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LOG CANONICAL MODELS
AND VARIATION OF GIT

FOR GENUS 4 CANONICAL CURVES

SEBASTIAN CASALAINA-MARTIN, DAVID JENSEN,

AND RADU LAZA

Abstract

We discuss geometric invariant theory (GIT) for canonically embedded
genus 4 curves and the connection to the Hassett–Keel program. A
canonical genus 4 curve is a complete intersection of a quadric and a
cubic, and, in contrast to the genus 3 case, there is a family of GIT
quotients that depend on a choice of linearization. We discuss the cor-
responding variation of GIT (VGIT) problem and show that the result-
ing spaces give the final steps in the Hassett–Keel program for genus 4
curves.

Introduction

The Hassett–Keel program aims to give modular interpretations of certain

log canonical models of Mg, the moduli space of stable curves of fixed genus

g, with the ultimate goal of giving a modular interpretation of the canonical

model for the case g � 0. The program, while relatively new, has attracted

the attention of a number of researchers and has rapidly become one of the

most active areas of research concerning the moduli of curves. Perhaps the

most successful approach so far has been to compare these log canonical mod-

els to alternate compactifications of Mg constructed via geometric invariant

theory (GIT) on the spaces Hilbmg,ν , the so-called m-th Hilbert spaces of ν-

canonically embedded curves of genus g, for “small” ν and m (e.g. [HH09],

[HH08], [AH12]).
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728 S. CASALAINA-MARTIN, D. JENSEN, AND R. LAZA

For large genus, completing the program in its entirety still seems some-

what out of reach. On the other hand, the case of low genus curves affords

a gateway to the general case, providing motivation and corroboration of ex-

pected behavior. The genus 2 and 3 cases were completed recently ([Has05],

[HL10b]). In this paper, we study the genus 4 case by focusing on the spaces

Hilbm4,1; i.e. we study GIT quotients of canonically embedded genus 4 curves.

The main result is a complete description of GIT stability on Hilbm4,1 for all

m, as well as a proof that the resulting GIT quotients give the final steps

in the Hassett–Keel program for genus 4. Together with previous work on

the subject (see [HL10a], [Fed12], [CMJL12]), this completes the program in

genus 4 outside of a small range.

One of the key features of this paper is the technique employed. Using a

space denoted by PE (a smooth, elementary, birational model of the Hilbert

scheme parameterizing complete intersections), we fit all of the Hilbert quo-

tients for canonical genus 4 curves into a single variation of GIT problem

(VGIT). In other words, the final steps of the Hassett–Keel program in genus

4 are described by a VGIT problem on a single space. Also of interest is a

technical point that arises: we are forced to do VGIT for linearizations that

lie outside of the ample cone. A priori this leads to an ambiguity in the mean-

ing of Mumford’s numerical criterion for stability. However, we are able to

circumvent this issue to provide a complete analysis of the stability conditions

on PE.

While examples of GIT for hypersurfaces are abundant in the literature

(e.g. [MFK94, §4.2], [Sha80], [All03], [Laz09]), this appears to be one of

the first examples of GIT for complete intersections (see however [AM99] and

[MM93] for (2, 2) complete intersections, and Benoist [Ben11] for some generic

stability results in a situation similar to ours). Furthermore, unlike the projec-

tive spaces parameterizing hypersurfaces or the Grassmannian parameterizing

complete intersections of type (d, . . . , d), the natural parameter space in our

situation has Picard rank 2, and thus provides a natural setting for VGIT. We

believe the techniques we develop in this paper for studying VGIT for spaces

of complete intersections will have a number of further applications beyond

moduli spaces of curves.

The Hassett–Keel program for genus 4 curves: known and new

results. To put our results in context, we recall some background on the

Hassett–Keel program. Namely, for α ∈ [0, 1], the log minimal models of Mg

are defined to be the projective varieties

Mg(α) := Proj

( ∞⊕
n=0

H0
(
n(KMg

+ αδ)
))

,
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VARIATION OF GIT FOR GENUS 4 CURVES 729

where δ is the boundary divisor in Mg. Hassett and Hyeon have explicitly

constructed the log minimal models Mg(α) for α ≥ 7
10 −ε (see [HH09,HH08]).

Hyeon and Lee have also described the next stage of the program in the specific

case that g = 4 (see [HL10a]): as α decreases from 2
3 + ε to 2

3 , they construct

a map that contracts the locus of Weierstrass genus 2 tails, replacing them

with A4 singularities. Thus, the known spaces for the Hassett–Keel program

in genus 4 are

(0.1)

M4 = M4[1,
9
11 )

��
M

ps

4 = M4[
9
11 ,

7
10 )

�����
����

�
������������ M

hs

4 = M4(
7
10 ,

2
3 )

������
����

����
���

��

M
cs

4 = M4(
7
10 ) M4(

2
3 ),

where the notation Mg(I) for an interval I means Mg(α) ∼= Mg(β) for all

α, β ∈ I. The double arrows correspond to divisorial contractions, the single

arrows to small contractions, and the dashed arrows to flips.

The main result of the paper is the construction of the log minimal models

M4(α) for α ≤ 5
9 via a VGIT analysis of canonically embedded curves in P3.

Main Theorem. For α ≤ 5
9 , the log minimal models M4(α) arise as GIT

quotients of the parameter space PE. Moreover, the VGIT problem gives us

the following diagram:

(0.2)

M4(
5
9
, 23
44
) �������

�����
���

����
���

�
M4(

23
44
, 1
2
)

		���
���

��		
			

	
������� M4(

1
2
, 29
60
)

�����
���



























M4(
5
9
) M4(

23
44
) M4(

1
2
) M4[

29
60
, 8
17
)

��
M4(

8
17
)={∗}.

More specifically,

i) the endpoint M4(
8
17+ε) is obtained via GIT for (3, 3) curves on P1×P1

as discussed in [Fed12];

ii) the other endpoint M4(
5
9 ) is obtained via GIT for the Chow variety

of genus 4 canonical curves as discussed in [CMJL12];

iii) the remaining spaces M4(α) for α in the range 8
17 < α < 5

9 are

obtained via appropriate Hilbm4,1 quotients, with the exception of

α = 23
44 .
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730 S. CASALAINA-MARTIN, D. JENSEN, AND R. LAZA

Thus in genus 4, the remaining unknown range for the Hassett–Keel pro-

gram is the interval α ∈ ( 59 ,
2
3 ). Using the geometric meaning of the spaces

M4(α) for α ≤ 5
9 and the predictions of [AFS10], we expect that there are

exactly two more critical values: α = 19
29 , when the divisor δ2 should be con-

tracted to a point and α = 49
83 , when the locus of curves with hyperelliptic

normalization obtained by introducing a cusp at a Weierstrass point should

be flipped, being replaced by curves with A6 singularities. We do not expect

that these models can be obtained by further varying the GIT problem we

consider here. In fact, since each of these predicted models arises prior to the

predicted flip of the hyperelliptic locus (α = 5
9 ), they should be unrelated to

spaces of canonical curves. It is believed that each of these two intermediate

models ought to correspond to a quotient of the Hilbert scheme of bicanonical

curves.

GIT for canonical genus 4 curves. As already mentioned, GIT for

pluricanonical curves has long been used to produce projective models for the

moduli space of curves. For example, Mumford used asymptotic stability for

ν-canonical curves, with ν ≥ 5, to show the projectivity of Mg, and recently

the case ν < 5 has been used in the Hassett–Keel program. The basic idea is

that as the values ν and m decrease, one should obtain the log minimal models

Mg(α) for progressively smaller values of α (e.g. [FS10, Table 1]). Thus from

the perspective of the Hassett–Keel program, it is of interest to understand

GIT for canonically embedded curves. This turns out to be difficult, and to our

knowledge the only case where the stability conditions have been described

completely prior to this paper is for genus 3. On the other hand, it was

recently proved (see [AFS12]) that the generic non-singular canonical curve of

arbitrary genus is stable. In this paper, we completely describe the stability

conditions for genus 4 canonical curves.

We set up the analysis of the GIT stability for canonical genus 4 curves as

follows. The canonical model of a smooth, non-hyperelliptic genus 4 curve is

a (2, 3)-complete intersection in P3. A natural parameter space for complete

intersections is a projective bundle PE → P9 on which G = SL(4,C) acts

naturally. Since rank(Pic(PE)) = 2, the GIT computation involves a choice of

linearization parameterized by t ∈ Q+∪{0} (corresponding to the linearization
η + th, where η is the pullback of O(1) from the space of quadrics P9 and h

is the relative O(1)). In this paper, we analyze the geometry of the quotients

PE//tSL(4) as the linearization varies and relate them to the Hassett–Keel

spaces M(α). We note that a related setup for GIT for complete intersections

occurs in recent work of Benoist [Ben11].

One naturally identifies two special cases. First, for 0 < t 	 1, one easily

sees that PE//tSL(4) coincides with the GIT quotient for (3, 3) curves on

P1 × P1; this was analyzed by Fedorchuk [Fed12]. At the other extreme, the
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VARIATION OF GIT FOR GENUS 4 CURVES 731

case t = 2
3 was shown in [CMJL12] to be isomorphic to both the quotient

of the Chow variety for genus 4 canonical curves as well as to the Hassett–

Keel space M4(
5
9 ). The intent of this paper is to describe the GIT quotient

for the intermediary values t ∈ (0, 23 ). We work with PE, but show that all

of the quotients of type Hilbm4,1 //SL(4) arise in this way. The advantage of

working with PE is that we have VGIT on a single, elementary space, where

the stability computation is straightforward and corresponds directly to the

variation of parameters.

Geometric description of the birational maps in the main theo-

rem. As mentioned, the Hassett–Keel program aims to give modular inter-

pretations to the spaces Mg(α) and to the birational maps between them. Es-

sentially, as α decreases, it is expected that Mg(α) parameterizes curves with

increasingly complicated singularities, and at the same time special curves

from Mg are removed (e.g. curves with elliptic tails or hyperelliptic curves,

etc.) In the situation of our main result, the maps of the diagram (0.2) are in-

tuitively described as follows. In M4(
5
9 ), the hyperelliptic locus is contracted,

as is the locus of elliptic triboroughs, and the locus of curves in Δ0 with hy-

perelliptic normalization is obtained by gluing two points that are conjugate

under the hyperelliptic involution. The next map flips these loci, replacing

them with curves that have A8, D4, and A7 singularities, respectively.

The second flip (at α = 23
44 ) removes the locus of cuspidal curves whose nor-

malization is hyperelliptic, replacing them with curves possessing a separating

A7 singularity. The third flip (at α = 1
2 ) removes the locus of nodal curves

whose normalization is hyperelliptic, replacing them with the union of a conic

and a double conic. Finally, the map to M4(
29
60 ) contracts the Gieseker–Petri

divisor to a point, corresponding to a triple conic. This geometric description

of the various maps is summarized in Tables 2 and 3 in §3.
We note that the critical slopes occurring in our analysis are in concordance

with the general predictions of Alper, Fedorchuk, and Smyth [AFS10]. We

also note that at α = 5
9 and α = 23

44 , we observe a phenomenon that first occurs

in genus 4. Namely, the critical values at which the separating A5 and A7

singularities appear differ from those at which the non-separating singularities

appear.

Table of spaces. Table 1 below, relating the parameters α, t and m,

describes the relationships among the various spaces occurring in this paper.

