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Abstract. We study which groups with pairing can occur as the Jaco-
bian of a finite graph. We provide explicit constructions of graphs whose
Jacobian realizes a large fraction of odd groups with a given pairing. Con-
ditional on the generalized Riemann hypothesis, these constructions yield
all groups with pairing of odd order, and unconditionally, they yield all
groups with pairing whose prime factors are sufficiently large. For groups
with pairing of even order, we provide a partial answer to this question,
for a certain restricted class of pairings. Finally, we explore which finite
abelian groups occur as the Jacobian of a simple graph. There exist infi-
nite families of finite abelian groups that do not occur as the Jacobians
of simple graphs.
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1. Introduction

Given a finite graph G, there is naturally associated group Jac(G), the Jacobian
of G. The group Γ = Jac(G) comes with a symmetric, bilinear, nondegenerate
pairing [10,14]:

〈·, ·〉 : Γ × Γ → Q/Z,

known as the monodromy pairing. Groups with such a pairing will be referred
to simply as groups with pairing. Clancy et al. [6] observed that the Jacobian
of a randomly generated graph is cyclic with probability close to 0.79. This
probability agrees with the well-known Cohen–Lenstra heuristics, which pre-
dict that a finite abelian group Γ should occur with probability proportional
to 1

|Aut(Γ)| . However, other classes of groups violate these heuristics. This is
because the Jacobian of a graph should really be thought of as a group, to-
gether with a duality pairing. In loc. cit., it is conjectured that a group with
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pairing (Γ, 〈·, ·〉) should occur with probability proportional to 1
|Γ||Aut(Γ,〈·,·〉)| .

This is further suggested by the empirical evidence of [5] and proven in [16].
Given a finite abelian group with pairing Γ, the probability that a random

graph has Jacobian isomorphic to Γ is zero [16], so it is possible that some
groups with pairing do not occur at all. In the present text, we investigate
precisely which finite abelian groups with pairing can occur as the Jacobian
of a finite graph. Our main result is the following.

Theorem 1.1. Let Γ be a finite abelian group with pairing. There exists a finite
set of primes P ⊂ Z such that, if |Γ| is not divisible by any p ∈ P, then there
exists a graph G such that

Γ ∼= Jac(G)

as groups with pairing.

It is our expectation that the set of primes P appearing in Theorem 1.1
consists of only the prime 2. We have the following result, conditional on the
generalized Riemann hypothesis [8].

Theorem 1.2 (Conditional on GRH). Let Γ be a finite abelian group with pair-
ing of odd order. Then, there exists a graph G such that

Γ ∼= Jac(G)

as groups with pairing.

Remark 1.3. The above results are related to the following purely number
theoretic question. Given a prime p, does there exist a prime q < 2

√
p, with

q ≡ 3 mod 4, such that q is a quadratic nonresidue modulo p? Numerical
evidence suggests that this condition should be satisfied for all sufficiently
large primes p.

An interesting variation on the question considered here was studied by
Bosch and Lorenzini in [4, Proposition 5.2]. They consider the representation
of groups with pairing arising from arithmetical graphs. While the strategy
of our proof bears some similarities to that found in loc. cit., the presence of
arithmetical structure simplifies the classification problem. Indeed, as shown
in [4, Example 5.4], in the case of arithmetical graphs, one can take the under-
lying graph to be a tree. Our setting is motivated by considerations in tropical
geometry and the graph theoretic Abel–Jacobi theory of Baker and Norine.

Jacobians of wedge sums of graphs decompose canonically as the orthog-
onal direct sum of the Jacobians of their components. A structure theorem
for groups with pairing, therefore, allows us to focus primarily on the case
where Γ is cyclic. When Γ is a 2-group, however, this structure result is more
complicated. There are 4 nonexceptional natural pairings on the group Z/2rZ,
and we find graphs which realize these groups with pairings. There are, in
addition, 2 exceptional families of pairings on the group (Z/2rZ)2 that do not
decompose as the orthogonal direct sum of cyclic groups with pairing. We refer
to Sect. 2 for background regarding pairings on 2-groups.
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Theorem 1.4. Let Γ ∼= (Z/2rZ, 〈·, ·〉) be a cyclic 2-group with nonexceptional
pairing 〈·, ·〉. Then, there exists a graph G such that

Γ ∼= Jac(G)

as groups with pairing.

We discuss groups with exceptional pairings in further detail in Sect. 4.2.
If we forget the structure of the pairing on Γ, it is elementary to observe

that every finite abelian group Γ occurs as the Jacobian of a multigraph G.
Naively, however, the construction often necessitates the use of graphs with
multiple edges. Since the Erdős–Rényi random graphs studied in [5,6,16] are
always simple, we find it natural to ask the following.

Question. Which finite abelian groups (without a specified pairing) occur as
the Jacobian of a simple graph?

We find that there are infinite families of finite groups that do not occur
as the Jacobians of simple graphs.

Theorem 1.5. For any k ≥ 1, there exists no simple graph G such that

Jac(G) ∼= (Z/2Z)k.

More generally, we have the following result for groups with a large num-
ber of Z/2Z invariant factors.

Theorem 1.6. Let H be a finite abelian group. Then, there exists a natural
number kH depending on H, such that for all k > kH , there does not exist a
simple graph G with

Jac(G) ∼= (Z/2Z)k × H.

