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Abstract

We use geometric invariant theory (GIT) to construct a large class of compactifications of the moduli
space M0,n. These compactifications include many previously known examples, as well as many new ones.
As a consequence of our GIT approach, we exhibit explicit flips and divisorial contractions between these
spaces.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The moduli spaces of curves Mg,n and their Deligne–Mumford compactifications Mg,n are
among the most ubiquitous and important objects in algebraic geometry. However, many ques-
tions about them remain wide open, including ones that Mumford asked several decades ago
concerning various cones of divisors [26,14]. While exploring this topic for M0,n, Hu and Keel
showed that for a sufficiently nice space—a so-called Mori dream space—understanding these
cones and their role in birational geometry is intimately related to variations of geometric in-
variant theory (GIT) quotients [32,7,18]. Although it remains unsettled whether M0,n is a Mori
dream space for n� 7, the underlying philosophy is applicable nonetheless.

In this paper we explore the birational geometry of M0,n and illustrate that VGIT plays a
significant role. We construct a family of modular compactifications of M0,n obtained as GIT
quotients parameterizing n-pointed rational normal curves and their degenerations in a projective
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space. These compactifications include M0,n, all the Hassett spaces M0,�c , all the previously
constructed GIT models, and many new compactifications.

1.1. The setup

The Chow variety of degree d curves in Pd has an irreducible component parameterizing
rational normal curves and their limit cycles. Denote this by Chow(1, d,Pd) and consider the
locus

Ud,n := {
(X,p1, . . . , pn) ∈ Chow

(
1, d,Pd

) × (
Pd

)n ∣∣ pi ∈ X ∀i
}
.

There is a natural action of SL(d + 1) on Ud,n, and the main objects of study in this paper are
the GIT quotients Ud,n//SL(d + 1) for n � 3. These depend on a linearization L ∈ Qn+1

>0 which
can be thought of as assigning a rational weight to the curve and each of its marked points.

A preliminary stability analysis reveals that every singular semistable curve is a union of
rational normal curves of smaller degree meeting at singularities that are locally a union of coor-
dinate axes (Corollary 2.4). By considering a certain class of one-parameter subgroups, we derive
bounds on the weight of marked points allowed to lie at these singularities and in various linear
subspaces (see Section 2.3). Moreover, we show in Proposition 2.10 that a rational normal curve
with distinct marked points is stable for an appropriate range of linearizations, so there is a con-
vex cone with cross-section �◦ ⊂Qn+1 parameterizing GIT quotients that are compactifications
of M0,n (cf. Section 2.5). These are related to the Deligne–Mumford–Knudsen compactification
as follows:

Theorem 1.1. Let d � 1 and L ∈ �◦. Then:

(1) The GIT quotient Ud,n//LSL(d + 1) is a compactification of M0,n.
(2) There is a regular birational morphism

φ : M0,n → Ud,n//L SL(d + 1)

which preserves M0,n.

Our technique for proving this is to take an appropriate SL(d + 1)-quotient of the Kontsevich
space M0,n(P

d , d) so that every DM-stable curve maps, in a functorial manner, to a GIT-stable
curve in Pd .

1.2. Chambers, walls, and flips

For each fixed d , the space of linearizations �◦ admits a finite wall and chamber decompo-
sition by the general results of VGIT [7,32]. This endows the birational models we obtain with
a rich set of interrelations. For instance, the quotients corresponding to open chambers map to
the quotients corresponding to adjacent walls, and whenever a wall is crossed there is an induced
rational map which is frequently a flip. We undertake a careful analysis of this framework in the
context of Ud,n and provide a modular description of the maps that arise.

There are two types of walls in the closure of �◦: interior walls corresponding to changes
in stability conditions between open chambers, and exterior walls corresponding to semi-ample
linearizations or linearizations with empty stable locus.
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Our main results concerning the VGIT of Ud,n are the following:

• we list all of the GIT walls;
• we classify the strictly semistable curves corresponding to a wall between two chambers and

determine the ones with closed orbit;
• we provide necessary and sufficient conditions for the map induced by crossing an interior

wall to be i) a divisorial contraction, ii) a flip, or iii) to contract a curve;
• we describe the morphism corresponding to each exterior wall.