Note that the following relations (see Proposition 1.8 and Theorem 7.1) hold:

t =
34α− 16

33α− 14
, α =

14t− 16

33t− 34
, t =

⎧⎪⎨
⎪⎩

m−2
m+1 2 ≤ m ≤ 4,

2m2−8m+8
3m2−9m+8 m ≥ 5.
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732 S. CASALAINA-MARTIN, D. JENSEN, AND R. LAZA

Table 1. Relationship among the spaces appearing in this paper

Mg(α) PE//tSL(4) m Hilbm
4,1 //ΛmSL(4) Other

5
9

2
3

∞ − Chow4,1 //Λ∞SL(4)
(
23
44
, 5
9

) (
6
11
, 2
3

) (
17+

√
129

4
,∞

)
≥ 8

23
44

6
11

17+
√
129

4
−

(
1
2
, 23
44

) (
2
5
, 6
11

) (
4, 17+

√
129

4

)
5, 6, 7

1
2

2
5

4 4
(
29
60
, 1
2

) (
2
9
, 2
5

) (
20
7
, 4
)

3
(

8
17
, 29
60

] (
0, 2

9

] (
2, 20

7

]
− |OP1×P1(3, 3)| //SO(4)

8
17

0 2 2

1. PE and its geometry

In this section we recall the projective bundle PE considered in [CMJL12]

(see also [Ben11] for a more general setup) parameterizing subschemes of P3

defined by a quadric and a cubic. The primary aim is to describe various

rational maps from PE to projective space and their induced polarizations in

terms of standard generators for the Picard group.

1.1. Preliminaries. We start by recalling the definition of the bundle PE
from [CMJL12] and establishing some basic properties. We fix the notation

Vd := H0(P3,OP3(d))

for each d ∈ Z, and define Q to be the universal quadric

Q −−−−→ P3 × PV2⏐⏐� ⏐⏐�π2

PV2 PV2.

There is an exact sequence of sheaves

(1.1) 0 → IQ → OP3×PV2
→ OQ → 0.

Setting π1 : P3 × PV2 → P3 (resp. π2 : P3 × PV2 → PV2) to be the first (resp.

second) projection, then tensoring (1.1) by π∗
1OP3(3) and projecting with π2∗,

we obtain an exact sequence

(1.2) 0 → π2∗(IQ⊗π∗
1OP3(3)) → π2∗(π

∗
1OP3(3)) → π2∗(OQ⊗π∗

1OP3(3)) → 0.

We will define the projective bundle PE using the locally free sheaf on the

right.
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VARIATION OF GIT FOR GENUS 4 CURVES 733

Definition 1.3. In the notation above, let E := π2∗(OQ ⊗ π∗
1OP3(3)),

E := Spec
PV2

(E∨) and PE := Proj
PV2

(E∨). We denote the natural projection

as π : PE → PV2.

Remark 1.4. Points of PE correspond to pairs ([q], [f ]) where [q] ∈ PV2

is the class of a non-zero element q ∈ V2, and [f ] ∈ PE[q] is the class of

a non-zero element f ∈ V3/〈x0q, x1q, x2q, x3q〉. Sometimes we will instead

consider f as an element of V3 not lying in the span of 〈x0q, x1q, x2q, x3q〉. We

will often write (q, f) rather than ([q], [f ]) if there is no chance of confusion.

This description motivates calling PE the space of (2, 3)-subschemes in P3.

Throughout, we will write U ⊂ PE for the open subset of points (q, f) such

that q and f do not have a common factor. Note there is a non-flat family of

subschemes of P3 over PE that restricts to a flat family over U .

We point out that

(1.5)

π2∗(π
∗
1OP3(3)) ∼= V3 ⊗C OPV2

and π2∗ (IQ ⊗ π∗
1OP3(3)) ∼= V1 ⊗C OPV2

(−1),

so (1.2) can be written as

(1.6) 0 → V1 ⊗C OPV2
(−1) → V3 ⊗C OPV2

→ E → 0.

Remark 1.7. With this description of E, it is easy to describe many of

the invariants of E and PE. Setting x = c1(OPV2
(1)), the Chern character of

E is ch(E) = 20 − 4
∑∞

k=0
(−1)kxk

k! . Denoting the line bundles η = π∗OPV2
(1)

and h = OPE(1), it is standard that Pic(PE) ∼= Zη ⊕ Zh, and

KPE = −14η − 16h.

We define the slope of a line bundle aη+ bh (with a �= 0) to be equal to t = b
a .

1.2. Morphisms to projective space. As mentioned above, there is a

family

C −−−−→ P3 × PE⏐⏐� ⏐⏐�π2

PE PE

of (2, 3)-subschemes of P3 parameterized by PE that is flat exactly over the

locus U of points ([q], [f ]) such that q and f do not have a common linear

factor. Consequently, there is a birational map

PE ��� Hilb4,1

whose restriction to U is a morphism; here Hilb4,1 is the component of the

Hilbert scheme containing genus 4 canonical curves.
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734 S. CASALAINA-MARTIN, D. JENSEN, AND R. LAZA

1.2.1. The moduli space of curves. The rational map Hilb4,1 ��� M4

induces a rational map

PE ��� M4.

Setting λ and δ to be the pullbacks of the corresponding classes on M4, one

can check (e.g. [CMJL12, §1]) that

λ = 4η + 4h,

δ = 33η + 34h.

Conversely, η = 17
2 λ− δ and h = − 33

4 λ+ δ.

1.2.2. Grassmannians. For each point in Hilb4,1, we have an associated

ideal sheaf I ⊆ OP3 . The generic point of Hilb4,1 corresponds to a canonical

curve, so that I is the sheaf associated to a homogeneous ideal of the form

(q, f) ⊆ C[X0, . . . , X3], where q is a quadric and f is a cubic. Since q and f

have no common irreducible factors in this case, we get the following resolution

of the ideal sheaf I:

0 −→ OP3(−5)
(f,−q)−→ OP3(−2)⊕ OP3(−3)

(qf)−→ I −→ 0.

It follows that

km := h0(I(m)) =

(
m+ 1

3

)
+

(
m

3

)
−
(
m− 2

3

)
.

Set

nm = h0(OP3(m)) =

(
m+ 3

3

)
.

With this notation, there is a rational map ψm : Hilb4,1 ��� G(km, nm), and

recall that Hilbm4,1 is defined to be the closure of the image of ψm. The Plücker

embedding induces a linearization Λm on Hilbm4,1. Composing the rational map

PE ��� Hilb4,1 with ψm defines a rational map

ϕm : PE ��� Hilbm4,1

that restricts to a morphism on the open set U ⊆ PE.

Since PE is smooth, and codimPE(PE \U) ≥ 2, each line bundle on U has

a unique extension to a line bundle on PE; in other words, the restriction

map Pic(PE) → Pic(U) is an isomorphism. Since the restriction of ϕm to U

is regular, there is a well-defined pullback

ϕ∗
m : Pic(Hilbm4,1) → Pic(PE)

given by the composition Pic(Hilbm4,1)
(ϕm|U )∗−−−−−→ Pic(U) → Pic(PE).
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VARIATION OF GIT FOR GENUS 4 CURVES 735

Proposition 1.8. For all m ∈ N, there is a rational map

ϕm : PE ��� Hilbm4,1

that restricts to a morphism on the open set U ⊆ PE of points ([q], [f ]) such

that q and f do not have a common linear factor. The pullback of the polar-

ization Λm on Hilbm4,1 is given by the formula

ϕ∗
mΛm =

((
m+ 1

3

)
−
(
m− 2

3

))
η +

((
m

3

)
−
(
m− 2

3

))
h,

where we use the convention that
(
a
b

)
= 0 if a < b. In particular, the slope of

ϕ∗
mΛm is given by

t =

⎧⎪⎨
⎪⎩

m−2
m+1 2 ≤ m ≤ 4,

2m2−8m+8
3m2−9m+8 m ≥ 5.

Proof. This follows directly from the construction of ϕm and is left to the

reader. �
1.2.3. The Chow variety. The Hilbert-Chow morphism ψ∞ : Hilb4,1 →

Chow4,1 induces a birational map ϕ∞ : PE ��� Chow4,1. We will denote

by Λ∞ the canonical polarization on the Chow variety. The following was

established in the proof of [CMJL12, Thm. 2.11].

Proposition 1.9 ([CMJL12]). The birational map

ϕ∞ : PE ��� Chow4,1

restricts to a morphism on the locus of points ([q], [f ]) such that q and f do

not have a common linear factor. The pullback of the canonical polarization

Λ∞ on Chow4,1 is proportional to 3η + 2h. �
Remark 1.10. There is a constant c ∈ Q+ such that limm→∞

1
3m2ψ

∗
mΛm =

cψ∗
∞Λ∞ (cf. [KM76, Thm. 4]). This is reflected in the slopes in Propositions

1.8 and 1.9.

1.3. Cones of divisors on PE. We now consider the nef cone and pseu-

doeffective cone of PE. Benoist [Ben11] has determined the nef cones of more

general spaces of complete intersections. We state a special case of his result

here, together with a basic observation on the pseudoeffective cone.

Proposition 1.11 ([Ben11, Thm 2.7]). The nef cone of PE has extremal

rays of slope 0 and 1
2 . The pseudoeffective cone of PE has an extremal ray of

slope 0 and contains the ray of slope 34
33 .

Proof. The computation of the nef cone is in [Ben11, Thm 2.7]. For the

pseudoeffective cone, on the one hand, η is effective (in fact semi-ample)

but not big, so it generates one boundary of the pseudoeffective cone. The

discriminant divisor δ is effective, establishing the other claim. �
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736 S. CASALAINA-MARTIN, D. JENSEN, AND R. LAZA

1.4. The Rojas–Vainsencher resolution. Rojas and Vainsencher

[RV02] have constructed an explicit resolution W of the rational map PE ���
Hilb4,1, giving a diagram,

W

π1

����
��
��
�� π2

	
		

		
		

		

PE ��������� Hilb4,1 .

It is shown in [RV02, Thm. 3.1] that W can be obtained from PE via a

sequence of seven blowups along SL(4)-invariant smooth subvarieties, and the

resulting space W is isomorphic to PE along U ⊆ PE, the locus of complete

intersections. In particular, SL(4) acts on W (compatibly with the action on

PE), and W is non-singular.

2. Singularities of (2, 3)-complete intersections

In this section we discuss the possible isolated singularities of (2, 3)-com-

plete intersections in P3. Recall that given such a complete intersection, the

quadric is uniquely determined by the curve, while the cubic is only deter-

mined modulo the quadric. In the GIT analysis, the only relevant cases are

when the quadric and cubic are not simultaneously singular, by which we mean

that they have no common singular points. In this case, we can choose either

the quadric or cubic to obtain local coordinates and to view the singularities

of C as planar singularities.

2.1. Double points. The only planar singularities of multiplicity 2 are

the Ak singularities. We will see later in our GIT analysis that when k is odd,

it is important to distinguish between two types of Ak singularities, those that

separate the curve and those that do not.

Proposition 2.1. There exists a reduced (2, 3)-complete intersection pos-

sessing a non-separating singularity of type Ak if and only if k ≤ 8. More-

over, if C is a (2, 3)-complete intersection with a separating Ak singularity at

a smooth point of the quadric on which it lies, then one of the following holds:

(1) k = 9, and C is the union of two twisted cubics.