2. Background

2.1. Jacobians of Graphs

We briefly recall the basics of divisor theory on graphs. We refer to [2] for
further details. In this paper, a graph will mean a finite connected graph,
possibly with multiple edges, but without loops at vertices. A simple graph
is a graph without multiple edges. A divisor on a graph is an integral linear
combination of vertices, and we write a divisor as

D =
∑

v∈V (G)

D(v)v,

where each D(v) is an integer. The degree of a divisor D is as follows:

deg(D) =
∑

v∈V (G)

D(v).

It is common to think of a divisor as a configuration of “chips” and “anti-
chips” on the vertices of the graph, so that the degree is just the total number
of chips.
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Let M(G) := Hom(V (G), Z) be the group of integer-valued functions on
the vertices of G. For f ∈ M(G), we define

ordv(f) :=
∑

e=vw edge containing v

(f(v) − f(w)),

and

div(f) :=
∑

v∈V (G)

ordv(f)v.

Divisors that arise as div(f) for a function f ∈ M(G) are referred to as prin-
cipal. We say that two divisors D1 and D2 are equivalent, and write D1 ∼ D2,
if their difference is principal.

Equivalence of divisors is related to the well-known “chip-firing game”
on graphs, which can be described as follows. Given a divisor D and a vertex
v, the chip-firing move centered at v corresponds to the vertex v giving one
chip to each of its neighbors. That is, the vertex v loses a number of chips
equal to its valence, and each neighbor gains exactly 1 chip. Two divisors are
equivalent if one can be obtained from the other by a sequence of chip-firing
moves.

Note that the degree of a divisor is invariant under equivalence. The
Jacobian Jac(G) is the group of equivalence classes of divisors of degree zero.
The Jacobian of a connected graph is always a finite group, with order equal
to the number of spanning trees in G (see [3]).

For the most part, we will not need any deep structural results about the
Jacobians of graphs. The following result, however, will greatly simplify one
of our proofs in the later sections.

Theorem 2.1 ([7, Theorem 2]). Let G be a planar graph and let G� be a planar
dual of G. Then, the Jacobian of G and G� are isomorphic as groups.

The Jacobian of a graph comes equipped with a bilinear pairing, known
as the monodromy pairing, defined as follows. Given two divisors D1,D2 ∈
Jac(G), first find an integer m such that mD1 is principal—that is, there
exists a function f ∈ M(G) such that div(f) = mD1. Then, we define the
following:

〈D1,D2〉 =
1
m

∑

v∈V (G)

D2(v)f(v).

It is of course not immediately clear that the pairing above is nondegen-
erate. A proof may be found in [14, Theorem 3.4].

Remark 2.2. Note that the isomorphism of Jacobians of planar dual graphs
does not, in general, preserve the pairings (see, for instance, Corollary 3.3).

2.2. Reduced Divisors and Dhar’s Burning Algorithm

Given a divisor D and a vertex v0, we say that D is v0-reduced if
1. D(v) ≥ 0 for all vertices v �= v0, and
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2. every nonempty set A ⊆ V (G) � {v0} contains a vertex v such that
outdegA(v) > D(v).

By [2, Proposition 3.1], every divisor is equivalent to a unique v0-reduced
divisor.

There is a simple algorithm for determining whether a given divisor satis-
fying (1) above is v0-reduced, known as Dhar’s burning algorithm. For v �= v0,
imagine that there are D(v) buckets of water at v. Now, light a fire at v0. The
fire consumes the graph, burning an edge if one of its endpoints is burnt, and
burning a vertex v if the number of burnt edges adjacent to v is greater than
D(v) (that is, there is not enough water to fight the fire). The divisor D is
v0-reduced if and only if the fire consumes the whole graph. For a detailed
account of this algorithm, we refer to [3, Section 5.1] and [9].

2.3. Jacobians of Wedge Sums of Graphs

Given two graphs with distinguished vertices (G1, v1) and (G2, v2), the wedge
sum is the graph formed by identifying v1 and v2. We suppress the dependence
on the choice of distinguished vertices in what follows, as the choice will not
matter, denoting the wedge sum as G1 ∨ G2. A key tool in our proof is the
fact that the Jacobian of a wedge sum of graphs is the orthogonal direct sum
of the Jacobians.

Proposition 2.3. Let G1 and G2 be graphs. Then

Jac(G1 ∨ G2) ∼= Jac(G1) ⊕ Jac(G2),

where ⊕ denotes the orthogonal direct sum of finite abelian groups with pairing.

Proof. This follows from the fact that any piecewise linear function on G
corresponds to a piecewise linear function on Gi by restriction, and conversely,
any function on Gi can be extended to a function on G by giving it a constant
value on G � Gi. �

2.4. Structure Results for Groups with Pairing

Our arguments will rely heavily on the classification of finite abelian groups
with pairing from [12,15]. A first step in this classification is the following.

Lemma 2.4. Let Γ be a group with pairing 〈·, ·〉, and suppose that there exist
subgroups Γ1,Γ2 ⊆ Γ such that Γ ∼= Γ1 × Γ2 as groups. If the orders of Γ1

and Γ2 are relatively prime, then Γ is isomorphic to the orthogonal direct sum
Γ1 ⊕ Γ2.

Lemma 2.4 reduces the classification of finite abelian groups with pairing
to the classification of p-groups with pairing. In light of Proposition 2.3, this
lemma allows us to focus on constructing graphs whose Jacobian is a given
p-group with pairing.

