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Abstract To any graph G, one can associate a toric variety X (PG), obtained as a
blowup of projective space along coordinate subspaces corresponding to connected
subgraphs of G. The polytopes of these toric varieties are the graph associahedra, a
class of polytopes that includes the permutohedron, associahedron, and stellahedron.
We show that the space X (PG) is isomorphic to a Hassett compactification of M0,n
precisely when G is an iterated cone over a discrete set. This may be viewed as a gen-
eralization of the well-known fact that the Losev–Manin moduli space is isomorphic
to the toric variety associated with the permutohedron.

Keywords Graph associahedra · Permutohedron · Hassett space · Moduli space of
curves · Toric variety

1 Introduction

In this note, we study the relationship between two families of blowups of projec-
tive space. The first is given by Hassett’s spaces of weighted pointed stable rational
curves [11]. The second is a family of toric varieties built as blowups of projective
space, from polytopes known as graph associahedra.
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Given a simple graph G on d + 1 vertices, the graph associahedron PG is a d-
dimensional convex polytope, constructed by truncating the d-simplex based on the
connected subgraphs of G. We review this construction in Sect. 2. If G is the complete
graph on d + 1 vertices, then PG is the permutohedron (Fig. 1). Our motivation for
the present work goes back to the following beautiful result of Losev and Manin [14].

Theorem Let X (PKn−2) be the toric variety associated with the (n −3)-dimensional
permutohedron. There is an isomorphism

X (PKn−2) ∼= M
L M
0,n ,

where M
L M
0,n is the Losev–Manin space of chains of rational curves with n marked

points.

1.1 Main results

In addition to the permutohedron, graph associahedra contain several important fami-
lies of polytopes, including the associahedron (or Stasheff polytope), the cyclohedron
(or Bott–Taubes polytope), and the stellahedron. The main result of this paper is a
complete classification of graphs G such that X (PG) is isomorphic to a Hassett com-
pactification of M0,n . Recall that given a graph G, the cone, denoted as Cone(G), is
the graph obtained by introducing one new vertex v0 to G, and connecting each of the
vertices in G to v0. We denote the �-times iterated cone by Cone�(G).

Theorem 1 Let G be a graph on n − 2 vertices. Then there exists a weight vector
ω ∈ (0, 1]n such that

X (PG) ∼= M0,ω

if and only if G is an iterated cone over a discrete set. That is,

G ∼= Conen−k−2(�k
i=1vi ).

Fig. 1 The 3 dimensional
permutohedron. This is the
graph associahedron for the
complete graph on 4 vertices
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We give a precise description of the weights for the associated moduli space in
Remark 13.

As an example, we have the following result for the stellahedron.

Corollary 2 If G is a star graph on n − 2 vertices, then

X (PG) ∼= M0,ω,

where ω = (
1, 1

2 ,
1
2 + ε, ε, . . . , ε

)
, with ε < 1

n .

Several well-studied polytopes do not give rise to Hassett spaces.

Corollary 3 Let |V (G)| � 4. If G is a path graph, a cycle, or a complete bipartite or
multipartite graph, then X (PG) is not isomorphic to M0,ω for any choice of weight
vector ω.

1.2 Context and motivation

In [12], Kapranov gives the following beautiful description of the moduli space M0,n
as a blowup of Pn−3.

Theorem 4 (Kapranov) The moduli space M0,n is isomorphic to the iterated blowup
of Pn−3 at n − 1 points p1, . . . , pn−1 in linear general position, followed by the
blowups of the strict transforms of the linear subspaces through these points, in
increasing order of dimension.

This blowup is manifestly not toric. The maximal toric blowup of Pn−3, at the
coordinate subspaces in order of increasing dimension, is isomorphic to the toric
variety associated to the permutohedron. This gives rise to the alternative modular
compactification of M0,n studied by Losev and Manin in [14]. Another point of view,
taken by Hassett, is to give the marked points “weights,” allowing markings to collide
if their total weight is sufficiently small. The Losev–Manin space is obtained by giving
the first two marked points weight 1 and the remaining points weight ε for sufficiently
small ε.

