that any curve with 00,3,0-3 = 0 is unstable. Conversely, if e < 0, we see
 that any curve with ai,o,d-i = 0 is unstable. From our observations above, we may
 therefore conclude that Xss(t) Ç Χ\((Ηι Π H2) U S). Π
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 We are left to consider the behavior of our quotient at the wall crossing defined
 by to = d — As in Theorem 2.2, we let

 X± = Xs°(t0)\Xaa(t0Te),

 X° = Xss(t0)\(Xss(t0 + e) U Xss(t0 - e)).

 Our first task is to determine X~ and X° in this situation.

 Proposition 4.5. With the setup above, X~ = Ηχ\Η'2· A0 is the set of all pointed
 curves (p, C) consisting of a cuspidal cubic plus d — 3 copies of the projectivized
 tangent cone at the cusp. The point ρ is the unique smooth flex point of the cuspidal
 cubic.

 Proof. We have already seen that Xss(to) — Χ\((Ηι Π H2) U S) and Xss(to + e) =
 X\(Hi U S). Thus, Χ" = #ι\#2·
 To prove the statement about X°, let (p, C) € X°. Notice that, since X° C X~,

 ρ is a smooth point of C and the tangent line to C at ρ intersects C with multiplicity
 exactly 3. Since (p,C) £ Xss{to — e), there must be a nontrivial 1-parameter
 subgroup that acts on (p, C) with strictly positive weight. Again we assume that
 this subgroup acts with weights (ro,ri,r2), with ro < r\ < r2. As before, we know
 that ro < 0 < r2 and ro + ri + r2 = 0. Again we have

 Px(xiiai,j,k) = tri - (r0i + nj + r2k) > 0.

 We divide this into three cases, depending on p.
 Case 1 - ρ = (0,0,1): In this case, r; = r2. Now, if tr2 > ro + (d — l)r2, then

 (d — |)r2 > ro + (d — l)r2, so r\ > \r2. This means that tr2 < (d — |)r2 <
 3ri + (d — 3)r2. It follows that oo,o,d = ao,i,d-i — 0, and either αι,ο,<ί-ι = 0 or
 ûo,2,d-2 = ûo,3,d-3 = 0- But we know that ρ is a smooth point of C and the
 tangent line to C at ρ intersects C with multiplicity exactly 3, so neither of these
 is a possibility.

 Case 2 - ρ lies on the line Xq = 0, but not on the line x\ — 0: Using the
 same argument as before, we see that ρ lies on a linear component of C, which is
 impossible.

 Case 3 - ρ does not lie on the line xo = 0: In this case, η = ro. Again, since
 r0 < 0 and rj < r0 < r2, we see that tr0 < (d - 3)r0 = (d - 2)ro + ri + r2 <
 foi + nj + r2k for i < d — 2, k φ 0. Notice that, if tr0 < (d — l)ro + r2, then as
 before we see that C is the union of d lines, which is impossible.

 We therefore see that (d - y )r0 > tr0 > (d - l)r0 + r2. But then lr0 < -r2 =
 r0 + ri, so r0 < |rx. It follows that tr0 < {d - ^)r0 < (d - 4)r0 + 4ri < r0i + r\j
 for j > 4.

 We see that C is of the form

 C = x0 3(ad,0,0^0 + ad-l, 1,0^0^1 + ad-2,2,0%0xl + ad-3,3,0x\ + «d-Ι,Ο,Ι^ο^ί)·

 Thus, C consists of a cuspidal cubic together with d — 3 copies of the projectivized
 tangent cone to the cusp. The point ρ is the unique flex point of the cuspidal cubic.

 It is clear that this (p, C) 6 X~, since the tangent line to C at ρ intersects
 C with multiplicity exactly 3. To see that (p, C) £ Xss(to - e), consider again
 the 1-parameter subgroup with weights (5,-1,-4). The characterization of X°
 above then follows from the fact that all cuspidal plane cubics are projectively
 equivalent. □
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 Corollary 4.6. The map X//(o_eG —> X//t0G contracts the locus H\\H'2 to a
 point. Outside of this locus, the map is an isomorphism.