If p is an odd prime, then there are precisely two isomorphism classes of
pairings on Z/prZ, for r ≥ 1. More precisely, every nondegenerate pairing on
Z/prZ is of the form:

〈x, y〉a =
axy

pr
,
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G1

∨

G2

=

G1 ∨ G2

Figure 1. Wedge sum operation on graphs. In this case,
Jac(G1) ∼= Z/3Z, Jac(G2) ∼= Z/4Z, and Jac(G1∨G2) ∼= Z/12Z

for some integer a not divisible by p. Two such pairings 〈·, ·〉a, 〈·, ·〉b are iso-
morphic if and only if the Legendre symbols of a and b are equal. We will refer
to these two pairings as the residue and nonresidue pairings. The following is
a fundamental result for groups with pairing (see Fig. 1).

Theorem 2.5. If p is an odd prime, then every finite abelian p-group with pair-
ing decomposes as an orthogonal direct sum of cyclic groups with pairing.

When p = 2, the situation is somewhat more intricate. Up to isomor-
phism, there are four distinct isomorphism classes of pairings on Z/2rZ, which
we refer to as the nonexceptional pairings. These are given as follows:

A2r ∼= (Z/2rZ, 〈·, ·〉), r ≥ 1; 〈x, y〉 =
xy

2r

B2r ∼= (Z/2rZ, 〈·, ·〉), r ≥ 2; 〈x, y〉 =
−xy

2r

C2r ∼= (Z/2rZ, 〈·, ·〉), r ≥ 3; 〈x, y〉 =
5xy

2r

D2r ∼= (Z/2rZ, 〈·, ·〉), r ≥ 3; 〈x, y〉 =
−5xy

2r
.

In addition, on (Z/2rZ)2, there are two isomorphism classes of pairings
that do not decompose as an orthogonal direct sum of cyclic groups with
pairing. We refer to these as the exceptional pairings:

E2r ∼= ((Z/2rZ)2, 〈·, ·〉), r ≥ 1; 〈ei, ej〉 =

{
0, i = j
1
2r , otherwise

F2r ∼= ((Z/2rZ)2, 〈·, ·〉), r ≥ 2; 〈ei, ej〉 =

{
1

2r−1 , i = j
1
2r , otherwise,

where ei and ej are generators for (Z/2rZ)2.
We note the following two results of Miranda [12].

Lemma 2.6. Let Γ be a finite abelian group of order 2r, with pairing 〈·, ·〉. If
〈x, x〉 = a

2r for some x ∈ Γ and odd positive integer a, then Γ is cyclic generated
by x. Furthermore, for some c ∈ {±1,±5}, with c ≡ a (mod 8), there is an
isomorphism of groups φ : Γ → Z/2rZ such that

〈x, y〉 =
cφ(x)φ(y)

2r
.
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v wwv

Figure 2. Three-banana graph and the subdivided banana
B(4,2,3)

Theorem 2.7. The groups A2r ,B2r ,C2r ,D2r ,E2r ,F2r generate all 2-groups with
pairing under orthogonal direct sum.

3. Odd Groups with Pairing

In this section, we investigate which groups with pairing of odd order occur as
the Jacobian of a graph. The decomposition of the Jacobian of a wedge sum
as the orthogonal sum of the Jacobians of its components reduces our goal to
the following.
Problem. Given a pairing 〈·, ·〉 on the group Z/prZ with p odd, find a graph
G such that Jac(G) is isomorphic to Z/prZ, such that 〈·, ·〉 is induced by the
monodromy pairing.

When p = 2, which we consider in Sect. 4, we must also consider the
nondecomposable pairings on Z/2rZ × Z/2rZ.

3.1. Subdivided Banana Graphs

We begin with the following construction.

Construction 1. Let s = (s1, . . . , sm) be a tuple of positive integers. Let Bm

denote the so-called “banana graph”, which has two vertices and m edges be-
tween them. Construct the s-subdivided banana graph from Bm by subdividing
the ith edge si − 1 times. We denote this graph by Bs, see Fig. 2.

Proposition 3.1. Fix a prime p and an integer r. Let s = (s1, . . . , sm) be a
tuple of positive integers such that

m∑

i=1

∏m
j=1 sj

si
= pr,

and gcd(si, p) = 1 for all i. Then

Jac(Bs) ∼= (Z/prZ, 〈·, ·〉),
where 〈·, ·〉 is the pairing on Z/prZ given by

〈x, y〉 =
(
∏m

i=1 si) xy

pr
.
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Proof. We first show that | Jac(Bs)| = pr. Every spanning tree of Bs is ob-
tained by deleting one edge each from all but one of the subdivided edges of
Bm. It follows that the number of spanning tees of Bs is as follows:

m∑

i=1

∏m
j=1 sj

si
= pr.

We now show that Jac(Bs) is cyclic by exhibiting a generator. Let v and
w be the two vertices of Bs of valence m pictured in Fig. 2, and consider the
divisor D = v − w. Note that the order of D must be a power of p, and let
t ≤ r be the smallest nonnegative integer such that ptD is equivalent to 0. By
definition, there exists a function f : V (G) → Z such that div(f) = ptD.