Precise statements are provided in Section 5 and Section 6. The flips we obtain between various
models of M0,n are quite novel; in fact, it appears that no flips between moduli spaces of pointed
genus zero curves have appeared previously in the literature.1 We hope that these can be used
to illuminate some previously unexplored Mori-theoretic aspects of the birational geometry of
M0,n. In particular, we note that the existence of a modular interpretation of these flips, and of
the other VGIT maps, is reminiscent of the Hassett–Keel program which aims to construct log
canonical models of Mg through a sequence of modular flips and contractions.

1.3. Hassett’s weighted spaces

To illustrate the significance of our unified GIT construction of birational models, consider the
Hassett moduli spaces M0,�c of weighted pointed rational curves [16]. For a weight vector �c =
(c1, . . . , cn) ∈ Qn

>0 with
∑

ci > 2, this space parameterizes nodal rational curves with smooth
marked points that are allowed to collide if their weights add up to at most 1. Hassett showed that
whenever the weights are decreased, e.g. �c′ = (c′

1, . . . , c
′
n) with c′

i � ci , there is a corresponding
morphism M0,�c → M0,�c′ . It has since been discovered that these morphisms are all steps in
the log minimal model program for M0,n. Specifically, the third author shows in [25] that each
Hassett space M0,�c is the log canonical model of M0,n with respect to the sum of tautological
classes ψi weighted by �c.

If M0,n is indeed a Mori dream space, then by the results of [18] it would be possible to obtain
all log canonical models through VGIT. Although proving this seems a lofty goal, we are able to
deduce the following from our present GIT construction:

Theorem 1.2. For each fixed n� 3, there exists d � 1 such that every Hassett space M0,�c arises
as a quotient Ud,n//SL(d + 1). Consequently, the log minimal model program for M0,n with
respect to the ψ -classes can be performed entirely through VGIT.

1.4. Modular compactifications

In the absence of strictly semistable points, each birational model Ud,n//SL(d + 1) is itself a
fine moduli space of pointed rational curves. Moreover, this modular interpretation extends that
of the interior, M0,n. A formalism for such compactifications, in any genus, has been introduced
by Smyth in [31]. The basic idea is to define a modular compactification to be an open substack
of the stack of all smoothable curves that is proper over SpecZ. Smyth shows that there are com-
binatorial gadgets, called extremal assignments, that produce modular compactifications—and

1 That is, a flip in the Mori-theoretic sense of a relatively anti-ample divisor becoming relatively ample; see [1, Theorem
7.7] for an example of a generalized flip between compactifications.
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that in genus zero, they produce all of them. This result can be thought of as a powerful step
toward understanding the modular aspects of the birational geometry of M0,n. What remains is
to determine the maps between these modular compactifications, and for this we can apply our
GIT machinery.

In Proposition 5.7, we identify the extremal assignment corresponding to each GIT lineariza-
tion without strictly semistable points. Although this does not yield all modular compactifications
(cf. Section 7.5), it does yield an extensive class of them. For linearizations that admit strictly
semistable points, the corresponding stack-theoretic quotients [Uss

d,n/SL(d + 1)] typically are
non-separated Artin stacks—so they are not modular in the strict sense of Smyth. However, they
are close to being modular in that they are weakly proper stacks (as in [2]) parameterizing certain
equivalence classes of pointed rational curves. One might call these “weakly modular” compact-
ifications.

Recasting the results of Section 1.2 in this light, we begin to see an elegant structure emerge:
Every open GIT chamber in �◦ corresponds to a modular compactification of M0,n, whereas the
walls correspond to weakly modular compactifications. The wall-crossing maps yield relations
between the various Smyth spaces that arise in our GIT construction. In other words, the GIT
chamber decomposition determines which modular compactifications should be thought of as
“adjacent” in the space of all such compactifications.