Hassett also points out that Pn−3 is itself a modular compactification of M0,n ,
given by the weight vector that assigns weight 1 to the first mark and weight ε to the
remaining marks, for ε sufficiently small. Hassett’s perspective yields a large class of
interesting compactifications of M0,n lying in between P

n−3 and M0,n .
On the other hand, given any finite graph G on n−2 vertices, Carr and Devadoss [6]

exhibit the graph associahedron PG as a truncation of the simplex on n − 2 vertices.
This naturally gives rise to a toric blowup ofPn−3. The complete graph Kn−2 produces
the permutohedral variety.

Theorem 1 tells us that there is remarkably little overlap between these two con-
structions. Much of the work on the birational geometry of M0,n has focused on
modular compactifications such as Hassett’s [9,11,16]. In a strict sense, the maps
between such compactifications are well behaved (see [16, Theorem 1.15]), leading
some to believe that M0,n has good Mori-theoretic properties. The recent proof that
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M0,n is not a Mori Dream Space for n sufficiently large [7,10] relies instead on the
combinatorics of toric compactifications, suggesting a significant difference between
these two points of view.

It is worth noting that although we are primarily concerned with graph associahedra
of connected graphs, the disconnected case has been considered by Carr et al. [5]. In
this formulation, the graph associahedron of the discrete set on n − 2 vertices is the
(n − 3)-simplex. The associated toric variety is simply P

n−3. In this sense, Pn−3 is a
second example, after Losev–Manin, of a toric graph associahedron that is a Hassett
space.

Graph associahedra encompass a large number of important polytopes that arise in a
multitude of situations in geometry and topology. For instance, the real locus M0,n(R)

of the Grothendieck–Knudson space of n-pointed rational curves has an intrinsic tiling
by associahedra [17] (i.e., the graph associahedron of the path graph). More generally,
the wonderful compactification of a hyperplane arrangement of a Coxeter system has
a tiling by graph associahedra [6]. The cyclohedra first appeared in work of Bott and
Taubes on knot invariants [3]. Recently, Bloom has exhibited beautiful connections
between the combinatorics of graph associahedra and Floer homology theories [2].

In algebraic geometry, the permutohedron is closely related to the geometry of the
Cremona transformation on projective space, and in turn to the closed topological
vertex in Gromov–Witten theory [4]. The Gromov–Witten theory of toric graph asso-
ciahedra is considered in [13]. In the present work, we further explore the connection
first noticed by Kapranov, and Losev and Manin, between compactifications of M0,n
and the permutohedron.
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Fig. 2 The construction of the stellahedron as a truncation of the 3-simplex. This is the graph associahedron
of the 4-star graph

2 Background

2.1 Toric graph associahedra

Let G be a connected finite simple graph with vertex set V (G) = {0, . . ., d}. The
graph associahedron PG of G is defined by iterated truncations of the d-simplex. Let
{Hi } denote the set of facets of the d-simplex �d , and fix a bijection V (G) ↔ {Hi }.
Notice that, for every subset of S ⊂ V (G) there corresponds a unique face of �d ,
which is the intersection of the facets Hi for i ∈ S.

Definition 5 A tube in G is a subset T ⊂ V (G), such that the induced subgraph on
the vertices T is connected. We say that a tube is trivial if |T | = 1. We call a subset
of vertices D a non-tube if the induced subgraph is not connected.

The polytope PG is constructed by the following procedure.

Construction 1 Fix a connected graph G on d + 1 vertices and a bijection between
the vertices of G and the facets of �d . Let T1, . . . , T� denote the tubes in G having
cardinality d. Let f1, . . . , f� denote the corresponding faces (vertices) of�d . Truncate
the faces fi , to produce a polytopePG(1). Now, let T ′

1, . . . , T ′
r be the tubes in G having

cardinality d − 1. These correspond to faces of dimension 1 (edges) e1, . . . , er in �d .
Each such edge ek corresponds to a unique edge in PG(1), which we continue to
denote ek . Truncate each such edge to obtain a polytope PG(2). Proceed inductively,
until the cardinality of the tubes are 2. The resulting iterated truncation is the graph
associahedron, denoted PG (Fig. 2).

We refer to [8] for a more thorough description of these truncations, and other
aspects of graph associahedra.