(2) k = 7, and C is the union of a quartic and a conic.

(3) k = 5, and C is the union of a quintic and a line.

Proof. The local contribution of an Ak singularity to the genus is �k
2 �.

Since the arithmetic genus of a (2, 3)-complete intersection is 4, it follows

that it cannot admit an Ak singularity if k ≥ 10. Conversely, it is easy to see

that there exist (2, 3)-complete intersections with non-separating singularities

of type Ak for each k ≤ 8 (e.g. see [Fed12, §2.3.7]).
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If C possesses a separating singularity of type A2n−1, then C = C1 ∪
C2, where C1 and C2 are connected curves meeting in a single point with

multiplicity n. A case-by-case analysis of the possibilities gives the second

statement of the proposition. It is straightforward to check that there is no

(2, 3)-complete intersection with a separating node or tacnode. �
2.2. Triple points. Let C be a (2, 3)-complete intersection with a sin-

gularity of multiplicity 3, which does not contain a line component meeting

the residual curve only at the singularity. Notice that projection from the

singularity maps C onto a cubic in P2. It follows that C is contained in the

cone over this cubic. We choose specific coordinates so that the singular point

is p = (1, 0, 0, 0) and the tangent space to the quadric at p is given by x3 = 0.

Now, consider the one-parameter subgroup (1-PS) with weights (1, 0, 0,−1).

The flat limit of C under this 1-PS is cut out by the equations

x0x3 + q′(x1, x2) = f ′(x1, x2) = 0,

where q′ and f ′ are forms in the variables x1, x2. We see that this limit is the

union of three (not necessarily distinct) conics meeting at the points p and

(0, 0, 0, 1).

Following [Fed12], we will refer to these unions of conics as tangent cones.

In our GIT analysis we will see that, for a given linearization, the semi-stable

tangent cones are precisely the polystable (i.e. semi-stable with closed orbit)

curves with triple point singularities. Note that the conics are distinct if and

only if the original triple point is of type D4.

2.3. Curves on singular quadrics. As we vary the GIT parameters, we

will see that certain subloci of curves on singular quadrics are progressively

destabilized. In this section we briefly describe each of these loci. The first

locus to be destabilized is the set of curves lying on low-rank quadrics.

Proposition 2.2. The only reduced (2, 3)-complete intersections with more

than one component of positive genus consist of two genus 1 curves meeting

in three points. Such a curve necessarily lies on a quadric of rank 2 and,

moreover, the general complete intersection of a cubic and a rank 2 quadric

is such a curve.

Proof. Suppose that C = C1∪C2 is the union of two positive genus curves.

Neither curve may have degree 2 or less, and hence both have degree 3. Any

degree 3 curve that spans P3 is rational, and hence the two curves are both

plane cubics. Since C is contained in a unique quadric, it follows that this

quadric must be the union of two planes, and hence C is as described above.

�
Following [AFS10], we refer to such curves as elliptic triboroughs. The locus

of elliptic triboroughs is expected to be flipped in the Hassett–Keel program
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at the critical value α = 5
9 . This is exactly what we will prove in the following

sections.

We now consider curves on a quadric of rank 3. More specifically, we will

see that a curve lies on a quadric cone if and only if its normalization admits

a Gieseker–Petri special linear series. The proposition below follows by a

standard argument. The result is not needed in the ensuing proofs, but is

useful in giving a geometric interpretation to the stability computations in

later sections.

Proposition 2.3. Let C ⊂ P3 be a complete intersection of a cubic and a

quadric of rank at least 3, non-singular everywhere except possibly one point.

Then the following hold:

(1) If C is smooth, it has a vanishing theta-null if and only if it lies on a

quadric cone.

(2) The normalization of C is a hyperelliptic genus 3 curve if and only if

C lies on a quadric cone and has a node or cusp at the vertex.

(3) C is a tacnodal curve such that the two preimage points of the tacnode

via the normalization are conjugate under the hyperelliptic involution

if and only if C lies on a quadric cone and has a tacnode at the

vertex. �

3. The two boundary cases

In this section we describe two previously studied birational models for

M4 that are obtained via GIT for canonically embedded genus 4 curves (see

[Fed12] and [CMJL12]). In the later sections we will see that these two models

coincide with the “boundary cases” in our GIT problem. In other words, each

of the models is isomorphic to a quotient of PE//SL(4) for a certain choice

of linearization, and all of the other linearizations we consider are effective

combinations of these two.

3.1. Chow stability, following [CMJL12]. Let Chow4,1 denote the irre-

ducible component of the Chow variety containing genus 4 canonical curves.

In [CMJL12], the authors study the GIT quotient Chow4,1 //Λ∞SL(4) and

obtain the following:

Theorem 3.1 ([CMJL12, Thm. 3.1]). The stability conditions for the quo-

tient Chow4,1 //Λ∞SL(4) are described as follows:

(0) Every semi-stable point c ∈ Chow4,1 is the cycle associated to a (2, 3)-

complete intersection in P3. The only non-reduced (2, 3)-complete in-

tersections that give a semi-stable point c ∈ Chow4,1 are the genus 4

ribbons (all with associated cycle equal to the twisted cubic with mul-

tiplicity 2).
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Now assume that C is a reduced (2, 3)-complete intersection in P3 with asso-

ciated point c ∈ Chow4,1. Let Q ⊆ P3 be the unique quadric containing C.

The following hold:

(0′) c is unstable if C is the intersection of a quadric and a cubic that

are simultaneously singular. Thus, in items (1) and (2) below we can

assume C has only planar singularities.

(1) c is stable if and only if rankQ ≥ 3 and C is a curve with at worst

A1, . . . , A4 singularities at the smooth points of Q and at worst an A1

or A2 singularity at the vertex of Q (if rankQ = 3).

(2) c is strictly semi-stable if and only if

i) rankQ = 4 and

(α) C contains a singularity of type D4 or A5; or

(β) C contains a singularity of type Ak, k ≥ 6, and C does not

contain an irreducible component of degree ≤ 2; or

ii) rankQ = 3, C has at worst an Ak, k ∈ N, singularity at the

vertex of Q and

(α) C contains a D4 or an A5 singularity at a smooth point of

Q or an A3 singularity at the vertex of Q; or

(β) C contains a singularity of type Ak, k ≥ 6, at a smooth

point of Q or a singularity of type Ak, k ≥ 4, at the vertex

of Q, and C does not contain an irreducible component that

is a line; or

iii) rankQ = 2 and C meets the singular locus of Q in three distinct

points.

Remark 3.2. In the example from [BE95, §7], it is shown that up to

change of coordinates there is only one canonically embedded ribbon of genus

4. Moreover, it is shown that the ideal of this ribbon (again, up to change of

coordinates) is generated by the quadric q = x1x3 − x2
2 and the cubic

f = det

⎛
⎝ x3 x2 x1

x2 x1 x0

x1 x0 0

⎞
⎠ .

Remark 3.3. The closed orbits of semi-stable curves fall into three cate-

gories (see also [CMJL12, Rem. 3.2, 3.3]):

(1) The curve CD = V (x0x3, x
3
1 + x3

2), consisting of three pairs of lines

meeting in two D4 singularities.

(2) The maximally degenerate curve C2A5
= V (x0x3−x1x2, x0x

2
2+x2

1x3)

with two A5 singularities.

(3) The curves CA,B = V (x2
2 − x1x3, Ax3

1 + Bx0x1x2 + x2
0x3), of which

there is a pencil parameterized by 4A/B2. If 4A/B2 �= 0, 1, then
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CA,B has an A5 singularity at a smooth point of the singular quadric

and an A3 singularity at the vertex of the cone. If 4A/B2 = 0, then

CA,B has an A5 and A1 singularity at smooth points of the singular

quadric and an A3 singularity at the vertex of the cone. If 4A/B2 = 1

the curve CA,B is the genus 4 ribbon, and the associated point in

Chow4,1 is the twisted cubic with multiplicity 2. Note also that the

orbit closures of curves corresponding to cases (2) i) (β) and (2) ii)

(β) of Theorem 3.1 contain the orbit of the ribbon.

Moreover, we can describe the degenerations of the strictly semi-stable points

c ∈ Chow4,1. Let C be a (2, 3)-scheme with strictly semi-stable cycle c ∈
Chow4,1. If C contains a D4 singularity or lies on a rank 2 quadric, then c

degenerates to the cycle associated to CD. If C lies on a quadric Q of rank

at least 3 and either C contains an A5 singularity at a smooth point of Q or

an A3 singularity at the vertex of Q (if rankQ = 3), then c degenerates to

either the cycle associated to C2A5
or to the cycle associated to some CA,B

with 4A/B2 �= 1. Otherwise, c degenerates to CA,B with 4A/B2 = 1, a

non-reduced complete intersection supported on a rational normal curve.

Additionally, it is shown in [CMJL12] that the quotient of the Chow variety

coincides with one of the Hassett–Keel spaces, specifically,

(3.4) Chow4,1 //Λ∞SL(4) ∼= M4

(
5

9

)
.

For the reader’s convenience, we briefly describe the birational contraction

M4 ��� Chow4,1 //SL(4) in Table 2. In order to make sense of the table, we

need to recall some standard terminology. Specifically, a tail of genus i is a

genus i connected component of a curve that meets the residual curve in one

point. Similarly, a bridge of genus i is a genus i connected component of a

curve that meets the residual curve in two points. By conjugate points on a

hyperelliptic curve we mean points that are conjugate under the hyperelliptic

involution. An elliptic triborough is a genus 1 connected component of a curve

that meets the residual curve in three points.

Remark 3.5. We note in particular that the rational map

M4 ��� Chow4,1 //SL(4) contracts the boundary divisors Δ1 and Δ2, the

closure of the hyperelliptic locus, and the locus of elliptic triboroughs.

3.2. Terminal stability (i.e. stability for (3, 3) curves on quadric

surfaces) following [Fed12]. Recall that every canonically embedded curve

C of genus 4 is contained in a quadric in P3. If this quadric is smooth, then it

is isomorphic to P1 × P1, and C is a member of the class |OP1×P1(3, 3)|. The
automorphism group of the quadric is SO(4), which is isogenous to SL(2) ×
SL(2). The GIT quotient |O(3, 3)|//SO(4) was studied in detail by Fedorchuk
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Table 2. The birational contraction M4 ��� Chow4,1 //SL(4)

Semi-stable Singularity Locus Removed in M4

A2 elliptic tails

A3 elliptic bridges

A4 genus 2 tails attached at a Weierstrass point

non-separating A5 genus 2 bridges attached at conjugate points

separating A5 general genus 2 tails

A6 hyperelliptic genus 3 tails attached at a

Weierstrass point

non-separating A7 curves in Δ0 with hyperelliptic normalization

glued at conjugate points

A8, A9, ribbons hyperelliptic curves

D4 elliptic triboroughs

in [Fed12]. Because this GIT quotient appears as the last stage of the log

minimal model program for M4, we refer to curves that are (semi-)stable

with respect to this action as terminally (semi-)stable. We summarize the

results of [Fed12] here.