1.5. Previous constructions

In the early 90s, Kapranov introduced two constructions of M0,n that have since played an
important role in many situations. He showed that M0,n is the closure in Chow(1, n − 2,Pn−2)

of the locus of rational normal curves passing through n fixed points in general position [20].
There exist linearizations such that Un−2,n//SL(n − 1) ∼= M0,n, so setting d = n − 2 in our
construction yields a similar construction to Kapranov’s—except that instead of fixing the points,
we let them vary and then quotient by the group of projectivities. Kapranov also showed that
M0,n is the inverse limit of the GIT quotients (P1)n//SL(2), which are precisely the d = 1 case
of our construction [19]. So in a sense, our construction is inspired by, and yields a common
generalization of, both of Kapranov’s constructions.

Remark 1.3. Kapranov showed that for both of his constructions, one could replace the rele-
vant Chow variety with a Hilbert scheme and the construction remains. Similarly, we could have
used a Hilbert scheme to define a variant of the incidence locus Ud,n. By Corollary 2.4, how-
ever, every GIT-semistable curve in Ud,n is reduced, so the Hilbert–Chow morphism restricts to
an isomorphism over the semistable locus. Therefore, using an asymptotic linearization on the
Hilbert scheme would yield GIT quotients isomorphic to those we consider here with the Chow
variety.

The GIT quotients (P1)n//SL(2) have made numerous appearances in the literature beyond
Kapranov’s inverse limit result—they are even included in Mumford’s book [27] as “an elemen-
tary example” of GIT. The papers [30,12] introduce and investigate the d = 2 case of the GIT
quotients in this paper. In [11], the first author introduces and studies GIT quotients parameter-
izing the configurations of points in projective space that arise in Ud,n, for 1 � d � n − 3. These
can be viewed as a special case of the current quotients obtained by setting the linearization on
the Chow factor to be trivial. In fact, the GIT quotients studied here appear to include as special
cases all GIT quotients of pointed rational curves that have previously been studied.
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1.6. Outline

Section 2: We explain the GIT setup and prove some preliminary results. Among these is the
fact that all GIT quotients Ud,n//SL(d + 1) with linearization in �◦ are compactifications of
M0,n (Proposition 2.10).

Section 3: We develop the main tool for studying semistability in these quotients, a weight func-
tion that controls the degrees of components of GIT-stable curves. Using this function we
explicitly determine the GIT walls and chambers (Proposition 3.11).

Section 4: We show that the GIT quotients Ud,n//SL(d + 1) always receive a birational mor-
phism from M0,n. This map factors through a Hassett space M0,�c for a fixed weight datum
�c determined by the linearization (Proposition 4.8).

Section 5: We provide a modular description of all the GIT quotients Ud,n//SL(d + 1) (Theo-
rem 5.8).

Section 6: We describe the rational maps between these spaces arising from variation of GIT.
We provide conditions for such a map to be a divisorial contraction (Corollary 6.10), a flip
(Corollary 6.11), or to contract a curve (Proposition 6.12).

Section 7: We construct several explicit examples of moduli spaces that arise from our GIT con-
struction. We show that every Hassett space M0,�c , including M0,n, can be constructed in this
way (Theorem 7.1) and demonstrate an example of variation of GIT for M0,9 (Section 7.3).
We further demonstrate an example of a flip between two compactifications of M0,n.

2. GIT Preliminaries

2.1. The cone of linearizations

We are interested in the natural action of SL(d + 1) on Ud,n ⊆ Chow(1, d,Pd)× (Pd)n. Since
SL(d + 1) has no characters, the choice of a linearization is equivalent to the choice of an ample
line bundle. Each projective space Pd has the hyperplane class OPd (1) as an ample generator
of its Picard group. The Chow variety has a distinguished ample line bundle OChow(1) coming
from the embedding in projective space given by Chow forms. Therefore, by taking external
tensor products we obtain an Nn+1 of ample line bundles on Chow(1, d,Pd) × (Pd)n, which we
then restrict to Ud,n.

It is convenient to use fractional linearizations by tensoring with Q. Moreover, since stability
is unaffected when a linearized line bundle is replaced by a tensor power, we can work with a
transverse cross-section of the cone of linearizations:

� :=
{

(γ, c1, c2, . . . , cn) ∈Qn+1
�0

∣∣∣ (d − 1)γ +
n∑

i=1

ci = d + 1

}
.