Orienting the graph, so that the head of each edge points toward w, and
for each edge e with head x and tail y, let b(e) = f(x) − f(y). Since D(v) = 0
for any v ∈ V (G) � {v, w}, we must have b(e1) = b(e2) for any two edges in
the same subdivided edge of Bm, and we may, therefore, write bi = b(e) for
any edge e in the ith subdivided edge. Observe that bisi = f(w) − f(v) for all
i. As div(f) = ptD, we may conclude that

∑m
i=0 bi = pt. Consequently,

pt =
m∑

i=1

f(w) − f(v)
si

=
(f(w) − f(v))pr

∏m
i=1 si

.

From this, we deduce
m∏

i=1

si = pr−t(f(w) − f(v)).

Since gcd(si, p) = 1 for all i, this is impossible unless r = t, and thus, the
group is cyclic, generated by D.

The monodromy pairing on Jac(Bs) is fully determined by the value of
〈D,D〉. Consider a function f : V (G) → Z such that bi =

∏m
j=1 sj

si
. We see that

div(f) = prD, and hence, 〈D,D〉 =
∏m

i=1 si

pr . �

Remark 3.2. We have recently become aware that Proposition 3.1 was proven
earlier in [10, Section 2]. We, nevertheless, reprove it here, as the argument is
simple and the banana graph Bs is central to our later constructions.

The cycle graph Cn and the banana graph Bn are both special cases of
the subdivided banana. The following is an immediate corollary.

Corollary 3.3. For any prime p and integer r:

Jac(Bpr ) ∼= (Z/prZ, 〈·, ·〉1)
Jac(Cpr ) ∼= (Z/prZ, 〈·, ·〉−1),

where 〈·, ·〉1 and 〈·, ·〉−1 are the pairings on Z/prZ given by the following:

〈x, y〉1 =
xy

pr
〈x, y〉−1 =

(−1)xy

pr
.
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3.2. Results on Quadratic Residues

Observe that the monodromy pairing on Jac(Bpr ) is the residue pairing on
Z/prZ. To achieve the nonresidue pairing, we will use the subdivided banana
graph Bs for an appropriate choice of s. Our approach will rely on quadratic
reciprocity, and it will be necessary to consider the cases p ≡ 1 (mod 4) and
p ≡ 3 (mod 4) separately.

Proposition 3.4. For any sufficiently large prime p, there exists a prime qua-
dratic nonresidue q ≡ 3 (mod 4), such that q is less than 2

√
p.

Proof. Let χ1 be the nontrivial character mod 4 and χ2 the quadratic character
mod p, and let X be the group of Dirichlet characters generated by χ1 and χ2.
The group X has conductor f = lcm(4, p) = 4p and exponent dividing n = 2.
Define the form

χ = 1 + χ1χ2 − χ1 − χ2.

By [13, Theorem 1.4], there exists an odd prime

q2 � (4p)
1
4+εf ε � 2p

1
4+2ε,

such that χ(q2) �= 0. By construction, however, if χ(q2) �= 0, then χ1(q2) =
χ2(q2) = −1. It follows that q2 is a quadratic nonresidue and q2 ≡ 3 (mod 4).

�

We will also need the following proposition.

Proposition 3.5. For any sufficiently large prime p and integer r > 1, there
exist nonresidues q1 = 1 mod 4 and q2 = 3 mod 4, with q1, q2 < 2

√
pr.

Proof. In the previous proof, let χ1 be the nontrivial character mod 4 and χ2

the quadratic character mod p. To ask for a prime quadratic nonresidue, q ≡ 3
mod 4 is to ask for a prime q such that χ1(q) = χ2(q) = −1. Consider the
abelian field extension K of Q given by K = Q(

√−1,
√

α), where

α = (−1)
p−1
2 p.

The extension K is degree 4 with conductor 4p. The characters χ1 and χ2

are quadratic, and thus, we may apply [13, Theorem 1.7], to obtain an upper
bound on the prime q:

q � 2p
1
2+ε.

Now, for the 1 mod 4 case, we simply replace χ1(q) = χ2(q) = −1 above with
the conditions:

χ1(q) = 1, χ2(q) = −1.

and we apply [13, Theorem 1.7] again. �

Proposition 3.6 (Conditional on GRH). For any prime p > 109, there exists a
prime quadratic nonresidue q ≡ 3 (mod 4) such that q < 2

√
p.
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Proof Let α = (−1)
p−1
2 p, and let K = Q(

√−1,
√

α). The degree of the exten-
sion K/Q is 4, and the discriminant is (4p)2. By [1, Theorem 5.1], by assuming
GRH, there exists a prime quadratic nonresidue q ≡ 3 (mod 4) satisfying

q < (8 log(4p) + 15)2.

The term on the right is smaller than 2
√

p as long as p > 109. �

Given a prime q that satisfies the bounds above, we will need to find a
particular way to write it as a sum of two positive integers, to ensure that s
has the desired properties. Below, we check that such a decomposition exists,
and that this decomposition provides the properties that we require.

Lemma 3.7. Let q be an odd prime and let k be an integer such that
(

k
q

)
=

(
−1
q

)
. Then, there exists 0 < a < q such that a(q − a) ≡ k (mod q).

Proof. Consider the set

Rq =
{

� ∈ Fq :
(

�

q

)
=

(−1
q

)}
,

and the map φ : Fq → Fq given by φ(x) = −x2. The image of φ must be a
subset of Rq. For a fixed a, the polynomial x2 + a has at most two roots in
Fq. Since |Rq| = q−1

2 , φ must, therefore, surject onto Rq. Hence, there exists
an integer a such that φ(a) = k, and we have k ≡ −a2 ≡ a(q − a) (mod q), as
required. �

Lemma 3.8. Let p be a sufficiently large prime with p ≡ 1 (mod 4) and let r

be an integer. Then, there exists a prime q, with
(

q
pr

)
= −1, and a positive

integer a < q such that the quantity
pr − a(q − a)

q

is a positive integer.