Theorem 3.6 (Fedorchuk [Fed12, §2.2]). Let C ∈ |O(3, 3)|. C is termi-

nally stable if and only if its has at worst double points as singularities and it

does not contain a line component L meeting the residual curve C ′ = C \ L in

exactly one point. C is terminally semi-stable if and only if it contains neither

a double-line component, nor a line component L meeting the residual curve

C ′ in exactly one point, which is also a singular point of C ′ (i.e. L∩C ′ = {p}
and p ∈ Sing(C ′)).

Remark 3.7. The closed orbits of strictly semi-stable curves fall into four

categories:

(1) The maximally degenerate curve C2A5
= V (x0x3−x1x2, x0x

2
2+x2

1x3)

with two A5 singularities (same curve as in Remark 3.3(2)).

(2) The triple conic V (x0x3 − x1x2, x
3
3).

(3) Unions of a smooth conic and a double conic meeting transversally.

As discussed in [Fed12, Remark 2.4], there is a one-dimensional family

of such curves.

(4) Unions of three conics meeting in two D4 singularities

V (x0x3 − x1x2, x
3
1 + x3

2)

(analogue of the case of Remark 3.3(1)).
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As mentioned above, Fedorchuk [Fed12] showed that this GIT quotient is

the final non-trivial step in the Hassett–Keel program for genus 4, specifically,

(3.8) |O(3, 3)|//SO(4) ∼= M4

[
29

60
,
8

17

)
→ M4

(
8

17

)
= {∗}.

In this paper we are interested in describing the behavior of the Hassett–

Keel program for genus 4 curves in the interval α ∈
[

8
17 ,

5
9

]
(with endpoints

described by (3.8) and (3.4), respectively). In particular, in the following

sections, we will give an explicit factorization of the birational map

Ψ : M4

(
5

9

)
∼= Chow4,1 //SL(4) ��� |O(3, 3)|//SO(4) ∼= M4

[
29

60
,
8

17

)

as the composition of two flips and a divisorial contraction.

For the moment, by comparing the stability conditions given by Theorems

3.1 and 3.6 and by simple geometric considerations, we obtain a rough descrip-

tion of the birational map Ψ as summarized in Table 3 (see also [Fed12, Table

1]). The first three lines of the table correspond to strictly semi-stable points

of Chow4,1 that are all flipped by the map M4(
5
9 − ε) → M4(

5
9 ). Then, note

that every Chow-stable curve contained in a quadric cone is terminally unsta-

ble. There are three types of such curves: those that do not meet the vertex

of the cone, those that meet it in a node, and those that meet it in a cusp.

These correspond to the latter three lines in the table, as well as the three

critical slopes in our VGIT problem. These last three lines correspond, in

order, to the flip at α = 23
44 , the flip at α = 1

2 , and the divisorial contraction

at α = 29
60 .

Table 3. The birational map Chow4,1 //SL(4) ��� |O(3, 3)|//SO(4)

Semi-stable Singularity Locus Removed

non-separating A5 tacnodal curves glued at conjugate points

A6, non-sep. A7, A8, A9 ribbons (see Remark 3.3(3))

D4 elliptic triboroughs

separating A7 cuspidal curves with hyperelliptic normalization

contains a double conic nodal curves with hyperelliptic normalization

triple conic curves with vanishing theta-null
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4. Numerical stability of points in PE

In this section we determine the stability conditions on PE as the slope t

of the linearization varies by using the Hilbert–Mumford numerical criterion.

We note that a discussion of the Hilbert–Mumford index in a related and

more general situation than ours was done by Benoist [Ben11], whose results

we are using here.

A technical issue arises in this section. Namely, we are interested in ap-

plying the numerical criterion for slopes t ∈
(
0, 2

3

]
. However, by Proposition

1.11, the linearizations of slope t ≥ 1
2 are not ample. Thus, for t ≥ 1

2 , spe-

cial care is needed to define a GIT quotient PE//tSL(4) and to understand

the stability conditions by means of the numerical criterion. In this section

we make the necessary modifications to handle this non-standard GIT case.

Namely, here we work with “numerical” (semi-)stability instead of the usual

(Mumford) (semi-)stability. Then, in Section 6, we prove that there is no

difference between the two notions of stability and that everything has the

expected behavior. In short, for slopes t ∈
(
0, 1

2

)
, everything works as usual,

since the linearization is ample. For t ≥ 1
2 , one can still proceed as in the

ample case, but this is justified only a posteriori by the results of Section 6.

4.1. The numerical criterion for PE. Let us start by recalling the

Hilbert–Mumford index for hypersurfaces. That is, we consider the case of

SL(r + 1) acting on PH0(Pr,OPr(d)). In this case, given a one-parameter

subgroup λ : Gm → SL(r+ 1), the action on H0(Pr,OPr(1)) can be diagonal-

ized. We describe the action of λ in these coordinates with a weight vector

α = (α0, α1, . . . , αr). For a monomial xa = xa0
0 · · ·xar

r ∈ H0(Pr,OPr (d)) in

these coordinates, we define the λ-weight of xa to be

wtλ(x
a) = α.a = α0a0 + α1a1 + · · ·+ αrar.

The Hilbert–Mumford invariant associated to a non-zero homogeneous form

F ∈ H0(Pr,OPr (d)) and a 1-PS λ is then given by

μ(F, λ) = max
xa monomials in F

wtλ(x
a).

Following [Ben11], the Hilbert–Mumford index for complete intersections

V (f, q) has a simple expression in terms of the indices for the associated

hypersurfaces.

Proposition 4.1 ([Ben11, Prop. 2.15]). The Hilbert–Mumford index of a

point ([q], [f ]) ∈ PE is given by

μaη+bh(([q], [f ]), λ) = aμ(q, λ) + bμ(f, λ),

where f ∈ H0(P3,O(3)) is a representative of [f ] of minimal λ-weight.
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Recall from §1.1 that the slope of the line bundle aη + bh is defined to

be t = b
a . Throughout we will write μt(([q], [f ]), λ) for the Hilbert–Mumford

index with respect to the linearization η + th.

Definition 4.2. We say that ([q], [f ]) is numerically t-stable (resp. numer-

ically t-semi-stable) if, for all non-trivial one-parameter subgroups λ,

μt(([q], [f ]), λ) > 0 (resp. ≥ 0).

While we will typically only refer to numerical (semi-)stability for points of

PE, we will occasionally want to refer to this notion in more generality. Recall

that the definition can be made in the situation where one has a reductive

groupG acting on a proper spaceX with respect to a linearization L ([MFK94,

Def. 2.1, p. 48]). We will use the notation Xnss and Xns to refer to the

numerically semi-stable, and numerically stable loci, respectively.

Remark 4.3. We recall that for the general GIT setup, with a reductive

group G acting on a space X with respect to a linearization L, Mumford

[MFK94, Def. 1.7] defines a point x ∈ X to be semi-stable (and a similar

definition for stable) if there exists an invariant section σ ∈ H0(X,L⊗n) such

that σ(x) �= 0 and Xσ is affine. We will use the standard notation X(s)s to de-

note the (semi-)stable points in this sense. To emphasize the distinction with

numerical (semi-)stability and to avoid confusion, we will sometimes refer to

this as Mumford (semi-)stability. For ample line bundles on projective vari-

eties, the Hilbert–Mumford numerical criterion ([MFK94, Thm. 2.1]) gives

that numerical (semi-)stability agrees with (semi-)stability. If L is not am-

ple, however, the notions may differ (see e.g. Remark 4.4). In our situation,

we work with numerical stability, since it is easily computable; in the end

(using the results in Section 6), we will prove that this is same as Mumford

stability. Of course, this distinction is only relevant in the non-ample case

(i.e. linearizations of slopes t ≥ 1
2 ).

Remark 4.4. The following simple example illustrates some of the differ-

ences between numerical stability and Mumford stability. LetG be a reductive

group acting on a smooth projective variety X with dim(X) ≥ 2, and let L

be an ample linearization. Consider the blowup π : X ′ → X along a closed

G-invariant locus Z (with codimZ ≥ 2) that contains at least one semi-stable

point p ∈ Z ∩ Xss. Note that the rings of invariant sections R(X,L)G and

R(X ′, π∗L)G agree via pullback of sections, and the Hilbert-Mumford indices

agree by functoriality ([MFK94, iii), p. 49]). It follows that any point q in

the fiber π−1(p) (contained in the exceptional divisor E) will be numerically

semi-stable. But no such point can be Mumford semi-stable, because the pull-

back of a section σ that does not vanish at q does not vanish on π−1(p), and

consequently X ′
σ cannot be affine.
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Notation 4.5. When considering GIT quotients, we will use the notation

X//LG for the categorical quotient of the semi-stable locus Xss ([MFK94,

Thm. 1.10]); we will call this the (categorical) GIT quotient. Note that this

may not necessarily agree with ProjR(X,L)G when L is not ample.

4.2. Application of the numerical criterion. We begin our discussion

by identifying points of PE that fail to be numerically semi-stable for any

linearization. Note that in order to show that a certain pair ([q], [f ]) is not

numerically t-semi-stable, it suffices to find a 1-PS λ and a representative

f such that μ(q, λ) + tμ(f, λ) < 0, since for any representative f , one has

μt(([q], [f ]), λ) ≤ μ(q, λ) + tμ(f, λ) (cf. Proposition 4.1).

Proposition 4.6. If q is a reducible quadric, then (q, f) is not numerically

t-semi-stable for any t < 2
3 . Moreover, if q and f share the common linear

factor x0, then (q, f) is destabilized by the 1-PS with weights (−3, 1, 1, 1) for

any t ≤ 2
3 .

Proof. Suppose that q is singular along the line x2 = x3 = 0, and consider

the 1-PS λ with weights (1, 1,−1,−1). Then μ(q, λ) = −2 and μ(f, λ) ≤ 3.

Hence μt((q, f), λ) < 0, so (q, f) is not numerically t-semi-stable.

To see the second statement, let λ be the 1-PS with weights (−3, 1, 1, 1),

and note that μ(q, λ) ≤ −2, μ(f, λ) ≤ −1. �
Note that, as a consequence, every numerically t-semi-stable point of PE

for t < 2
3 is a complete intersection. The only points of PE that do not

correspond to complete intersections are those where q and f share a common

linear factor. Henceforth, we will refer interchangeably to stability of the point

(q, f) ∈ PE and stability of the curve C = V (q, f).

Proposition 4.7. If q and f are simultaneously singular, then (q, f) is

not numerically t-semi-stable for any t ≤ 2
3 .

Proof. Suppose that q and f are both singular at the point (1, 0, 0, 0),

and consider the 1-PS with weights (3,−1,−1,−1). Then μ(q, λ) = −2 and

μ(f, λ) ≤ 1. Hence μt((q, f), λ) ≤ − 4
3 < 0, so (q, f) is not numerically t-semi-

stable. �
Proposition 4.8. Suppose that q is a quadric cone and f passes through

the singular point p of q. If p is not a node or a cusp of C, then (q, f) is not

numerically t-semi-stable for any t < 2
3 .

Proof. Without loss of generality, we may assume that q = x1x3 − x2
2. We

write the cubic in coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x

b
1x

c
2x

d
3.