 Proof. Let (p, C) G X°. Since all cuspidal plane cubics are projectively equivalent,
 G ■ (p,C) = Δ0, so G ■ (p,C) is closed in Xss(to) and X°//G is a point. An
 automorphism of P1 extends to (p, C) if and only if it fixes the point ρ and the
 cusp, and thus the stabilizer of (p, C) is isomorphic to C*. The conclusion follows
 from Theorem 2.2. □

 We are particularly interested in the case where d = 4, because in this case
 X//t0-eG is a birational model for Ai3,i. In particular, we have the following:

 Proposition 4.7. There is a birational contraction β : M3jι —» X//to-eG.

 Proof. It suffices to exhibit a morphism β~1 : V —> M3ii, where V Ç A"//to_eG
 is open with complement of codimension > 2 and /3"1 is an isomorphism onto
 its image. To see this, let U Ç Xss(to — e) be the set of all moduli stable pointed
 curves (p, C) € Xss(to — e). Notice that U is invariant under the action of the group
 and its complement is strictly contained in the discriminant locus Δ, which is an
 irreducible G-invariant hypersurface in X. Note furthermore that there are stable
 points contained in both X\A and AilU. Thus, the containments (X\U)//to-fG c
 A//to-eG and A//to~tG C X//t0-£G are strict. It follows that the complement of
 U//G in the quotient has codimension > 2.
 By the universal property of the moduli space, since U is a family of moduli
 stable curves, it admits a unique map U —> M3,i. Since U is contained in the
 semistable locus and this map is G-equivariant, it factors uniquely through a map
 U//to~eG -> M3>ι. Since every degree 4 plane curve is canonical, two such curves
 are isomorphic if and only if they differ by an automorphism of P2. It follows that
 this map is an isomorphism onto its image. □

 Theorem 4.8. There is a birational contraction of M3ji contracting the Weier

 strass divisor BN^03y Furthermore, the divisors BN^03y BNf, Δι and Δ2
 span a simplicial face of 7V£,1(M3ii).

 Proof. The composition M3i 1 —» Xj/to-eG -t X//toG is a birational contraction.
 By the above, the Weierstrass divisor is contracted by this map. It therefore suffices
 to show that the isomorphism β-1 constructed in the preceding theorem does not
 contain in its image the generic point of BNf or Δ, for i > 1. For BNf this is
 automatic, since every smooth curve in X is canonically embedded and hence non
 hyperelliptic. For this follows directly from the fact that Δ Π U is an irreducible
 divisor in U whose generic point is an irreducible nodal curve. □

 5. Contraction of M4ji

 We now turn to the case of genus 4 curves. Our main result will be the following:

 Theorem 5.1. There is a birational contraction of M^ 1 contracting the pointed

 Brill-Noether divisor BN3 2) ■

 In a similar way to the previous section, we will construct a birational model
 for M4j 1 by considering GIT quotients of the universal family over the space of
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 curves in Ρ1 χ Ρ1. Here, the Hessian i/0,1 is again the image of a pointed Brill
 Noether divisor. As above, our goal is to find a GIT quotient in which this locus is
 contracted. Let Υ = Ρ1 χ Ρ1 and

 X = {(p,C)eYx\0(d,d)\ I ρ EC).

 Then 7Γ2 : X —J \0(d, d)\ is the family of all curves of bidegree (d, d). Our goal, as
 before, is to study the GIT quotients of X by the action of G = PSO(4, C). By the
 above, we know that PicX = Z3, but we are only interested in those line bundles of
 the form Οχ (a, a, b). We can therefore define the slope of a line bundle C 6 PicX
 as above.

 Definition 5. We say a line bundle £ has slope t if C — πΙΟ(α,α) ® πϊ,Οίβ) with
 t = |. We write Xs(t) and Xs" (t) for the sets of stable and semistable points, and
 X//tG for the corresponding GIT quotient.