Proof. By Proposition 3.5, there exists a nonresidue q with
(

−1
q

)
=

(
pr

q

)
,

and q2

4 < pr. By Lemma 3.7, there exists a positive integer a < q such that
pr ≡ a(q − a) (mod q). Therefore, pr − a(q − a) is positive and divisible by q.

�

We now apply Lemma 3.8 to establish the existence of an s such that
Jac(Bs) ∼= Z/prZ with the nonresidue pairing.

Proposition 3.9. For any sufficiently large prime p and integer r, there exists
s = {s1, . . . , sm} such that

m∑

i=1

∏m
j=1 sj

si
= pr,

gcd(p, si) = 1 for all i, and
∏m

i=1 si is a nonresidue modulo p.
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Proof. First, consider the case that p ≡ 3 (mod 4). Choose s = {1, pr − 1},
and note that pr − 1 ≡ −1 (mod pr) is a nonresidue modulo pr.

In the case that p ≡ 1 (mod 4), let q, a be as in Lemma 3.8, and let

s1 = a, s2 = q − a, s3 =
pr − a(q − a)

q
.

Since both a and q − a are smaller than p, they are relatively prime to p,
and therefore, the product a(q − a) is relatively prime to p, as well. Now, the

quantity s1s2s3 is a nonresidue mod pr iff
(−1)(a(q − a))2

q
is a nonresidue mod

p. Since p ≡ 1 (mod 4), −1 is a residue modulo pr, and hence, the numerator
of this expression is also a residue. Therefore,

(
s1s2s3

pr

)
=

(
q
pr

)
= −1, and the

result follows. �
3.3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. By Corollary 3.3, Jac(Bpr ) ∼= Z/prZ with the residue
pairing. By Propositions 3.1 and 3.9, for any sufficiently large prime p and
integer r ≥ 1, there exists an s such that Jac(Bs) ∼= Z/prZ with the nonresidue
pairing. By taking wedge sums of these graphs, we obtain all groups with
pairing of odd order. �

Our proof of Theorem 1.2 is aided by the fact that, in certain cases, we
can explicitly construct an s satisfying the conditions required to achieve the
nonresidue pairing:

Proposition 3.10. Let p be an odd prime, not equivalent to 1 (mod 24), and
r ≥ 1 an integer. Then, there exists an s such that

m∑

i=1

∏m
j=1 sj

si
= pr,

and
∏m

i=1 si is a nonresidue modulo p.

Proof. We consider the following three cases.
(A) When p ≡ 3 (mod 4), as before, we may use s = {1, pr − 1}.
(B) When p ≡ 5 (mod 8), use s = {1, 1, pr−1

2 }. Since p ≡ 1 (mod 4), the
product s1s2s3 is a nonresidue modulo p iff 2 is a nonresidue modulo
p—which is the case when p ≡ 5 (mod 8).

(C) When p ≡ 2 (mod 3), if p ≡ 3 (mod 4), we are in the first case above.
Otherwise, we have p ≡ 1 (mod 4), and 2 is a nonresidue modulo p.
Choose s = {1, 1, pr−1

2 } as before.
The only remaining possibility after eliminating these three cases is p ≡ 1

(mod 24). �
Remark 3.11. Proposition 3.10 shows that we could provide an unconditional
proof of Theorem 1.2 if we could show that Proposition 3.6 holds for all primes
p ≡ 1 (mod 24). In fact, computer search has verified that the proposition
holds for all such primes smaller than 109. The code is available upon request
of the authors.
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Proof of Theorem 1.2. By Corollary 3.3, Jac(Bpr ) ∼= Z/prZ with the residue
pairing. By Propositions 3.1 and 3.10, for any odd prime p not congruent to
1 (mod 24) and integer r ≥ 1, there exists an s such that Jac(Bs) ∼= Z/prZ

with the nonresidue pairing. By Propositions 3.6 and 3.9, if we assume GRH,
then, for any prime p > 109 and integer r ≥ 1, there exists an s such that
Jac(Bs) ∼= Z/prZ with the nonresidue pairing. Finally, the computer search
referenced in Remark 3.11 shows that, for all primes p ≡ 1 (mod 24), p < 109,
there exists an s such that Jac(Bs) ∼= Z/prZ with the nonresidue pairing.
Using the wedge sum construction, we may obtain all groups with pairing of
odd order, as desired. �

4. 2-Groups with Pairing

We now turn to the task of constructing graphs G for which Jac(G) ∼=
((Z/2rZ)k, 〈·, ·〉) for given positive integers r and k, and pairing 〈·, ·〉. For each
of the nonexceptional pairings on Z/2rZ, we find a graph whose Jacobian is
isomorphic to Z/2rZ with the given pairing.

4.1. Multicycle Graphs

In addition to the subdivided banana graphs of Sect. 3.1, we will require one
more construction.

Construction 2. Let s = (s1, . . . , sm) be a tuple of positive integers. Construct
the s-multicycle graph Cs on the vertices v1, . . . , vm by introducing si edges
between vi and vi+1 (here, i is taken mod m) (see Fig. 3).