As we will see (Corollary 2.6), this ensures all ci � 1 whenever the semistable locus is nonempty.
This allows us to relate our construction to previous GIT constructions as well as Hassett’s
spaces, where the point weights are similarly bounded by 1. We will later restrict to the case
that γ < 1 and ci < 1 for all i. Note that this forces n� 3.

2.2. The Hilbert–Mumford numerical criterion

Let λ : C∗ → SL(d + 1) be a one-parameter subgroup. As in [26, 2.8], observe that λ is

conjugate to a subgroup of the form diag(tri−k), where r0 � r1 � · · · � rd = 0 and k =
∑

ri .

d+1



N. Giansiracusa et al. / Advances in Mathematics 248 (2013) 242–278 247
Choose new coordinates xi on Pd for which λ takes this form. Given a variety X ⊆ Pd , let R be
its homogeneous coordinate ring and I ⊆ R[t] the ideal generated by {t ri xi}0�i�d . Following
[29, Lemma 1.3], we denote by eλ(X) the normalized leading coefficient of dim(R[t]/Im)m,
where R[t] = ⊕∞

i=1 Ri[t] is the grading on R[t] and the normalized leading coefficient of a
polynomial

∑N
i=0 aix

i is N !aN .
The following result is a crucial first step toward the GIT stability analysis conducted subse-

quently:

Proposition 2.1. A pointed curve (X,p1, . . . , pn) ∈ Ud,n is semistable with respect to the lin-
earization (γ, c1, . . . , cn) ∈ � if, and only if, for every nontrivial 1-PS λ with weights ri as
above,

γ eλ(X) +
∑

cieλ(pi) � (1 + γ )
∑

ri .

It is stable if and only if these inequalities are strict.

Proof. A pointed curve (X,p1, . . . , pn) is stable (resp. semistable) if and only if, for every 1-PS
λ, the Hilbert–Mumford index μλ(X,p1, . . . , pn) is negative (resp. nonpositive). By [26, Theo-
rem 2.9] and its proof, we see that for the linearization (γ, �0) we have

μλ(X) = γ

(
eλ(X) − 2d

d + 1

∑
ri

)
.

Similarly, for the linearization (0, �c), we have

μλ(p1, . . . , pn) =
∑

cieλ(pi) −
∑

ci

d + 1

∑
ri .

By the linearity of the Hilbert–Mumford index, we therefore have

μλ(X,p1, . . . , pn) = γ eλ(X) +
∑

cieλ(pi) −
(

2d

d + 1
γ +

∑
ci

d + 1

)∑
ri

= γ eλ(X) +
∑

cieλ(pi) − (1 + γ )
∑

ri ,

where the last equality follows from the assumption that the linearization vector lies in the cross-
section � (cf. Section 2.1). �
2.3. Destabilizing one-parameter subgroups

There is one particularly simple type of 1-PS that is sufficient for most of our results.

Proposition 2.2. Consider the k-dimensional linear subspace V := V (xk+1, xk+2, . . . , xd) ⊂ Pd ,
and let λV be the 1-PS with weight vector (1,1, . . . ,1,0, . . . ,0), where the first k +1 weights are
all one. For X ∈ Chow(1, d,Pd), write X = X(V ) ∪ Y , where X(V ) is the union of irreducible
components of X contained in V . Then X is semistable with respect to λV if and only if

γ
(
2 degX(V ) + eλ(Y )

) +
∑
pi∈V

ci � (k + 1)(1 + γ ).
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Proof. This follows from Proposition 2.1 and [29, Lemma 1.2]. �
In most cases we will take V to be a subspace containing some component of X, with each of

the other irreducible components of X meeting this subspace transversally. In this case, eλ(Y ) =∑
Z⊂Y |Z ∩ V |, where the sum is over the irreducible components of Y .
We first consider the extreme cases k = d − 1 and k = 0. The former leads to instability of

degenerate curves, whereas the latter leads to upper bounds on the weight of marked points at
smooth and singular points of semistable curves.

Proposition 2.3. A pointed curve (X,p1, . . . , pn) ∈ Ud,n is unstable if X is contained in a hy-
perplane Pd−1 ⊂ Pd .