If p = (1, 0, 0, 0) is not a node of C, then the projectivized tangent cone to C

at p is a double line contained in the quadric cone. Hence, the tangent space
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to the cubic at p meets the quadric in a double line. We may therefore assume

that this tangent space is the plane x3 = 0. It follows that α3,0,0,0 = α2,1,0,0 =

α2,0,1,0 = 0. Since p is not a cusp, we have α1,2,0,0 = 0 as well. Now, consider

the 1-PS with weights (3, 1,−1,−3). Then μ(q, λ) = −2 and μ(f, λ) ≤ 3. It

follows that μt((q, f), λ) < 0, so (q, f) is not numerically t-semi-stable. �
Corollary 4.9. Ribbons are not numerically t-semi-stable for any t < 2

3 .

Proof. This follows from Remark 3.2 and the proposition above. �
Proposition 4.10. Suppose that C contains a line L, and let C ′ = C\L

be the residual curve. If p ∈ L ∩ C ′ is a singular point of C ′, then C is

not numerically t-stable for any t ≤ 2
3 . If, in addition, L meets C ′ with

multiplicity 3 at p, then C is not numerically t-semi-stable for any t ≤ 2
3 . In

particular, if C contains a double line, then it is not numerically t-semi-stable

for any t ≤ 2
3 .

Proof. By Propositions 4.6 and 4.8, we may assume that the singular point

p = (1, 0, 0, 0) is a smooth point of the quadric q. Without loss of generality,

we may assume that the line L is cut out by x2 = x3 = 0 and that the

tangent plane to q at p is cut out by x3 = 0. As above, we write the cubic in

coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x

b
1x

c
2x

d
3.

By replacing f with a cubic of the form f − (αx0 + βx1)q for suitable choices

of α and β, we obtain a representative for f such that α2,0,0,1 = α1,1,0,1 = 0.

From the assumption that C contains L, we may conclude that αa,3−a,0,0 = 0

(a = 0, 1, 2, 3). From the assumption that C ′ is singular at p, we may further

conclude that α2,0,1,0 = α1,1,1,0 = 0. Now consider the 1-PS λ with weights

(1, 0, 0,−1). Then μ(q, λ) ≤ 0 and μ(f, λ) ≤ 0. It follows that μt((q, f), λ) ≤
0, so (q, f) is not numerically t-stable.

Let us now assume further that L meets C ′ with multiplicity 3 at p. Then

we obtain in addition that α0,2,1,0 = 0. Considering the 1-PS λ with weights

(3, 1,−1,−3), we see that μ(q, λ) ≤ 0 and μ(f, λ) ≤ −1. It follows that

μt((q, f), λ) < 0, so (q, f) is not numerically t-semi-stable.

The case of a double line follows by taking the reduced line and its residual

curve; i.e. C = 2L+ C ′′ = L+ C ′, where C ′ = L+ C ′′. �
Proposition 4.11. If C has a singularity of multiplicity greater than two,

it is not numerically t-stable for any t ≤ 2
3 . Moreover, if C has a singularity

of multiplicity greater than three, it is not numerically t-semi-stable for any

t ≤ 2
3 .

Proof. Without loss of generality, we may assume that the singular point

is p = (1, 0, 0, 0), and by Proposition 4.10 we may assume that C does not

contain a line L through p.
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Let us first consider the case where p is a triple point. Because C does

not contain any lines L such that L ∩ C\L = {p}, the projection from p

maps C onto a cubic in P2. Hence, C is contained in the cone over this

cubic. Consequently, this cone gives a representative f for [f ], which we will

fix for the computations that follow. Suppose now that the tangent space to

the quadric at p is given by x3 = 0. Then consider the 1-PS with weights

(1, 0, 0,−1). We see that both μ(q, λ) ≤ 0 and μ(f, λ) ≤ 0 and hence C is not

numerically t-stable for any t.

Now let us consider the case where p has multiplicity 4. Projection from p

maps C onto a conic in P2. Since C is contained in the cone over this conic, it

follows that p is the singular point of a quadric cone containing C. We have

already seen, however, that unless p is a node or cusp of C, then C is not

numerically t-semi-stable. �
We now consider three curves that are terminally semi-stable but not Chow

semi-stable. We determine those values of t at which they become numerically

unstable.

Proposition 4.12. If C contains a conic C ′ that meets C\C ′ in an A7

singularity, it is numerically t-unstable for all t > 6
11 . If q is a quadric cone

and C has a cusp at the singular point of q, it is numerically t-unstable for

all t < 6
11 .

Proof. First consider the case where C contains a conic C ′ meeting the

residual curve in an A7 singularity. Without loss of generality, we assume

that the conic is contained in the plane x3 = 0, the singularity occurs at

the point (1, 0, 0, 0), and the quadric f
x3

contains the line x2 = x3 = 0. By

assumption, the tangent space to q at this point contains this line, and the

quadric f
x3

is singular. Now, consider the 1-PS with weights (7, 3,−1,−9).

Then μ(q, λ) ≤ 6 and μ(f, λ) ≤ −11. It follows that

μt((q, f), λ) ≤ −11t+ 6,

which is negative when t > 6
11 .

Now, consider the case where q is a quadric cone and C has a cusp at

the singular point of q. Without loss of generality, we may assume that

q = x1x3 − x2
2. We write a representative for the cubic in coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x

b
1x

c
2x

d
3.

As above, we may assume that the tangent space to the cubic at the cone

point of q is the plane x3 = 0. It follows that α3,0,0,0 = α2,1,0,0 = α2,0,1,0 =

0. Consider the 1-PS with weights (9, 1,−3,−7). Then μ(q, λ) = −6 and
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μ(f, λ) ≤ 11. It follows that

μt(([q], [f ]), λ) ≤ 11t− 6,

which is negative when t < 6
11 . �

Remark 4.13. We will see in Theorem 6.3(3) that the minimal orbit of

the above strictly semi-stable curves at t = 6
11 is given by

x2
1 + x0x2 = x2

2x3 + x0x
2
3 = 0.

This curve consists of two components meeting in a separating A7 singularity.

One of the components is a conic. The other is a quartic with a cusp at the

vertex of the cone.

Proposition 4.14. If C contains a double conic component, it is numeri-

cally t-unstable for all t > 2
5 . If q is a quadric cone and f passes through the

singular point of the cone, then it is is numerically t-unstable for all t < 2
5 .

Proof. First, consider the case where C contains a double conic component.

Without loss of generality, we may assume that the conic is contained in the

plane x0 = 0. Consider the 1-PS with weights (−3, 1, 1, 1). Then μ(q, λ) ≤ 2,

and, since f is divisible by x2
0, we have μ(f, λ) ≤ −5. It follows that

μt((q, f), λ) ≤ −5t+ 2,

which is negative when t > 2
5 .

Now, consider the case where q is a quadric cone and f passes through

the singular point. Without loss of generality, we may assume that the sin-

gularity occurs at the point p = (1, 0, 0, 0). Consider the 1-PS with weights

(3,−1,−1,−1). Then, since q is singular at p, μ(q, λ) = −2. Furthermore,

since f contains p, μ(f, λ) ≤ 5, so

μt((q, f), λ) ≤ 5t− 2,

which is negative when t < 2
5 . �

Remark 4.15. We will see in Theorem 6.3(4) that here the relevant min-

imal orbit of strictly semi-stable curves is given by the union of two rulings of

a quadric cone and a double conic:

q(x0, x1, x2) = x0x
2
3 = 0.

Proposition 4.16. If C is a triple conic, then it is numerically t-unstable

for all t > 2
9 . If q is singular, then (q, f) is numerically t-unstable for all

t < 2
9 .

Proof. First, consider the case where C is a triple conic. Without loss of

generality, we may assume that f = x3
0. Consider the 1-PS with weights
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(−3, 1, 1, 1). Then μ(q, λ) ≤ 2 and μ(f, λ) = −9. Hence

μt((q, f), λ) ≤ −9t+ 2,

which is negative when t > 2
9 .

Now, consider the case where q is singular. Without loss of generality, we

may assume that the singular point is the point p = (1, 0, 0, 0). Consider the

1-PS with weights (3,−1,−1,−1). Then, since q is singular at p, we have

μ(q, λ) = −2 and μ(f, λ) ≤ 9, so

μt((q, f), λ) ≤ 9t− 2,

which is negative when t < 2
9 . �

We now change directions and establish stability in some cases. First, we

recall a basic result from GIT.

Lemma 4.17. Let X be a scheme (of finite type over an algebraically

closed field k), and let G be a reductive algebraic group (over k) acting on

X. Suppose L is a G-linearized line bundle on X. There is a natural induced

action of G on Xss and an induced linearization on L|Xss so that there is an

isomorphism of categorical quotients X//LG ∼= Xss//L|XssG. Moreover, if X

is complete, L is ample, and Xss �= ∅, then there exists m,n0 ∈ N such that

for all n ≥ n0, H
0(Xss, (L⊗m

ss )⊗n)G = H0(X, (L⊗m)⊗n)G.

Proof. First we consider the GIT quotients X//LG and Xss//L|XssG. If

Xss = ∅, then the statement of the lemma is vacuous, so we may assume

Xss �=∅. Then the injective restriction mapsH0(X,L⊗n)G→H0(Xss, L|⊗n
Xss)G

make it clear that any x ∈ Xss is semi-stable for the G-linearization of L|Xss .

Thus the semi-stable loci agree. Since the G-action on Xss is induced from

that on X, one concludes there is an isomorphism X//LG ∼= Xss//L|XssG of

the categorical quotients.

Now let us consider the spaces of global sections

H0(Xss, (L⊗m
ss )⊗n)G and H0(X, (L⊗m)⊗n)G.

We are now assuming that X is complete, L is ample and Xss �= ∅. First, note
that there is a surjection π : Xss → X//LG. Moreover, we have a line bundle

O(1) on X//LG such that (up to rescaling L) we have π∗O(1) = Lss. By con-

struction of Proj and using the assumption that X is complete and L is ample

so that X//LG = ProjR(X,L)G, we get H0(X//LG,O(n)) = H0(X,L⊗n)G

(for n � 0). Finally, by construction, H0(Xss, L⊗n
ss )G = H0(X//LG,O(n))

completing the proof. �
We use this lemma in the following.

Lemma 4.18. If 0 < t < 2
9 , then (q, f) is t-(semi-)stable if and only if q

is smooth and f |q is terminally (semi-)stable.
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Proof. Note that when 0 < t < 2
9 , the line bundle η + th is ample, so

in this case numerical (semi-)stability is the same as actual (semi-)stability.

Let Q be the smooth quadric defined by x2
0 + x2

1 + x2
2 + x2

3 = 0 and write

i : PEQ ↪→ PE for the inclusion of the fiber of PE over Q. Write G = SL(4)

and G′ = SO(4) for the stabilizer of Q. Consider the quasi-projective variety

P̃EQ = G ×G′ PEQ, which is the quotient of G × PEQ by the free action of

G′: h(g, x) = (gh−1, hx) for h ∈ G′. There is a natural identification of the

ring of invariants (cf. [Kir09, p. 10 eq. (3)]):

(4.19) R′ :=
⊕
n≥0

H0(PEQ, ni
∗(η + th))G

′ ∼=
⊕
n≥0

H0(P̃EQ, n(η + th))G.

Notice that PEQ has Picard rank 1, so i∗(η + th) = O(d) for some d ≥ 0.

Now, observe that P̃EQ is isomorphic to the open set V ⊂ PE parameter-

izing pairs (q, f) where q is smooth. To see this, note that G×PEQ admits a

G′-invariant map to this space sending (g, f) to (g ·Q, g ·f). This map induces

an isomorphism on the quotient because the quadric q is uniquely determined

by an element of G/G′.