 Here we describe the numerical criterion for points in X. Let ρ = (x0, X\ : y0, y\)
 and

 C= Σ α^χοχϊ~1ύνΐ~3 ■
 0 <i,j<d

 Then a basis for Η°(Οχ(α, a, b)) consists of monomials of the form
 a b

 JJ xla0ymai Χ\_αίβ,3β·
 α0=1 β=1

 The one-parameter subgroup with weights (—ro,ro, — Γι,Γχ) acts on the monomial
 above with weight
 b a

 J2(ro(i0 ~(d- ϊβ)) + ri{jp - (d - j0))) - Σ ((—1)'αο?"ο + (-l)m«in).
 β=1 α0=1

 In our case, we will only be interested in maximizing or minimizing this weight, so it

 suffices to consider monomials of the form x^y^a^ j. In this case, the one-parameter
 subgroup acts with weight b(r0(2i - d) + rx(2j - d)) - a((-l)'r0 + (-l)"Vi), which
 is proportional to

 μχ{xi,ym,ai,j) := ro(2f - d) + ri(2j - d) - i((-l/r0 + (-l)mri).
 As in the previous section, when t — 0, we obtain a moduli space of curves
 of bidegree (d, d). In particular, the case d = 3 is notable for being a birational
 model for M4. We will see that as t increases, stable curves are allowed to have
 more complicated singularities, but the vanishing sequences of linear series at the
 marked point become more well-controlled. We begin by identifying an edge of the
 G-ample cone corresponding to the Wronskian Wo,i·

 Proposition 5.2. An edge of the G-ample cone occurs at t = d — 1.

 Proof. It suffices to show that Xss(d - 1) φ Xs(d - 1) = 0. It is clear that
 Xss(d — 1) φ 0, since W0ii is a G-invariant section of Οχ(2(d - 1), 2(d — 1), 2).
 To show that Xs (d — 1) = 0, we invoke the numerical criterion. Let (p, C) ζ
 X. By change of coordinates, we may assume that ρ — (0,1 : 0,1). So, in the
 coordinates described above, we have αο,ο = 0.
 Now consider the 1-parameter subgroup with weights (-1,1, —1,1). We have

 yx(xi,yi,ai,j) = 2(d — 1) + (2i-d) + (2j - d),
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 which is negative whenever (2i — d) + (2j — d) < —2(d — 1), or i + j < 1. This
 only occurs when i = j = 0, in other words, when αο,ο is nonzero. By assumption,
 however, this is not the case, so (p, C) ^ Xs(d — 1). Since (p, C) was arbitrary, it
 follows that Xs(d — 1) = 0. □

 As above, we identify the adjacent chamber in the G-ample cone. It lies between
 the slopes corresponding to the Wronskians Wo,ι and W\t\. In what follows, we let
 S denote the set of all pointed curves (ρ, C) admitting the following description: C
 consists of a smooth curve of bidegree (1,1) together with d — 1 copies of the two
 lines through a point q φ ρ on C. Notice that S C ifyx.

 Proposition 5.3. For any t e {d - §,d - 1), Xs (t) = Xss(t) = X\{H0,i U S).

 Proof. We first show that Xss(t) C X\Hq,i- Suppose that (p, C) 6 Ηο,ι- As before,
 by change of coordinates, we may assume that ρ — (0,1 : 0,1). Since (p, C) € #ο,ι>
 C intersects one of the two lines through ρ with multiplicity at least 2. Without
 loss of generality, we may assume this line to be Xq = 0. Thus, if we write C as
 above, then αο,ο = »o,i = 0. Now, consider the 1-parameter subgroup with weights
 (-2,2,-1,1). Then '

 F\(xi,yi,aitj) = 31 + 2(2i - d) + (2j - d) > 3d - 4 + 2(2i - d) + (2j - d)
 = 2(2i + j — 2),

 which is nonnegative when 2i + j > 2. Since, by assumption, C has no nonzero
 terms with both i = 0 and j < 1, we see that (p, C) f Xss(t).