Note that the graphs Bs and Cs are planar duals of each other, and thus,
by Theorem 2.1, Jac(Bs) ∼= Jac(Cs) as groups, but not necessarily as groups
with pairing (see Fig. 4).

We now show that all of the cyclic 2-groups with nonexceptional pairing
are realizable as Jacobians of graphs.

Theorem 4.1. Let Γ ∼= (Z/2rZ, 〈·, ·〉). Then, there exists a graph G such that
Jac(G) ∼= Γ.

Proof. Observe that, by Corollary 3.3, Jac(B2r ) ∼= A2r and Jac(C2r ) ∼= B2r .
It remains to find constructions for graphs providing the groups C2r and D2r .

v1 v2

v3v4

Figure 3. C(1,3,4,2) multicycle graph
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2r−2
3

2r−2
3

Figure 4. Graphs Bs and Cs, for s = {1, 2, 2r−2
3 }

2r−1
3

2r−1
3

Figure 5. Graphs Bs and Cs, for s = {1, 1, 1, 2r−1
3 }

By Lemma 2.6, it suffices to find graphs G1 and G2, with Jac(G1) ∼=
Jac(G2) ∼= Z/2rZ, such that for some D1 ∈ Jac(G1) and D2 ∈ Jac(G2), we
have

〈D1,D1〉1 =
a

2r

〈D2,D2〉2 =
b

2r
,

where a ≡ 3 (mod 8) and b ≡ −3 (mod 8).
We consider the cases for even and odd r separately. For odd r, let s =

{1, 2, 2r−2
3 }, and let G1 = Bs, G2 = Cs.

Consider a function f : V (Bs) → Z, given by the following:

v0 �→ 0

v′
0 �→ 2

v21 �→ 1

v3j �→ 2n − 4 − j.

If D1 = v31−v0, then div(f) = 2rD1. It follows that 〈D1,D1〉1 = f(v31)
2r =

2r−3
2r , as required.

Now, consider the function f : V (Cs) → Z given by

v0 �→ 0, v1 �→ 2, v2 �→ 3.

If D2 = v2 − v0, then div(f) = 2rD2, so 〈D2,D2〉2 = 3
2r , as desired.

For even r, let s = {1, 1, 1, 2r−1
3 }, and again, let G1 = Bs and G2 = Cs

(Fig. 5).
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Figure 6. Graph B2,2,2

For the banana graph, we see from Proposition 3.1 that Jac(Bs) is cyclic
of order 2r, with pairing

〈x, y〉 =
2r−1

3 xy

2r
.

For the multicycle graph, consider a function f : V (Cs) → Z, defined by
f(vi) = i. If D2 = v3 − v0, then div(f) = −2rD2, and hence, 〈D2,D2〉 = 3

2r ,
and the result follows. �

4.2. 2-Groups with Exceptional Pairings

Each of the above constructions gives a graph with cyclic Jacobian, giving
four of the six generators for 2-groups with pairing. We have a few concrete
results concerning the exceptional pairings. However, we make the following
observation.

Proposition 4.2. For any k ≥ 1, there is no graph G such that Jac(G) ∼= (E2)k.

Proof. This is a result of the characterization of graphs G with Jac(G) ∼=
(Z/2Z)2k, given below in Remark 5.4. Since the Jacobian of a cycle always
gives rise to the group A2, any such graph has Jacobian (A2)2k. �

This result, combined with our failure to find any graph G that yields
the group E2r , leads us to make the following conjecture:

Conjecture 4.3. For any k ≥ 1, there is no graph G such that Jac(G) ∼= (E2r )k.

We note, however, that there do exist examples of graphs G such that a
subgroup H ⊂ Jac(G) (with the restricted pairing) is isomorphic to E2r . For
example, Jac(B2,2,2) ∼= (Z2Z)2 ×Z/3Z, and by inspection, we can see that the
2-part with the restricted monodromy pairing is isomorphic to E2 (Fig 6).

We have even fewer results regarding F2r . We note that the complete
graph K4 is a graph with Jacobian isomorphic to F4, but we were unable to
find the other examples of graphs that provide this pairing.

5. Jacobians of Simple Graphs

In this section, we consider which groups without a specified pairing occur as
Jacobians of simple graphs. If a finite abelian group Γ does not have 2 as an
invariant factor, then it is straightforward to construct a simple graph G such
that Jac(G) ∼= Γ, so this question is only interesting for the groups of the form
(Z/2Z)k × H.
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5.1. Preliminaries for Proof of Theorem 1.5

We first observe that any simple graph that has 2 spanning trees must have
a third. To see this, consider the union of a spanning tree with a single edge
not contained in the spanning tree. This union contains a cycle, and the com-
plement of any edge in this cycle is a spanning tree. Since the graph is simple,
however, this cycle must contain at least three edges.

Since the number of spanning trees is equal to the size of the Jacobian,
there is no simple graph G with Jac(G) ∼= Z/2Z.

Many of our arguments focus on the case where the graph G is bicon-
nected. Recall that a graph G is biconnected if, for any vertex v ∈ V (G), the
induced subgraph on V (G)\{v} is connected. In particular, if G is not bicon-
nected, then, by definition, there is a vertex v such that the induced subgraph
on V (G)\{v} is not connected. The graph G is, therefore, the wedge sum of the
connected components, which implies that Jac(G) splits as a direct product of
Jacobians.