Finally, note that when t < 2
9 , every numerically t-semi-stable point lies on

a smooth quadric. From the computations above it follows that PEss ⊆ V .

Thus, by virtue of Lemma 4.17,

H0(PE, n(η + th))G ∼= H0(V, n(η + th))G

for these values of t. Hence

PE//tG = Proj
⊕
n≥0

H0(PE, n(η + th))G = Proj
⊕
n≥0

H0(V, n(η + th))G

= Proj
⊕
n≥0

H0(PEQ,O(n))G
′
= PEQ//G

′. �

5. Quotients of the Hilbert scheme

A standard approach to constructing birational models of Mg is to con-

sider the pluricanonical image of a curve as a point in a Chow variety or

Hilbert scheme. One can then construct the GIT quotient of this Chow

variety or Hilbert scheme by the group of automorphisms of the ambient

projective space. This approach can be found, for example, in both Mum-

ford’s and Gieseker’s constructions of Mg as an irreducible projective variety

(see [Mum77], [Gie82]). It is also the method by which Schubert [Sch91]

constructed the moduli space of pseudostable curves M
ps

g , and Hassett and

Hyeon [HH08] constructed the first flip in the Hassett–Keel program. In our
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situation, we will consider the GIT quotients Hilbm4,1 //Λm
SL(4). Recall that

points of Hilbm4,1 are called m-th Hilbert points.

5.1. Numerical criterion for finite Hilbert stability. A criterion for

stability of Hilbert points was worked out in [HHL10]. We briefly review their

results.

Let X ⊂ PN be a variety with Hilbert polynomial P (m). We will write

km =
(
N+m
m

)
−P (m). For any v ∈ RN+1, we define an ordering <v on the set

of monomials in N + 1 variables as follows:

xa <v xb if

(1) deg xa < deg xb;

(2) deg xa = deg xb and v.a < v.b;

(3) deg xa = deg xb, v.a = v.b, and xa <Lex xb in the lexicographic order.

In particular, given a 1-PS λ with weight vector α = (α0, α1, . . . , αN ), the

monomial order <λ is the lexicographic order associated to the weight α. For

each polynomial f , let in<λ
(f) denote the largest term of f with respect to

<λ. For an ideal I, we define in<λ
(I) = 〈in<λ

(f)|f ∈ I〉.
Proposition 5.1 ([HHL10]). A point I ∈ Hilbm4,1 ⊂ G(km, nm) is semi-

stable if and only if, for every 1-PS λ, we have∑
xa∈in<λ

(I)

wtλ(x
a) ≥ 0,

where the left-hand sum is over the monomials xa of degree m in in<λ
(I).

Note that when km = 1, this criterion coincides with the criterion for

hypersurfaces described in §4.
Proposition 5.2. If I ∈ Hilbm4,1 is not the m-th Hilbert point of a (2, 3)-

complete intersection, then it is not m-Hilbert semi-stable for any m ≥ 2.

Similarly, if X ∈ Chow4,1 is not a complete intersection, then it is not Chow

semi-stable.

Proof. Let I ∈ Hilbm4,1 ⊂ G(km, nm) be a vector space. We note that there

is a quadric q and a cubic f , not divisible by q, such that I contains all

monomials of the form qxa and fxb, where xa is a monomial of degree m− 2

and xb is a monomial of degree m − 3. Indeed, this condition is closed in

G(km, nm), so it is satisfied by every element of Hilbm4,1. If q and f do not

share a common linear factor, then I is necessarily the m-th Hilbert point of

the intersection q = f = 0.

Assume that q and f share a common linear factor. We may choose co-

ordinates such that q = x0x1, and f is divisible by x0. We may further

assume that f has a non-zero x0x
2
3 term. Now, consider the 1-PS λ with

weights (−3, 1, 1, 1). By definition, I contains all of the monomials of the

form x0x1x
a, where xa is a monomial of degree m−2 and of the form x0x

2
3x

b,
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where xb is a monomial of degree m− 3. The number of such monomials is(
m+ 1

3

)
+

(
m

3

)
−
(
m− 1

3

)
=

1

6
(m− 1)(m2 + 4m− 6),

and the total weight of these monomials is

−2

(
m+ 1

3

)
−
(
m

3

)
= −1

2
m2(m− 1).

It follows that∑
xa∈in<λ

(I)

wtλ(x
a)

≤ m

[(
m+ 3

3

)
− (6m− 3)− 1

6
(m− 1)(m2 + 4m− 6)

]
− 1

2
m2(m− 1)

=
1

2
m(m− 2)(m− 3)− 1

2
m2(m− 1) = −m(2m− 3).

Since this is negative for all m ≥ 2, we see that I is not m-Hilbert semi-stable

for these same m. We obtain the analogous result for the Chow variety by

noting that limm→∞
−m(2m−3)

m2 < 0. �
We would like to compare the numerical criterion for points in the Hilbert

scheme to the numerical criterion for points on PE. To this end, we have the

following:

Proposition 5.3. Suppose y ∈ Hilb4,1 corresponds to a (2, 3)-complete

intersection C ⊆ P3. Denote also by y the corresponding point in PE. There

exists a positive constant c ∈ Q such that for any 1-PS λ, we have μ
2
3 (y, λ) ≥

cμψ∗
∞Λ∞(y, λ).

Proof. This follows directly from Benoist [Ben11, Prop. 4.3] and Remark

1.10. �

6. Quotients of the Rojas–Vainsencher resolution

In this section we complete the arguments needed in Section 4 (especially

for Theorem 6.3) to handle GIT for non-ample bundles on PE. The main

point is to use the results on Hilbert stability of the previous section together

with the Rojas–Vainsencher resolution W of the rational map PE ��� Hilb4,1
(see §1.4):

W

π1

����
��
��
�� π2

	
		

		
		

		

PE ��������� Hilb4,1 .
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6.1. Study of GIT stability on W . Generally speaking, the key to

understanding GIT quotients for non-ample bundles is to relate them to quo-

tients of birational models with (semi-)ample linearizations. In our situation,

we consider the birational model W of PE with linearizations of the form

απ∗
1η + βπ∗

2(ψ
∗
∞Λ∞).

Note that for α, β ≥ 0, these linearizations are semi-ample on W .

Notation 6.1. Set L(t) := η+ th (on PE) and Λ := cψ∗
∞Λ∞ (on Hilb4,1),

where c is the constant in Proposition 5.3. Let M(t) = απ∗
1L(0) + βπ∗

2Λ (on

W ), where α and β are such that L(t) = αL(0)+βL( 23 ) (n.b. rankPic(PE) =

2). We will write W ss(t) for the semi-stable locus on W with respect to the

linearization M(t), and PEnss(t) for the numerically semi-stable locus with

respect to L(t).

We start by making the following observations on the behavior of GIT on

W .

Proposition 6.2. W ss(t) ⊆ π−1
1 (PEnss(t)).

Proof. First, suppose that y ∈ W is in the exceptional locus of the map π1.

Then π1(y) lies in the locus of pairs (q, f) such that q and f share a common

linear factor. Similarly, π2(y) is not a complete intersection of a quadric and

a cubic. It follows from Proposition 4.6 that, for the 1-PS λ with weights

(−3, 1, 1, 1), we have

μπ∗
1L(0)(y, λ) < 0,

μπ∗
1L( 2

3 )(y, λ) < 0.

Moreover, it follows from Proposition 5.2 that

μπ∗
2Λ(y, λ) < 0.

By the linearity of the Hilbert–Mumford index, y is numerically unstable for

all the line bundles in question. It follows that Wnss(t) is contained in the

ample locus of M(t), and thus Wnss(t) = W ss(t).

Now suppose that y /∈ π−1
1 (PEnss(t)) is not in the exceptional locus of the

map π1. By Proposition 5.3 together with the linearity and functoriality of

the Hilbert–Mumford index, there is a 1-PS λ such that

0 > μαL(0)+βL( 2
3 )(y, λ) ≥ μαπ∗

1L(0)+βπ∗
2Λ(y, λ).

It follows that y /∈ W ss(t). �
A consequence of Proposition 6.2 is that, for every t in the range 0 < t ≤

2
3 , W

ss(t) = Wnss(t) is contained in the locus on which π2 restricts to an

isomorphism. It follows that every invariant section of M(t) has affine non-

vanishing locus; hence, the usual results about GIT hold for the linearization

M(t) despite the fact that it is only semi-ample rather than ample. As another
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consequence, we may think of points inW ss(t) as (2, 3)-complete intersections.

Combining Proposition 6.2 with the results of §4.2, we can identify many t-

unstable points in W . It remains to show that each curve that has not been

explicitly destabilized thus far is in fact t-semi-stable. We will prove this

in Theorem 6.3. This type of argument is related in spirit to the potential

stability argument used by Gieseker and Mumford for the GIT construction

of Mg (e.g. see [HM98, §4.C]).
Finally, we recall briefly the notion of the basin of attraction from [HL10b,

Def. 4]. If the stabilizer of a curve C ′ contains a 1-PS λ, then the basin of

attraction (of C ′ with respect to λ) is defined to be

Aλ(C
′) := {C | C specializes to C ′ under λ}.

If C ′ is strictly semi-stable with respect to λ, meaning that μ(C ′, λ) = 0, then

C ′ is semi-stable if and only if C is semi-stable for every (equivalently, any)

C ∈ Aλ(C
′) (see [HH08, Lem. 4.3]).

We are now ready to prove the following key result describing the stability

on the space W which interpolates between PE and Hilb4,1. The main advan-

tages here are: (1) on W we are in a standard GIT setup (i.e. (semi-)ample

linearizations, as opposed to the situation on PE//tSL(4) for t >
1
2 ), and (2)

the natural spaces Hilbm4,1 //SL(4) are then easily described using W//tSL(4).

Theorem 6.3. Let C ∈ W ss(t). Then C is a complete intersection of a

quadric and a cubic in P3, and

(1) C ∈ W (s)s( 23 ) if and only if it is Chow (semi-)stable.

(2) C ∈ W (s)s(t) for all t ∈ ( 6
11 ,

2
3 ) if and only if it is Chow (semi-)stable,

but not a ribbon, an elliptic triborough, or a curve on a quadric cone

with a tacnode at the vertex of the cone. The closed orbits of strictly t-

semi-stable points correspond to the maximally degenerate curve with

A5 singularities (i.e. C2A5
in the notation of §3) and the unions of

three conics meeting in two D4 singularities (see Remark 3.7(1) and

(4)).

(3) C ∈ W ss(t) for all t ∈ ( 25 ,
6
11 ) if and only if

(a) C ∈ W ss(t) for t ∈ ( 6
11 ,

2
3 ) and is not an irreducible cuspidal

curve with hyperelliptic normalization, or

(b) C contains a conic that meets the residual curve in a singularity

of type A7, but otherwise satisfies condition (2) of Theorem 3.1.

The closed orbits of strictly t-semi-stable points are the same as for

t ∈ ( 6
11 ,

2
3 ).