A toric variety is obtained from a fan, or a lattice polytope, and the above construc-
tion does not give PG a canonical integer realization. Moreover, there can be distinct
integer polytopes, producing different toric varieties, having identical posets of faces.
Our point of view is to take the polytope of the toric variety P

d (which is combina-
torially a simplex) as a starting point, interpreting the construction of Devadoss and
Carr as prescribing an iterated blowup of Pd . We will refer to these varieties as toric
graph associahedra, and will denote them X (PG).
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Fix a finite simple graph G on d + 1 vertices, and let � denote the fan of the toric
variety P

d . The cones of � are in natural bijection with the faces of �d . As above, a
tube T corresponds to a unique cone σT of�, and hence a unique coordinate subspace
of codimension |T |.
Definition 6 The graph associahedral fan �G is obtained from � by iterated stellar
subdivision along the cones σT for tubes T of G, in increasing order of codimension.

This fan is independent of the chosen order of subdivision among cones of a given
dimension. This follows immediately from [6, Theorem 2.6].

Definition 7 The toric graph associahedron X (PG) := X (�G), is defined to be the
toric variety associated with the fan �G . The variety X (PG) is the iterated blowup
of Pd along the coordinate subspaces corresponding to tubes T in order of increasing
dimension.

Remark 8 We can easily recover a polytopePG from the toric variety X (PG). Choose
an equivariant projective embedding of X (PG). Then the poset of faces of the asso-
ciated lattice polytope can be identified with that of the graph associahedron PG.
Alternatively, the canonically associated compactified fan of �G , as described in [1,
Section 2], is a polytope whose face poset is identified with that ofPG. This also coin-
cideswith theKajiwara–Payne extended tropicalization of the toric variety X (PG) [15,
Remark 3.3].

2.2 Kapranov’s model and Hassett spaces

The connection to moduli spaces comes from Kapranov’s blowup model of M0,n .
Given a general point p ∈ P

n−3, there exists a unique rational normal curve C through
p, the point p0 = (1, . . . , 1), and the n −2 coordinate points p1, . . . , pn−2. The curve
C , together with the n points p, p0, . . . , pn−2, determines a point in M0,n , and in this
way we obtain a birational map P

n−3 ��� M0,n . The indeterminacy loci of this map
are the linear spans of subsets of the points pi , and Kapranov [12] shows that M0,n
is isomorphic to the blowup of Pn−3 along these linear spans, in increasing order of
dimension.

By blowing up the projective space Pn−3 along some subset of these linear spans,
one obtains an alternate compactification of M0,n . For example, blowing upPn−3 along
the linear spans of the coordinate points produces the well-known Losev–Manin space

M
L M
0,n .
Both the Grothendieck–Knudson compactification M0,n and the Losev–Manin

space M
L M
0,n are examples of a more general construction due to Hassett. For each

weight vector ω = (cM , c0, . . . , cn−2) such that 0 < ci � 1 and
∑

ci > 2, Hassett
constructs a smooth moduli space of ω-stable curves M0,ω [11].

Definition 9 A genus 0 marked curve (C, pM , p0, . . . , pn−2) is ω-stable if

(S1) the only singularities of C are nodes,
(S2) the marked points are smooth points of C ,
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(S3) the total weight of coincident points is at most 1, and
(S4) the line bundle ωC (

∑
ci pi ) is ample.

The last condition can also be rephrased as saying that the total weight of marked
points on any component of C , plus the number of nodes, must be strictly greater than
2.

We note the following property of Hassett’s weighted spaces, which will be useful
in the next section of the paper.

Proposition 10 [11, Theorem 4.1] Let ω = (cM , c0, . . . , cn−2) and ω′ =
(c′

M , c′
0, . . . , c′

n−2) be collections of weight data such that ci � c′
i for all i ∈

{0, . . . , n − 2}. Then there exists a natural birational reduction morphism

ρ: M0,ω → M0,ω′ .

3 Main results

Throughout this section, G will be a graph on n − 2 vertices, labeled v1, . . . , vn−2.
Furthermore, we fix a bijection between the set of vertices {vi } and the facets of
the (n − 2)-simplex �n−2. We label the markings on an n-pointed rational curve
by pM , p0, p1, . . . , pn−2. We think of pM as being the moving point in Kapranov’s
construction, and p0 as being the identity of the torus in P

n−3.
We begin with the following proposition.