Definition 5.1. Given a graph G, we write μ(G) for the maximum order of an
element of Jac(G), and δ(G) for the maximum valency of a vertex in G. When
the graph G is clear from context, we will simply write δ and μ.

Lemma 5.2. For any biconnected graph G, δ(G) ≤ μ(G). Furthermore, if δ(G) =
μ(G), then G must be the banana graph Bμ.

Proof. The statement is immediate if G consists of a single vertex, so we
assume that G has at least two vertices. Let v be a vertex in V (G) with
valency δ, and let w be a vertex adjacent to v. Consider the divisor D = v−w,
and let m < δ be a positive integer. We apply Dhar’s burning algorithm to
check that mD is w-reduced. From the biconnectivity of G, we deduce that
there is a path from w to each of the neighbors of v that does not contain v.
Thus, each of the neighbors of v is burned. By definition, val(v) > m, so it
is burned, as well. This means that mD cannot be equivalent to 0 as 0 is the
unique reduced divisor equivalent to 0. It follows that D has order at least δ.

In the case that δ = μ, we must have δD ∼ 0. Starting from δD, chip fire
v once to obtain a divisor E. Applying the burning algorithm and the bicon-
nectivity condition once more, we see that v, as well as each of its neighbors,
must be burned, so that E is w-reduced. E must, therefore, be the zero divisor,
which is only possible if the multiplicity of the edge {v, w} is δ, i.e., G is a
banana graph. �

Recall that the genus of a graph G is its first Betti number, given by
g = |E(G)| − |V (G)| + 1.

Corollary 5.3. For any biconnected graph G with genus g and |V (G)| = n:

n ≥ 2g − 2
μ − 2

.

Proof. Let e be the total number of edges in G. We have an inequality

2e =
n∑

i=1

val(vi) ≤
n∑

i=1

δ = n · δ ≤ n · μ.
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Since e = g + n − 1, we see that 2g − 2 ≤ n · (μ − 2). �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let G be a simple graph with Jac(G) ∼= (Z/2Z)k. We
may assume that G has no vertices of valence 1, because the graph obtained by
contracting the edge adjacent to such a vertex has isomorphic Jacobian. If G is
not biconnected, then G decomposes as a wedge sum, and Jac(G) decomposes
as a direct sum of Jacobians, one of which must be isomorphic to (Z/2Z)r for
some positive integer r ≤ k. We may, therefore, assume that G is biconnected.
By Lemma 5.2, it also has no vertices of valence 3 or greater. It follows that
G is a cycle. Since Jac(Cn) ∼= Z/nZ, we must have n = 2, which means that
G cannot be simple. �

Remark 5.4. The proof of Theorem 1.5 also gives a complete characterization
of graphs G with Jac(G) ∼= (Z/2Z)k. In general, we can always obtain such a
graph by the following procedure. Start with a tree T and choose a subset of
k edges of T . Construct a new graph G from T by doubling each edge in this
subset (see Fig. 7).

5.2. Preliminaries: Proof of Theorem 1.6

Our next goal is to generalize Theorem 1.5 to graphs whose Jacobian is of the
form (Z/2Z)k × H. We begin with the following bound on the genus of G.

Proposition 5.5 ([11, Proposition 5.2]). If G is a graph of genus g and Jac(G) ∼=
(Z/2Z)k × H, then g ≥ k.

Applying Corollary 5.3 to this result shows that

|V (G)| ≥ 2k − 2
μ − 2

.

We require the following result about lengths of paths in G.

Lemma 5.6. Let G be a biconnected graph, and suppose that there exists a path
P with vertices {v1, . . . , v�} on G such that val(vi) = 2 for all 1 < i < �. Then,
Jac(G) contains an element of order at least �.

Figure 7. Example of a graph G with Jac(G) ∼= (Z/2Z)6
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Proof. Let m < �, and consider D = v2 − v1. As G is biconnected, there is a
path from v1 to vm+1 that does not contain any of the vertices of P . Dhar’s
burning algorithm shows that vm+1 − v1 is the v1-reduced divisor equivalent
to mD, and hence, mD � 0 for m < �. �

Our approach will now be to establish an upper bound on |V (G)| in terms
of μ and |H|, and then use this to obtain an upper bound on k.

Proposition 5.7. For any finite abelian group H, there exists an integer nH

such that, for any biconnected simple graph G with Jac(G) ∼= (Z/2Z)k ×H, we
have |V (G)| < nH .

Proof. Let U = {u ∈ V (G) : val(u) > 2}. We will first establish a bound on
m = |U |, and then bound |V (G)| in terms of m.

Fix a vertex u ∈ U , and consider the set of divisors U = {ui −u|ui ∈ U}.
For any D1 �= D2 ∈ U, we claim that 2D1 − 2D2 = 2u1 − 2u2 is u2-reduced.
Since G is biconnected, there is a path from u2 to each of the neighbors of
u1 that does not contain u1. Applying Dhar’s burning algorithm, we see that,
since val(u2) > 2, the entire graph will be burned. Therefore, 2D1 − 2D2 is
u2-reduced, and hence, 2D1 � 2D2.

We now define a map

ϕ : Jac(G) → Jac(G)
D �→ 2D.

By the above, we have that the restriction of ϕ to U is injective. Further-
more, since |im(ϕ)| ≤ |H|, we see that m ≤ |H|.

We now wish to bound |V (G)| in terms of m. To do so, we construct a
new graph G′ from G, according to the following algorithm.