(4) C ∈ W ss(t) for t ∈ ( 29 ,
2
5 ) if and only if

(a) C ∈ W ss(t) for t ∈ ( 25 ,
6
11 ) and is not an irreducible nodal curve

with hyperelliptic normalization, or
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(b) C has a triple-point singularity whose tangent cone is the union

of a double conic and a conic meeting in two points, but otherwise

satisfies condition (2) of Theorem 3.1.

The closed orbits of strictly t-semi-stable points correspond to the max-

imally degenerate curve with A5 singularities, the unions of three con-

ics meeting in two D4 singularities, and the unions of a conic and a

double conic meeting at two points (see Remark 3.7(1), (3), and (4)).

(5) C ∈ W (s)s(t) for t ∈ (0, 29 ) if and only if it is contained in a smooth

quadric and it is terminally (semi-)stable.

Proof. As already mentioned, the strategy of the proof is to show that every

curve that has not been explicitly destabilized by using the results of §4.2 and

Proposition 6.2 is in fact t-semi-stable. We start by proving items (1) and

(5), which identify the quotients corresponding to the two end chambers of

the VGIT on W with the two GIT quotients discussed in §3. We then identify

GIT walls using t-semi-stable curves with positive dimensional stabilizer. We

use the basin of attraction to determine t-semi-stable curves at each wall.

By general variation of GIT, each such curve that is contained in a smooth

quadric is in fact t-semi-stable for all smaller values of t. In this way we

identify the majority of t-semi-stable curves. To establish the t-semi-stability

of the remaining curves, we use another basin of attraction argument.

Proof of (1). The isomorphism PE// 2
3
SL(4) ∼= Chow4,1 //SL(4) was estab-

lished in [CMJL12]. Since M( 23 ) = Λ is semi-ample (it is the pullback of

the natural polarization O(1) on Chow4,1), one obtains the identification

ProjR
(
W,M( 23 )

)SL(4)
= ProjR(Chow4,1,O(1))

SL(4). In fact, although Λ is

only semi-ample, we have shown that W ss(M(t)) = Wnss(M(t)), and so one

may also conclude that the (categorical) GIT quotients agree: W//M( 2
3 )
SL(4)∼=

Chow4,1 //SL(4). (QED (1))

Proof of (5). Suppose now that 0 < t < 2
9 (in particular, L(t) is ample on PE),

and note that by Proposition 6.2 and Lemma 4.18, W ss(t) ⊆ π−1
1 (PEnss(t)) =

π−1
1 (PEss(t)) is contained in the open set V consisting of pairs (q, f) where

q is smooth. Since π1 restricts to an isomorphism on the open set V and

M(t)|V = L(t)|V , item (5) follows from Lemmas 4.17 and 4.18. (QED (5))

We now turn to the intermediate chambers. By general variation of GIT,

we know that if C ∈ W ss(ε)∩W ss( 23 ), then C ∈ W ss(t) for all t in the range

ε < t < 2
3 . On the other hand, suppose that C is neither Chow semi-stable

nor terminally semi-stable. It follows that one of the following must be true:

(1) C contains a line L such that L∩C\L is a singular point of the residual

curve;
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(2) C has a singularity of multiplicity greater than three;

(3) C is contained in a quadric of rank 1 or 2;

(4) C is contained in a quadric cone and has a singularity of type other

than A2, A3, or A4 at the singular point of the cone;

(5) C is contained in a quadric cone and has a separating A7 singularity,

or

(6) C is contained in a quadric cone and has a triple-point singularity of

type other than D4.

By Proposition 6.2 and the results of §4.2, any of the first four possibilities

imply that C /∈ W ss(t) for any t < 2
3 . The fifth case can only be t-semi-stable

for t ∈ [ 29 ,
6
11 ]. In the last case, C specializes to its “tangent cone” under the

1-PS described in §2.2. By the proof of Proposition 4.11, this 1-PS has weight

zero on C and, hence, if C is t-semi-stable, then its tangent cone is t-semi-

stable as well. Since the singularity is not of type D4, the tangent cone is

non-reduced. It cannot be a triple conic unless t = 2
9 , because by Proposition

4.16 a triple conic and a curve on a singular quadric cannot be simultaneously

semi-stable except at this critical value. It therefore must be the union of a

conic and a double conic on a quadric cone, which can only be t-semi-stable

for t ∈ [ 29 ,
2
5 ].

Having destabilized the necessary curves, we now turn our attention to

showing that various curves are (semi-)stable for particular values of t.

Proof of (2). We consider first the t-interval ( 6
11 ,

2
3 ). By the above, every

t-semi-stable point for t ∈ ( 6
11 ,

2
3 ) is either terminally semi-stable or Chow

semi-stable. The only terminally polystable curves that are not Chow semi-

stable are the triple conic, the double conics, and the curves with separating

A7 singularities (§3.1, §3.2), and none of these can be t-semi-stable for t > 6
11

(§4.2). It follows that W ss(t) ⊂ W ss( 23 ) for all t in this interval. As a

consequence, since a wall t0 of this GIT chamber is characterized byW ss(t0) �
W ss( 23 ), the wall must lie outside the open t-interval ( 6

11 ,
2
3 ). By general

variation of GIT, we therefore have that W s( 23 ) ⊂ W ss(t) for t in this interval,

and W ss( 23 ) ∩ W ss(ε) ⊂ W ss(t) for all 0 < ε < t (and in particular for

0 < ε < 2
9 ) as well.

Thus it remains to determine the t-semi-stability of the remaining strictly

Chow semi-stable points that are not terminally semi-stable. These all lie on

the quadric cone. Considering the possibilities from Theorem 3.1, we see that

the only such curves that have not already been destabilized are the curves

on the quadric cone with Ak (k ≥ 5) singularities (that do not have an An

(n ≥ 3) singularity at the vertex of the cone) and the curves on the quadric

cone with D4 singularities.
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Suppose first that C = V (q, f) is a 2
3 -semi-stable curve on the quadric cone

that has an Ak (k ≥ 5) singularity at a smooth point of the cone, but does

not have an An (n ≥ 3) singularity at the vertex of the cone. We argue by

contradiction that C is also t-semi-stable. Suppose that λ is a 1-PS such that

μt((q, f), λ) < 0. By standard facts from variation of GIT, one can assume

that μ
2
3 ((q, f), λ) = 0 (see e.g. [Laz11, §4.1.2 ]). Now let C ′ = V (q′, f ′) be

the specialization of C under λ. Since λ fixes C ′, it follows from the basin of

attraction argument that C ′ is 2
3 -semi-stable as well. The only 2

3 -semi-stable

curve in the orbit closure of C, however, is a curve of the form

C ′ = CA,B = V (x2
2 − x1x3, Ax3

1 +Bx0x1x2 + x2
0x3),

whose stabilizer in the given coordinates is the C∗ with weights

±(3, 1,−1,−3). All of the curves that specialize to CA,B under the 1-PS

with weights (3, 1,−1,−3) have an An (n ≥ 3) singularity at the vertex of

the cone. Consequently, λ must be the 1-PS with weights (−3,−1, 1, 3). This

gives μ(q′, λ) = 2 and μ(f ′, λ) = −3, so that μt((q′, f ′), λ) > 0 (any other

representative of f ′ will have weight ≥ −3). Now since (q′, f ′) is the limit of

(q, f) under λ, we have μt((q, f), λ) = μt((q′, f ′), λ) > 0, a contradiction.

Similarly, if C has a D4 singularity, then C specializes to its tangent cone

under the 1-PS described in §2.2, and this 1-PS has weight zero on C by Propo-

sition 4.11. Hence C is t-semi-stable if and only if its tangent cone is t-semi-

stable as well. Now, suppose that there is a 1-PS λ such that μt((q, f), λ) < 0.

As in the previous case, we see that λ must be contained in the stabilizer of

the 2
3 -polystable limit of C, which is CD = V (x0x3, x

3
1+x3

2). The stabilizer of

CD is the two-dimensional torus consisting of 1-PS with weights of the form

±(a,−1,−1, 2−a). Since C specializes to CD under λ and C is not contained

in a reducible quadric, we see that λ has weights of the form (a,−1,−1, 2−a).

But then μ(x0x3, λ) = 2 and μ(x3
1+x3

2, λ) = −3, so as above, μt((q, f), λ) > 0,

a contradiction. (QED (2))

The proofs of the remaining parts are similar. We include the details for

the convenience of the reader.

Proof of (3). We next consider the t-interval ( 25 ,
6
11 ). For t < 6

11 , cuspidal

curves with hyperelliptic normalization can no longer be t-semi-stable, so there

must be a GIT wall at t = 6
11 . This implies that there is a 6

11 -semi-stable curve

with positive dimensional stabilizer that is not t-semi-stable for t = 6
11 + ε.

Reviewing the possibilities, we see that there is only one possible such curve,

namely

C ′ = V (x2
1 + x0x2, x

2
2x3 + x0x

2
3),
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which has both a separating A7 singularity and a cusp at the vertex of the

quadric cone on which it lies. If C ∈ W ss( 6
11 + ε) is not in W ss( 6

11 − ε), then

the orbit of C under the C∗ that stabilizes C ′ must contain C ′ in its closure.

It follows that, up to change of coordinates, C must be of the form

C = V (x2
1 + x0x2 + αx2

0 + βx0x1, x
2
2x3 + x0x

2
3 + f(x0, x1, x2)),

where α, β are constants and f is a cubic. In other words, C must be contained

in a singular quadric and have a cusp at the vertex. We therefore see that

every ( 6
11 + ε)-semi-stable curve that is not of this form is ( 6

11 − ε)-semi-stable

as well.

To identify the remaining 6
11 -semi-stable curves, we use the basin of attrac-

tion of C ′. Namely, since the curve C ′ is 6
11 -semi-stable, we see that every

curve in the basin of attraction of C ′ is also 6
11 -semi-stable. By Proposition

4.12, we see that this includes every curve with a separating A7 singularity

apart from those that we have explicitly destabilized already. If such a curve C

is contained in a smooth quadric, then C ∈ W ss( 6
11 )∩W ss(0), so C ∈ W ss(t)

for all t ∈ [0, 6
11 ].

It remains to show that the curves contained in a quadric cone with a

separating A7 singularity are in fact ( 6
11 − ε)-semi-stable. So let C = V (q, f)

be such a curve. To show C is t-semi-stable, we argue as above, noting that

if λ is a 1-PS such that μt((q, f), λ) < 0, then λ must be contained in the

stabilizer of the 6
11 -polystable limit of this curve, which is the curve C ′ above.

The stabilizer of C ′ is a one-dimensional torus, so this determines the 1-PS

λ uniquely. Indeed, in these coordinates, λ must be the 1-PS with weights

(7, 3,−1,−9). Then μ(x2
1 + x0x2, λ) = 6 and μ(x2

2x3 + x0x
2
3, λ) = −11 so, as

above, μt((q, f), λ) > 0, a contradiction.