Proof. We may assume that Pd−1 = V (xd). Consider the 1-PS in Proposition 2.2 with V :=
Pd−1. Clearly X(V ) = X, Y = ∅, and

∑
pi∈V ci = ∑n

i=1 ci = d + 1 − (d − 1)γ , so

γ
(
2 degX(V ) + eλ(Y )

) +
∑
pi∈V

ci = 2dγ + (d + 1) − (d − 1)γ

= (d + 1)(1 + γ ) > d(1 + γ ),

hence λV destabilizes (X,p1, . . . , pn). �
Consequently, GIT-semistable curves are geometrically quite nice:

Corollary 2.4. A semistable pointed curve (X,p1, . . . , pn) has the following properties:

(1) Each irreducible component is a rational normal curve in the projective space that it spans.
(2) The singularities are at worst multinodal (analytically locally the union of coordinate axes

in Ck).
(3) Every connected subcurve of degree e spans a Pe.

Proof. It is proved in [3, Lemma 13.1] that these properties hold for all non-degenerate curves
of degree d in Pd . �

By setting k = 0 in Proposition 2.2, we obtain the following:

Proposition 2.5. The total weight of the marked points at a singularity of multiplicity m on a
GIT-stable curve cannot exceed 1 − (m − 1)γ .

Proof. Suppose the singularity occurs at the point p = (1,0, . . . ,0) and set k = 0. Then
X(p) = ∅ and eλ(Y ) = μpX = m. If X is stable, then by Proposition 2.2 we have

γm +
∑
pi=p

ci < 1 + γ,

from which the result follows. �
Corollary 2.6. The total weight of the marked points at a smooth point, or indeed at any point,
of a GIT-stable curve cannot exceed 1.
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Corollary 2.7. A GIT-stable curve cannot have a singularity of multiplicity m unless γ < 1
m−1 .

Proof. This follows from the fact that the minimum total weight at a point is zero. �
Corollary 2.8. If γ � 1, then every GIT-stable curve is smooth.

It would be nice at this point to have a result saying that a pointed curve (X,p1, . . . , pn) ∈
Ud,n is semistable if and only if, for all subcurves Y ⊂ X, the degree of Y satisfies some formula
involving γ , the weights of the marked points on Y , and the number of intersection points |Y ∩
X � Y |. As we will see in Proposition 3.5, such a formula exists in the case that Y is a tail of X

– that is, when |Y ∩ X � Y | = 1. When |Y ∩ X � Y | > 1, however, the degree of Y also depends
on the distribution of marked points amongst the connected components of X � Y , as will be
shown in Proposition 3.6. This is enough to describe a satisfactory stability condition, as we do
in Proposition 3.7.

2.4. Existence of a stable point

To ensure that GIT quotients of Ud,n are compactifications of M0,n, it suffices to prove that
rational normal curves with configurations of distinct points are stable. We prove this in sev-
eral steps. By Corollary 2.8, the quotients with γ � 1 are rather uninteresting, so we assume
henceforth that γ < 1. We begin with the simple case where all of the weights ci are relatively
small.

Lemma 2.9. Let (γ, �c) ∈ � satisfy γ < 1 and 0 < ci < 1 − γ ∀i. Then every non-degenerate
smooth rational curve with distinct marked points is stable.

Proof. Let X ⊂ Pd be a rational normal curve and p1, . . . , pn distinct points of X. Since all
rational normal curves in Pd are projectively equivalent, it suffices to show that (X,p1, . . . , pn) ∈
Ud,n is stable for the given linearization. We will show that (X,p1, . . . , pn) is stable with respect
to the linearization (0, �c) and semistable with respect to the linearization (γ, �0). It then follows
from the Hilbert–Mumford numerical criterion that (X,p1, . . . , pn) is stable with respect to the
linearization (γ, �c).

A rational normal curve has reduced degree 1, which is the minimum possible amongst all
non-degenerate curves [26, Theorem 2.15]. It follows that X is linearly semistable, hence by [26,
Theorem 4.12] it is semistable with respect to the linearization (γ, �0). Now, let V ⊂ Pd be a
k-dimensional linear space. Since any collection of n distinct points on a rational normal curve
are in general linear position, we see that∑

pi∈V

ci �
∑
pi∈V

(1 − γ ) � (k + 1)(1 − γ ) < (k + 1)

∑n
i=1 ci

d + 1
.