 Next we show that Xss(t) Ç X\S. Suppose that (p, C) 6 S. Without loss of
 generality, we may assume that C is of the form

 C = Xq Vq (Qd,d,XoyO Τ Od.—l,d.XiyO Τ 0,d,d—IXqVi)■

 Now, consider the 1-parameter subgroup with weights (1, —1,1, —1). Then

 μ\(χι,ym, o-i,j) > ~21 - (2i -d)- (2j - d) > -2d + 2 - (2i - d) - (2j - d)

 = -2({d-i) + (d-j) - 1),

 which is nonnegative when (d — i) + (d — j)< 1. It follows that (p, C) ^ Xss(t).
 Now we show that X\(Ho,i US) Ç Xs{t). Suppose that (p,C) ^ Xs(i). Then

 there is a nontrivial 1-parameter subgroup that acts on (p, C) with nonnegative
 weight. By change of basis, we may assume that this subgroup acts with weights
 (—f0,ro, — ri,ri), with 0 < ro < r\ and ri > 0. We then have

 μ\{χι,ym,aij) = r0(2i - d) + r^j - d) - t{(-l)lr0 + (-l)"Vi) > 0.
 We divide this into four cases, depending on p.

 Case 1 - ρ = (0,1 : 0,1): In this case, I = m = 1. We have t(-ro - ri) >
 (d—1)(—r0—J"i) > —(d—2)r0—dr\. It follows that α0,ο = αι,ο = 0, so (p,C) € #0,1·

 Case 2 - ρ lies on the line yo — 0, but not on the line xo = 0: In this case, 1 = 1
 and m = 0. Here, t(—ro + ri) > (d — 2)(—ro + Γχ) > -dro + kr\ for all k < d — 2.
 Note further that if r0 φ ry, then the first inequality is strict, whereas if r0 = rlt
 then the second inequality is strict. We therefore see that αο,Α, = 0 for all k < d — 2.

 If ao4 Φ 0, then every point of C that lies on the line xq = 0 also lies on the line
 i/o = 0, a contradiction. We therefore see that ao,d = 0 as well, but this means that
 ρ lies on a linear component of C, and therefore (p, C) € Ιΐο,ι ·

 Case 3 - ρ lies on the line xq = 0, but not on the line yo = 0: In this case, I = 0
 and m = 1. Note that t(r0 - Γχ) > d(r0 - Γχ) > dr0 - kri for all k < d. Again,
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 if ro φ Γι, then the first inequality is strict, whereas if r0 = rq, then the second
 inequality is strict. It follows that o.k.ο = 0 for all k < d, which means that either
 yo = 0 is a linear component of C or every point of C that lies on the line yo = 0
 also lies on the line yo — 0. Thus (p, C) £ Hq\ .
 Case 4 - ρ does not lie on either of the lines xq = 0 or yo = 0: In this case,
 I = m = 0. Now note that t{ro + rq) > (d — 2)(ro + rq), so a,k0tkι = 0 if ko and Aq
 are both less than d. Furthermore, since ro < rq, (d— 2)(r0 + rq) > dr0 + (d — 4)rq,
 so ad,k — 0 for k < d— 2. Now, if (d — |)(ro + ri) < (d — 4)ro + dri, then 2ro < ri,
 so t(ro + rq) > (d— §)(ro + rq) > dro + (d — 2)ri. It follows that either a,d,d-1 — 0,
 in which case C is a union of 2d lines and hence (p, C) £ #ο,ι> or — 0 for all
 k < d — 2, in which case C £ 5". □

 We now consider the wall in the G-ample cone determined by the Wronskian
 W1A.

 Proposition 5.4. A wall of the G-ample cone occurs att = d— More specifically,
 Xss(t) = X\((H0,i Π Ηχ,ι) U S), and Xs{t) C X\(H0,i U S).

 Proof. First, notice that if (p,C) iîi,i, then (p, C) £ Xss(t), since W\^ is a
 G-invariant section of Οχ(6(d — |), 6(d - |),6) that does not vanish at (p, G).
 Moreover, by general variation of GIT we know that, when passing from a chamber
 to a wall, we have

 Xss(t + e) ς Xss{t),

 Xs(t) C Xs{t + e).

 Thus, Xs(t) Ç X\(H0,i U S) and Χ\((Η0ιι Π Hhl) U S) = Xss(t).
 Now, suppose that (p, G) £ S. Using the same argument as before with the same

 1-parameter subgroup, we see that (p, G) (f Xss(t).
 Next, suppose that (p, C) £ Η0,ι· In this case, we again consider the 1-parameter

 subgroup with weights (—2,2, —1,1). As before, we have

 P\(xi,Vi,Otj) = 3d — 4 + 2(2i - d) + (2j - d) = 2(2i + j - 2),

 which is nonnegative when 2i + j > 2. Since, by assumption, G has no nonzero
 terms with both i = 0 and j < 1, we see that (p, G) Xs (t).