1. Choose any vertex of G of valency 2. Delete it and draw an edge between
its neighbors.

2. Repeat until there are no 2-valent vertices remaining.
Note that even if G is simple, G′ need not be. It is clear, however, that

G and G′ have the same number of vertices with valency greater than 2, and
that δ(G) = δ(G′).

By Lemma 5.2, we must have that e′ = |E(G′)| is at most m · μ (since,
otherwise, there would necessarily be a vertex of G with valency greater than
δ). Each 2-valent vertex of G is uniquely associated with some edge of G′. If
there are more than (e′ · μ) divalent vertices in G, then at least μ of them are
associated with a single edge of G′. In this case, G would contain a path P of
length greater than μ, where each vertex of P has valency 2. This contradicts
Lemma 5.6, so we have the following:

|V (G)| − m < mμ2.

If we let nH = |H|(1 + μ2), then |V (G)| < nH (Fig 8). �
Applying Corollary 5.3 and Proposition 5.5, we see that, for sufficiently

large k, we must have |V (G)| > nH . This, in turn, implies that, for sufficiently
large k, (Z/2Z)k ×H is not the Jacobian of any biconnected simple graph. We
will use this fact to show that this result holds generally, for all simple graphs.
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→ →

Figure 8. Transformation G �→ G′

Proof of Theorem 1.6. We proceed by induction on |H|. When |H| = 1 or
2, Theorem 1.5 gives the bound kH = 1. For |H| ≥ 3, there must exist (by
Proposition 5.7) an integer k′ such that, if k > k′ and Jac(G) ∼= (Z/2Z)k × H,
then G is not biconnected.

By the inductive hypothesis, for any proper subgroup H ′ ⊂ H, there
exists an integer k(H ′) such that for all k > k(H ′), no simple graph G′ has
Jac(G′) ∼= (Z/2Z)k × H ′. Now, since H is finite, there are finitely many pairs
of nontrivial proper subgroups H1,H2 ⊂ H such that H1 × H2

∼= H. Define

k′′ = max{k(H1) + k(H2) : H1,H2 nontrivial,H1 × H2
∼= H}.

Now, let kH = max(k′, k′′). We wish to show that, for all k > kH , if
Jac(G) ∼= (Z/2Z)k × H, then G is not simple. Let G be a graph with this
Jacobian, and let k > kH . Since k > k′, G is not biconnected, so it must be
the wedge sum of two graphs G1 and G2. There must then exist integers k1, k2

with k1 + k2 = k and groups H1,H2 with H1 × H2
∼= H such that

Jac(G1) ∼= (Z/2Z)k1 × H1,

Jac(G2) ∼= (Z/2Z)k2 × H2.

Without loss of generality, we may assume that neither G1 nor G2 is a
tree, so that Jac(G1) and Jac(G2) are both nontrivial. If either H1 or H2 are
trivial, then G1 (resp. G2) would have Jacobian isomorphic to (Z/2Z)k for
k > 0, contradicting Theorem 1.5.

Finally, since k1 + k2 = k > k′′ ≥ k(H1) + k(H2), we must have that
either k1 > k(H1) or k2 > k(H2). It follows that either G1 or G2 is not simple,
so G is not simple. �

5.3. Further Queries

Analysis of the proof of Theorem 1.6 suggests that, if H ∼= Z/prZ for some
prime p, then kH = O(|H|p3). In practice, it seems that much better bounds
should hold. For instance, we were unable to find any simple graph G where
Jac(G) ∼= (Z/2Z)k × H for any k > |H|.

In some cases, it is possible to directly verify that certain groups do
not arise as the Jacobian of any simple graph. Recall that a graph is 2-edge-
connected if it remains connected after the deletion of any edge. For a given
m, while there are infinitely many isomorphism classes of simple graphs with
fewer than m spanning trees, at most finitely many of these classes represent
2-edge-connected graphs. This results from the fact that, for any vertex v0 on
a 2-edge-connected graph, any divisor of the form v − v0 is v0-reduced, and
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hence, there are at least as many spanning trees on the graph as there are
vertices.

By contracting bridges, any graph G may be uniquely associated with
a 2-edge-connected graph with isomorphic Jacobian. For a given group H,
therefore, it is possible to compute the Jacobian of all 2-edge-connected simple
graphs with at most |H| spanning trees, and verify that H does or does not
occur.

Computer searches of this nature have led to the following:

Proposition 5.8. The following groups are not isomorphic to the Jacobian of
any simple graph:

• Z/2Z × Z/4Z,
• (Z/2Z)2 × Z/4Z,
• Z/2Z × (Z/4Z)2.

The key fact in the proof of the nonoccurrence of groups with many
factors of Z/2Z seems to be the requirement that G is biconnected, rather
than that G is simple. It has been shown that, asymptotically, the probability
that the Jacobian of a random graph is cyclic is relatively high [5]. We expect
that the Jacobians of most graphs have a small number of invariant factors.
Since random graphs are highly connected, we conjecture the following.

Conjecture 5.9. For any positive integer n, there exists kn such that if k > kn,
there is no biconnected graph G with Jac(G) ∼= (Z/nZ)k.

The conjecture follows from our results for n = 3. To see this, observe
from Lemma 5.2 that the only biconnected graphs with Jacobian (Z/3Z)k are
the 3-cycle and the 3-banana. In this case, we have k3 = 1.
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