Proposition 11 Let ω = (cM , c0, . . . , cn−2) be a weight vector such that

M0,ω ∼= X (PG).

Then we have the following relationships among the entries of ω.

(W1) For every nontrivial tube T ⊂ V (G),

c0 +
∑

i∈T

ci > 1.

(W2) For every non-tube D ⊂ V (G),

c0 +
∑

j∈D

c j � 1.

Proof Let G be a graph on n − 2 vertices, and fix a bijection of the vertices {vi } with
the coordinate hyperplanes {Hi } of Pn−3. Moreover, we fix an identification of M0,n
with the iterated blowup of Pn−3. We consider the reduction map

ρ: M0,n → M0,ω = X (PG).

Let T be a nontrivial tube consisting of vertices vi1 , . . . , vie , and let ET be the excep-
tional divisor in M0,n above the linear subspace Hi1 ∩ · · · ∩ Hie in P

n−3. Observe
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that ρ restricts to an isomorphism on this locus, and thus, the universal curve C0,n
is ω-stable on ET . Over the generic point of ET , C0,n is an ω-stable curve with two
components. The components are marked by the sets I and I C , where I = {0, i}i∈T ,
whence (W1) follows. Let D be a non-tube and ED be the exceptional divisor in M0,n
above the linear subspace of Pn−3 given by

⋂
i∈D Hi . The reduction morphism ρ

contracts ED , specifically by forgetting the moduli of the component marked by the
set I , and similarly to the above case, we conclude (W2). 
�

The above proposition yields two natural obstructions for a toric graph associahe-
dron to be a Hassett space.

Obstruction A Let D be a non-tube. If there exists a nontrivial tube TD ⊂ D, then
X (PG) cannot be isomorphic to M0,ω for any weight vector ω.

Proof Observe that since TD is a tube, we may apply the inequality (W2) above to
obtain

c0 +
∑

i∈TD

ci > 1.

On the other hand, D is not a tube, so

c0 +
∑

j∈D

c j � 1.

Subtracting these inequalities, we obtain

∑

i∈D\TD

ci < 0,

which is impossible. 
�
Obstruction B Suppose there exists a set of vertices S ⊂ V (G) such that S can be
partitioned into k nontrivial tubes and can also be partitioned into k′ non-tubes, with
k′ � k. Then X (PG) cannot be isomorphic to M0,ω for any weight vector ω.

Proof Let

S =
k∐

i=1

Ti =
k′∐

i=1

Di

where the Ti ’s are nontrivial tubes and the Di ’s are non-tubes. We then have

k∑

i=1

⎛

⎝c0 +
∑

j∈Ti

c j

⎞

⎠ = kc0 +
∑

i∈S

ci > k

k′∑

i=1

⎛

⎝c0 +
∑

j∈Di

c j

⎞

⎠ = k′c0 +
∑

i∈S

ci � k′.
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Subtracting the inequalities, we see that if k′ � k, then c0 > 1, which is impossible,
and we obtain Obstruction B. 
�
Remark 12 Obstruction A is more generally an obstruction to X (PG) being modular
in the sense of Smyth [16]. However, Obstruction B is not (see, for example, the dis-
cussion in [9, Section 7.5]). We note that the class of graphs that are unobstructed by A
is strictly larger than that of graphs that are unobstructed by both A and B. For exam-
ple, complete bipartite graphs are obstructed by B but not A. It would be interesting
to explore which graph associahedra are isomorphic to modular compactifications of
M0,n .

3.1 Proof of main theorem

Assume that X (PG) is isomorphic to a Hassett space, and let I ⊂ V (G) be a maximal
independent set. Suppose there exists a vertex v with v /∈ I . By definition, there exists
a vertex w ∈ I such that there is an edge between v and w. If there is another vertex
u ∈ I with no edge connecting it to v, then {v,w} is a tube and {u, v, w} is a non-tube,
contradicting Obstruction A. It follows that there must exist edges between v and u
for every vertex u ∈ I .