 Notice furthermore that if (p, G) £ FT0,i Π Hiti, this means that the osculating
 (1,1) curve to G at ρ is the pair of lines through that point, and this curve intersects

 G with multiplicity at least 4. This means that either α0ιι = 0 or a2,o = 0, which
 implies that the expression 2i+j — 2 above is zero for at most one term, and strictly
 positive for all of the others. Now consider the 1-parameter subgroup with weights
 (-2 — e, 2 + e, —1,1). For e > 0, we see that any curve with αο,ι = 0 is unstable.
 Conversely, if e < 0, we see that any curve with ct2,o = 0 is unstable. It follows that
 (p, G) i Xss{t), and thus Xss(t) = X\((H0,ι Π tfu) U S). □

 Again, we want to use Theorem 2.2 to study the wall crossing at t0 = d -
 Again, we let

 X± = Xss(to)\Xss(t0Te),

 X° = Xss(t0)\(Xss(t0 + e) U Xss(t0 - e))

 and determine X~ and X°.
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 Proposition 5.5. With the setup above, X" = i?o,i\-^i,i · X° is the set of all
 pointed curves (ρ, C) admitting the following description: C consists of a smooth
 curve of bidegree (1,2) (or (2,1)), together with d — 1 copies of the tangent line to
 this curve through a point that has a tangent line, and d - 2 copies of the other
 line through this same point. The marked point ρ is the unique other point on the
 smooth (1,2) curve that has a tangent line.

 Proof. We have already seen that Xss(t0) = X\((H0 \C\H\ i)U5) and X9S(to+e) =
 X\(H0,i U S). Thus, X- = H0,i\Hltl.

 To prove the statement about X°, let (p, C) € X°. Notice that, since X° Ç X~,
 exactly one of the two lines through ρ intersects C with multiplicity exactly 2. Since
 (p, C) (f Xss{t() - e), there must be a nontrivial 1-parameter subgroup that acts on
 (p, C) with strictly positive weight. Again we assume that this subgroup acts with
 weights (—ro, ro, — r*i, ri), with 0 < ro < r\ and r\ > 0. Again we have

 p\{xi,ym,ai,j) = r0(2i - d)+n{2j - d) - f((-l)'r0 + (-l)mri) > 0.

 We divide this into four cases, depending on p.
 Case 1 - ρ = (0,1 : 0,1): In this case, I = m = 1. Again we have t(—ro — ri) >

 (ιd - 1)(—t*o - ri) > — (d — 2)ro - dr±. Now, if t(—ro — ri) < —dro — (d — 2)ri, then

 (d — |)(—ro — ri) < -dro — (d — 2)τί, so rι > 2ro- This means that t(—ro — r\) <
 (d — |)(-r0 — ri) < — (d — 4)ro - dr\. It follows that αο,ο = αϊ,ο = 0, and either
 α01 = 0 or ct2,o = 0. But we know that exactly one of the two lines through ρ
 intersects C with multiplicity exactly 2, so neither of these is a possibility.

 Case 2 - ρ lies on the line yo = 0, but not on the line xq = 0: Following the
 same argument as above we see that either ρ lies on a linear component of C, or
 every point of C that lies on the line Xo = 0 also lies on the line y ο = 0. It follows
 that (p, C) f- X~, a contradiction.

 Case 3 - ρ lies on the line xo = 0, but not on the line y0 = 0: Again, following
 the same argument as above we see that ρ lies on a linear component of C. This
 implies that (p, C) X~, which is impossible.

 Case 4 - ρ does not lie on either of the lines xo = 0 or y ο = 0: In this case,
 I = m = 0. As above, we see that aii0tk1 = 0 if fco and are both less than d, and
 ad,k — 0 for k < d — 1. Now, if (d - §)(ro + ri) < (d - 6)r0 + dri, then 3ro < n, so
 t{ro + ri) > (d - |)(r0 + rr) > dr0 + (d - 2)r0. It follows that either ι = 0, in
 which case C is a union of 2d lines, which is impossible, or ak,d = 0 for all k < d-2.
 We therefore see that C is of the form

 C = x^y^1 (ad,dxlyo + ad,d-ixlyi + ad-i,dxoX\yo + ad-2,dxlyo)·

 Thus, C consists of three components. One is a curve of bidegree (2,1). The other
 two components consist of multiple lines through one of the points on this curve
 that has a tangent line. The point ρ is forced to be the unique other such point.