To complete this part of the proof, we note that by the above we obtain

the inclusion W ss(t) ⊂ W ss( 6
11 − ε) for all t ∈ ( 25 ,

6
11 ), and hence this interval

is contained in a single GIT chamber. (QED (3))

Proof of (4). By arguments nearly identical to the previous case, we identify a

GIT wall at t = 2
5 corresponding to the curve C ′ = V (x0x2−x2

1, x1x
2
3), which

is the union of a double conic and two rulings of a quadric cone. As before, if

C ∈ W ss( 25+ε) is not in W ss( 25−ε), then the orbit of C under the stabilizer of

C ′ must contain C ′ in its closure. It follows that, up to change of coordinates,

C must be of the form C = V (q(x0, x1, x2), f(x0, x1, x2, x3)), where f is a

cubic containing the vertex (0, 0, 0, 1). In other words, C must be contained

in a singular quadric and have a node at the vertex. We therefore see that

every ( 25 + ε)-semi-stable curve that is not of this form is ( 25 − ε)-semi-stable

as well.
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As in the previous case, we see that every curve with a double conic com-

ponent, apart from those we have explicitly destabilized, is 2
5 -semi-stable, as

such curves are in the basin of attraction of C ′. Specifically, if a curve C con-

tains a double conic component that is contained in the plane x0 = 0, then C

specializes to C ′ under the 1-PS with weights (−3, 1, 1, 1), which is contained

in the stabilizer of C ′. Furthermore, if such a curve is contained in a smooth

quadric, then it is contained in W ss( 25 )∩W ss(0), and hence it is t-semi-stable

for all t ≤ 2
5 .

It remains to show that the double conics contained in a quadric cone are

( 25 − ε)-semi-stable as well. For this, we argue as above, noting that if λ is a

1-PS such that μt((q, f), λ) < 0 for such a curve C = V (q, f), then λ must be

contained in the stabilizer of the 2
5 -polystable limit of this curve, which is the

curve C ′ above. The stabilizer of C ′ is the two-dimensional torus consisting

of 1-PS with weights ±(a, 1, 2 − a,−3). All the curves that specialize to C

under a 1-PS with weights (−a,−1, a − 2, 3) pass through the vertex of the

cone, so λ must have weights (a, 1, 2 − a,−3). But then μ(x0x2 − x2
1, λ) = 2

and μ(x1x
2
3, λ) = −5 so, as above, μt((q, f), λ) > 0, a contradiction. The fact

that the entire t-interval ( 29 ,
2
5 ) is contained in a GIT chamber follows exactly

as above. (QED (4)). �
Remark 6.4. Note that in Theorem 6.3, points that are strictly semi-

stable on a wall may become stable in the adjacent chamber. For instance,

for t = 2
3 , the ribbon is semi-stable, and the strictly semi-stable points cor-

responding to curves with A8, A9 singularities degenerate to this curve. For
6
11 < t < 2

3 , the ribbon is unstable, but the curves with A8, A9 singularities

become stable (not just semi-stable).

Remark 6.5. The argument above also determines semi-stability condi-

tions at the GIT walls.

(1) At t = 6
11 , both irreducible cuspidal curves with hyperelliptic nor-

malization and curves with a separating A7 singularity are strictly

semi-stable. The orbit closure of either type of curve contains the

point

x2
1 + x0x2 = x2

2x3 + x0x
2
3 = 0.

(2) At t = 2
5 , both irreducible nodal curves with hyperelliptic normal-

ization and double conics are strictly semi-stable. The orbit closure

of either type of curve contains the union of a double conic and two

rulings on the quadric cone, given by

q(x0, x1, x2) = x0x
2
3 = 0.
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(3) At t = 2
9 , both curves contained in a quadric cone and triple conics are

strictly semi-stable. The orbit closure of either type of curve contains

the triple conic on a quadric cone.

6.2. Comparing the GIT quotients. We set

W//tSL(4) := W//M(t)SL(4) = ProjR(W,M(t))SL(4),

where we recall that W//M(t)SL(4) is the categorical quotient of the semi-

stable locus and the equality on the right holds because Wnss(t) is contained

in the ample locus of M(t).

As discussed in Section 4, the GIT quotient PE//tSL(4) makes sense as

a categorical quotient for all t. However, for non-ample linearizations (i.e.

t ≥ 1
2 ), it is not a priori clear how to describe it in terms of the numerically

(semi-)stable points (e.g. Remark 4.4). Here we note that Proposition 6.2 and

Theorem 6.3 allow us to interpret our numerical results from the previous

section as honest GIT results on the resolution W , and then the expected

properties of PE//tSL(4) follow (as well as the connection between stability

and numerical stability).

Corollary 6.6. For t ∈ [0, 2
3 ], PE//L(t)SL(4) = W//M(t)SL(4) and for

both spaces, numerical (semi-)stablility agrees with Mumford (semi-)stability.

Moreover, the ring of invariant sections R(PE,L(t))SL(4) is finitely generated,

and

PE//L(t)SL(4) = ProjR(PE,L(t))SL(4).

Proof. The boundary cases t = 0 and t = 2
3 have been proven already.

For t ∈ (0, 23 ), W
ss(M(t)) ⊆ π−1

1 (PEnss(L(t))) by Proposition 6.2. On the

other hand, in Theorem 6.3 we showed that every curve that is not explic-

itly destabilized in §4.2 is in fact semi-stable in W , so π−1
1 (PEnss(L(t))) ⊆

W ss(M(t)). By Proposition 4.6, we see that π−1
1 (PEnss(L(t))) is contained

in the locus where π1 restricts to an isomorphism identifying PEnss(L(t)) and

π−1
1 (PEnss(L(t))). Thus the categorical quotient of PEnss(L(t)) agrees with

the categorical quotient W//M(t)SL(4), which equals ProjR(M(t))SL(4).

Now consider the injective restriction maps

H0(W,M(t))SL(4) → H0(W ss,M(t)|W ss)SL(4),

H0(PE,L(t))SL(4) → H0(PEnss, L(t)|PEnss)SL(4).

The map on the top is in fact surjective (up to possibly taking a higher tensor

power of M(t)) by Lemma 4.17. The map on the bottom is surjective as

well. This follows for t ≤ 2
9 by Lemma 4.17, and for 2

9 < t ≤ 2
3 since the

complement of PEnss has codimension at least two. Since PEnss is identified

with W ss, and M(t)|W ss ∼= L(t)|PEnss , we get the equality we need.

Licensed to Univ of Kentucky. Prepared on Tue May  7 13:28:56 EDT 2024 for download from IP 188.92.136.124.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



VARIATION OF GIT FOR GENUS 4 CURVES 761

It follows immediately that R(PE,L(t))SL(4) is finitely generated and gives

the same projective variety as R(W,M(t))SL(4). It is also elementary to check

from this equality of invariant sections that Mumford stability and numerical

stability then agree on PE, since this holds on W . Thus we have

PE//L(t)SL(4) = W//M(t)SL(4) = ProjR(M(t))SL(4) = ProjR(L(t))SL(4).

�
We now compare the GIT quotients of W to those of the Hilbert scheme.

Theorem 6.7. We have the following isomorphisms of GIT quotients:

(1) Chow4,1 //SL(4) ∼= W//M( 2
3 )
SL(4).

(2) Hilbm4,1 //SL(4)
∼= W//M(t)SL(4), where t = m−2

m+1 for 2 ≤ m ≤ 4 and

t = 2(m−2)2

3m2−9m+8 ∀m ≥ 5.

Proof. (1) was established in the proof of Theorem 6.3.

(2) Let U ⊂ PE be the open set parameterizing complete intersections

(see Remark 1.4), and let Um ⊂ Hilbm4,1 be the corresponding open subset

of Hilbm4,1. By Proposition 5.2, Hilbm,ss
4,1 ⊂ Um, hence Hilbm4,1 //Λm

SL(4) ∼=
Um//Λm|Um

SL(4) by Lemma 4.17. The rational map ϕm : PE ��� Hilbm4,1
restricts to an isomorphism ϕm|U : U → Um, and ϕm|∗UΛm = L(t)|U , where t

is given by the formula above. It follows from Lemma 4.17 and Corollary 6.6

that

Hilbm4,1 //SL(4)
∼= Um//Λm|Um

SL(4) ∼= U//L(t)|USL(4)
∼= PE//tSL(4). �

7. Hassett–Keel program

So far, we have described the GIT quotients PE//tSL(4) parameterizing

(2, 3)-complete intersections in P3, as well as the birational transformations

among them as the linearization varies. To complete the proof of the Main

Theorem stated in the Introduction, we only need to relate these GIT quo-

tients to the Hassett–Keel spaces M4(α). In fact, by [CMJL12] and [Fed12],

this is already known for the extremal values of the slope t (see (3.4) and

(3.8)). Now, using the GIT computation of the previous sections, we will

obtain in Theorem 7.1 the relationship for the intermediate cases.

To prove the theorem, we will use some elementary properties of birational

contractions (e.g. [HK00, §1]). Let f : X ��� Y be a birational map between

normal projective varieties with X Q-factorial. Let (π1, π2) : W → X × Y

be a resolution of f , with W projective (and π1 birational). We call f a

birational contraction if every π1-exceptional divisor is also a π2-exceptional

divisor. In this case, for a Q-Cartier divisor D on Y , we define f∗D to
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be (π1)∗(π
∗
2D), and one can check that H0(Y,D) = H0(X, f∗D). These

definitions are independent of the choice of resolution.

Theorem 7.1. Each of the log minimal models M4(α) for α ≤ 5
9 is iso-

morphic to one of the GIT quotients constructed above. Namely, we have

M4(α) ∼= PE//tSL(4),

where t = 34α−16
33α−14 ∀α ∈ [ 8

17 ,
5
9 ].

Proof. We argue similarly to the case α = 5
9 , which is [CMJL12, Thm. 3.4].

First, by the description of the GIT stability, we get that the natural map

ϕ : M4 ��� PE//tSL(4)

is a birational contraction for all t ∈
(
0, 2

3

]
. We then write

ϕ∗(4sη + 4h) = aλ− b0δ0 − b1δ1 − b2δ2

(using s = 1
t and the scalar 4 to make the formulas more attractive). The

computations in §1.2.1 tell us that a = 34s− 33 and b0 = 4s− 4. To compute

the coefficients b1 and b2, we proceed exactly as in [CMJL12]. In particular,

let Z ⊂ M4 be the curve obtained by gluing a fixed non-hyperelliptic curve

C of genus 3 to a varying elliptic tail. By the results of [CMJL12, §1.3], the
map ϕ is regular and constant along Z, so b1 = 14s − 15. Specifically, we

see that the image of Z is the point corresponding to the cuspidal curve with

normalization C, which is t-stable for all t ∈ (0, 23 ]. Similarly, we see that if

j : M2,1 → M4 is the standard gluing map, then j∗ϕ∗(4sη+4h) is supported

along the union of δ1 and the Weierstrass divisor, and hence b2 = 18s − 21.

In short, we obtain

ϕ∗(4sη + 4h) = (34s− 33)λ− (4s− 4)δ0 − (14s− 15)δ1 − (18s− 21)δ2.

Now, since δ1 and δ2 are ϕ-exceptional and t ≤ 2
3 < 14

17 , we have

H0(M4, nϕ
∗(4sη + 4h))

∼= H0(M4, nϕ
∗(4sη + 4h) + (10s− 11)δ1 + (14s− 17)δ2)

= H0(M4, n((34s− 33)λ− (4s− 4)(δ0 + δ1 + δ2))).

Thus, for s = 33α−14
34α−16 ,

PE//tSL(4) = Proj
⊕
n

H0(PE//tSL(4), n(4sη + 4h))

= Proj
⊕
n

H0(M4, nϕ
∗(4sη + 4h))

∼= Proj
⊕
n

H0
(
M4, n

(
KM4

+ αδ
))

= M4 (α) . �
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