Now, consider another vertex v′ �= v not lying in the independent set I . If |I | = 1,
then there is an edge between v and v′ by the assumption that I is maximal. Otherwise,
if there is no edge between v and v′, then for some u, u′ ∈ I , both {u, v} and {u′, v′}
are tubes, but {u, u′} and {v, v′} are non-tubes, contradicting Obstruction B. It follows
that there is an edge between any two vertices not contained in the independent set I .
Inductively, we may reconstruct G from I as an iterated cone.

It remains to show that for such G, X (PG) is indeed a Hassett space. We write G
as an iterated cone

Conen−2−k
(
�k

i=1vi

)
.

Recall that we have fixed a bijection between vertices {vi } of G, and facets {Fi }
of �n−3. Accordingly, there is a bijection between {vi } and torus invariant points
{p1, . . . , pn−2} of Pn−3, via the induced bijection between {vi } and vertices opposite
to the facets {Fi }.

We call the torus fixed points {p1, . . . , pk} corresponding to the discrete base set
of G independent points, and the remaining points {pk+1, . . . , pn−2} cone points.
Now, let ω = (cM , c0, c1, . . . , ck, ck+1, . . . , cn−2). By symmetry, we may assume
that the weight vector is unchanged by permuting the cone points and independent
points among themselves. We let cc denote the weight of the cone points and ci denote
the weight of the independent points. The point pM in Kapranov’s construction is not
allowed to coincide any of the other marked points, so we are forced to set cM = 1.

Recall that points are allowed to collide precisely when the sum of their weights
is less than 1. Every cone vertex is connected to every other vertex in the graph, so
the non-tubes of G are precisely subsets of independent vertices of size at least two.
Thus we may conclude that any collection of independent points may coincide with
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p0. Conversely, any subset of vertices that contains a cone vertex is a tube, so none
of the cone points may collide with p0. Set ci equal to ε for ε sufficiently small, as
this allows them to collide arbitrarily. We set cc = (k + 2)ε where k is the number of
independent points. Finally, we set c0 = 1 − (k + 1)ε. With these weights c0 cannot
collide with the cone points, as the sum of weights exceeds 1. The space M0,ω can
now be obtained via Hassett’s reduction map

M0,n → M0,ω,

by contracting unstable loci in M0,n . By blowing down from Kapranov’s realization
of M0,n , the same arguments above, applied to the universal curve C0,n show that this
is the same variety X (PG) obtained by blowup of Pn−3. 
�
Remark 13 (Specific weights for the moduli spaces) The parameter space for weights
(0, 1]n has a natural wall and chamber structure, so for ω1, ω2 in the same chamber,
the moduli functor for ω1- and ω2-stable curves coincide. We record here the weights
obtained in the proof above so the reader may have access to it easily.

Let G be a graph on n − 2 vertices, obtained as an iterated cone over the dis-
crete set on k vertices v1, . . . , vk . Then, X (PG) ∼= M0,ω for the weight vector
(cM , c0, c1, . . . , cn−2) for ε sufficiently small:

cM = 1

c0 = 1 − (k + 1)ε

cc = (k + 2)ε when pc is a cone point

ci = ε when pi is an independent point.

4 Examples

4.1 Graphs on 3 vertices

There are two connected graphs on 3 vertices, the cycle K3, and the path graph P3.
The toric graph associahedron X (PK3) is the blowup of P2 at its 3 torus fixed points.
The toric graph associahedron X (PP3) is the blowup of P2 at 2 torus fixed points. The
Grothendieck–Knudson compactification of the moduli space of 5-pointed curves is
isomorphic to the blowup of P2 at its 3 torus fixed points, and the identity of the torus.

The cycle on 3 vertices coincides with the complete graph, and thus the toric graph
associahedron X (PK3) is isomorphic to the Losev–Manin compactification M0,ω for
ω = (1, 1, ε, ε, ε). On the other hand, the path graph P3 can be viewed as the cone over
the discrete set on 2 vertices. The toric graph associahedron X (PP3) is isomorphic to
M0,ω′ for ω′ = (

1, 1
2 ,

1+ε
2 , ε, ε

)
.