 It is clear that this (p, C) £ X~, since by definition, one of the lines through ρ
 intersects C with multiplicity greater than 1, and it is impossible for it to intersect
 a smooth curve of bidegree (2,1) with higher multiplicity than 2, or for the other
 line through ρ to intersect the curve with multiplicity at all. To see that (p, C) f
 Xss(to - e), consider the 1-parameter subgroup with weights (-1,1, —2,2).

 Finally, notice that all such curves are in the same orbit of the action of G, so X°
 must be the set of all such curves. To see this, note that if we fix the two points that

 have tangent lines to be (1,0 : 1,0) and (0,1 : 0,1), then the curve is determined
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 uniquely by the third point of intersection of the curve with the diagonal. Since
 PSL(2, C) acts 3-transitively on points of p1, we obtain the desired result. □

 Corollary 5.6. The map X//to~eG -> X//t0G contracts the locus #o,i\#i,i to a
 point. Outside of this locus, the map is an isomorphism.

 Proof. Let C — xf~2yf~1(xlyi + xjyo), and ρ = (0,1 : 0,1). Then (p, C) £ X°. As
 we have seen, X° is the orbit of (p, C), so G·(p. C) is closed in Xs"(to) and X0//tog
 is a point. Notice that the stabilizer of (p, C) must fix ρ = (0,1: 0,1), and the other
 ramification point, which is (1,0 : 1,0). Thus, the stabilizer of (p, C) must consist
 solely of pairs of diagonal matrices. A quick check shows that the stabilizer of (p, C)
 is the one-parameter subgroup with weights (—1,1, —2,2), which is isomorphic to
 C*. Again, the conclusion follows from Theorem 2.2. □

 Our main interest is the case where d = 3. As above, this is because in this case
 x//to_cG is a birational model for M4)i. In particular, we have the following:

 Proposition 5.7. There is a birational contraction β : M4iι —» X//to~eG.

 Proof. As above, it suffices to exhibit a morphism β"1 : V —> M4,i, where V ç
 X//to-eG is open with complement of codimension > 2 and β~ ' is an isomorphism
 onto its image. Again, we let U Ç Xss(to — e) be the set of all moduli stable
 pointed curves (p, C) g Xss(t0 - e). The proof in this case is exactly like that in
 the case of p2, as the discriminant locus Δ Ç a is again an irreducible G-invariant
 hypersurface.

 By the universal property of the moduli space, since g is a family of moduli
 stable curves, it admits a unique map U -> m4)i. Since U is contained in the
 semistable locus and this map is G-equivariant, it factors uniquely through a map
 U//to-eG -» M4iι. Since every curve of bidegree (3,3) on ρ1 χ ρ1 is canonical, two
 such curves are isomorphic if and only if they differ by an automorphism of ρ1 χ ρ1.
 It follows that this map is an isomorphism onto its image. □

 Theorem 5.8. There is a birational contraction of m4)ι contracting the pointed
 Brill-Noether divisor BN^ (0 2) · Moreover, if Ρ is the Petri divisor, then the divisors

 (0,2)' P> δ2, and δ3 span a simplicial face of NE1{M^ 1).

 Proof. The composition m4)1 ---► X//to_eG -> X//t0G is a birational contraction.
 By the above, the given pointed Brill-Noether divisor is contracted by this map. It
 therefore suffices to show that the isomorphism β-1 constructed in the preceding
 theorem does not contain in its image the generic point of Ρ or δ* for i > 1. Every
 smooth curve in X is Gieseker-Petri general, since its canonical embedding lies on
 a smooth quadric, so the generic point of Ρ is not contained in the image of /3-1.
 For At this again follows directly from the fact that Δ Π g is an irreducible divisor
 in G whose generic point is an irreducible nodal curve. □
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