The Losev–Manin stable 5-pointed rational curves are those chains of P1’s, where
p1 and p2 lie on either end of the chain, and each component has at least one of the
light points p3, p4, or p5. Thus, the chain can have at most 3 components.
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If C is a ω′-stable 5-pointed rational curve with two components, then p2 must lie
on the same component as p3 but on a different component than p1. Moreover, the
light points p4 and p5 must lie on distinct components of C . In fact, C cannot have 3
components. To see this, assume otherwise. Then C is a chain of P1’s

C = C1 ∪ C2 ∪ C3.

We may assume without loss of generality that p1 lies on C1. Then p2 and p3 must
both lie on C3. To stabilize the components C1 and C3, they must both be additionally
marked by one of the light points. However, now the central componentC2 has 2 nodes
and no marks, and is unstable.

Note that, although X (PP3) is isomorphic to M0,ω′ , the universal families over
the two spaces are different. For example, in the toric model, if the moving point lies
on the line between one of the points of weight 1

2 and one of the points of weight ε,
then the unique conic through these 5 points is a union of two lines, and the resulting
pointed curve is not ω′-stable.

4.2 Graphs on 4 vertices

There are, up to symmetry, 6 different graphs on 4 vertices, but only 3 graphs that can
be obtained as iterated cones over discrete sets (Fig. 3). These graphs are the complete
graph K4, the complete graph minus a single edge V4, and the star graph on 4 vertices
S4.

We discuss the star graphs and complete graphs in greater generality in the forth-
coming subsection.

Fig. 3 Graphs on 4 vertices giving rise to Hassett spaces
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The graph V4 can be obtained as the twice iterated cone over the discrete set on 2
vertices, Cone2(v1 � v2). The toric variety X (PV4) is isomorphic to M0,ω for

ω = (1, 1 − 3ε, 4ε, 4ε, ε, ε).

This space can be obtained from the Losev–Manin space M
L M
0,6 by blowing down

the divisor �134. To put this another way, suppose that C = C1 ∪ C2 is a curve with
two components, with three marked points onC1 and three marked points onC2. Then
C is ω-stable if and only if at least one of the “light” points with weight ε lies on the
same component as the “heavy” point with weight 1.

4.3 Complete graphs and star graphs

As we have discussed above, when G = Kn−2, then X (PKn−2) is the permutohedral
variety, isomorphic to the Losev–Manin compactification of M0,n . The graph Kn−2 is
obtained as the (n − 3)-times iterated cone over a single vertex. On the other extreme,
we may consider the cone over the discrete set on n − 3 vertices. The resulting graph
is the star graph on n − 2 vertices, denoted Sn−2 (Fig. 4).

Observe that the tubes of Sd are single vertices, or any subset of the vertices con-
taining the cone point. Using this fact, it is straightforward to check that the graph
associahedron PSd can be described as follows. Choose a distinguished facet F0 of
the simplex �d , corresponding to the unique high-valence vertex of Sd . Then, PSd

may be obtained from �d by truncating all faces lying in F0. Correspondingly, the
toric variety X (PSd) is obtained by choosing a distinguished coordinate hyperplane
H0, and blowing up all coordinate planes contained in H0. Observe that the proper
transform E of H0 in X (PSd) is isomorphic to the (d −1)-dimensional permutohedral
variety.

It follows from the main result that

X (PSn−2) ∼= M0,ω,

where ω = (
1, 1

2 ,
1
2 + ε, ε, ε, . . . , ε

)
.

The locus of curves consisting of two components, where one component is marked
with p2 and p3 is isomorphic to the Losev–Manin compactification of M0,n−1. It is
straightforward to check that this stratum coincideswith the torus invariant exceptional
divisor E of X (PSn−2) described above.

Remark 14 For different choices of weightsω1 andω2, it may be possible for M0,ω1 to
be isomorphic to M0,ω2 as varieties but not asmoduli spaces, i.e., the universal families
may not coincide. For instance, choosing ω = (

1, 1
2 ,

1
2 , ε, ε, . . . , ε

)
, the space M0,ω

Fig. 4 The star graph is a cone
over a discrete set
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is isomorphic to X (PSn−2) as above. Here, the Losev–Manin compactification of
M0,n−1 appears as the locus where p2 and p3 coincide.
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