Hence (p1, . . . , pn) is stable for the linearization (0, �c), by [7, Example 3.3.24]. �
We now tackle the more general case.

Proposition 2.10. Let (γ, �c) ∈ � satisfy γ < 1 and 0 < ci < 1, i = 1, . . . , n. Then every smooth
rational curve with distinct marked points is stable, hence Ud,n//γ,�c SL(d +1) compactifies M0,n.
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Proof. If ci < 1−γ for all i, then the result holds by Lemma 2.9 above. We prove the remaining
cases by induction on d , the case d = 2 having been done in [12]. Let (X,p1, . . . , pn) be smooth
with distinct points, and assume without loss of generality that c1 � ci for all i and that c1 >

1 − γ . Let λ :C∗ → SL(d + 1) be a 1-PS acting with normalized weights r0 � r1 � · · ·� rd = 0
in the sense of Section 2.2, and write xi for homogeneous coordinates on Pd on which λ acts
diagonally. We show in Lemma 2.11 below that it is sufficient to consider the situation p1 =
(1,0,0, . . . ,0), so let us consider this case now.

Let fi be the restriction of xi to X, which is a homogeneous polynomial of degree d on
X ∼= P1. Write π(X) ⊂ Pd−1 for the image of X under linear projection from p1 and λ(d) :
C∗ → SL(d) for the 1-PS with weights ri , i > 0, diagonalized with respect to the homogeneous
coordinates xi , i > 0. By changing homogeneous coordinates [x, y] on P1, we assume that p1 is
the image of the point [0 : 1] ∈ P1 under the map P1 → Pd given by the fi ’s. Notice that

eλ(d)

(
π(pi)

) = min
{
rj

∣∣ j > 0, fj (pi) �= 0
}
� min

{
rj

∣∣ fj (pi) �= 0
} = eλ(pi),

eλ(d)

(
π(p1)

) = ra := min

{
rj

∣∣∣ j > 0,
fj

x
(p1) �= 0

}
� r0.

We now show that

eλ(X) � eλ(d)

(
π(X)

) + r0 + ra.

To see this, note that the polynomials gi := fi

x
for i > 0 form a basis for homogeneous polyno-

mials of degree d − 1. Let J denote the ideal in C[x, y] generated by the fi ’s for all i > 0 and
J ′ the ideal in C[x, y, t] generated by the t ri fi ’s for all i > 0. Then Jm consists of all polyno-
mials that vanish at [0,1] to order at least m, so dimC[x, y]md/Jm = m. Since the polynomials
f k

0 f m−k
a ,1 � k � m each have different order of vanishing at [0,1], they are linearly independent

and hence form a basis for this vector space. Thus, if I is the ideal generated by t ri fi , we see that
the vector space [C[x, y, t]/Im]md , modulo those polynomials that vanish at [0,1] to order at
least m, is spanned by the linearly independent polynomials t j f k

0 f m−k
a for j < kr0 + (m− k)ra .

In other words,

dim
(
C[x, y, t]/Im

)
md

� dim
(
C[x, y, t]/(t r0k+ra(m−k)f k

0 f m−k
a , J ′ m))

md

�
m∑

k=1

r0k + ra(m − k) + dim
(
C[x, y, t]/(t ri gi

)m)
m(d−1)

�
(

m + 1

2

)
r0 +

(
m

2

)
ra + dim

(
C[x, y, t]/(t ri gi

)m)
m(d−1)

.

Taking normalized leading coefficients, we obtain the formula above.
It follows that

γ eλ(X) +
n∑

i=1

cieλ(pi) � γ
(
eλ(d)

(
π(X)

) + r0 + ra
) + c1r0 +

n∑
i=2

cieλ(d)

(
π(pi)

)
.

By induction, however, we know that

γ eλ(d)

(
π(X)

) + (
c1 − (1 − γ )

)
ra +

n∑
cieλ(d)

(
π(pi)

)
< (1 + γ )

d∑
rj .
i=2 j=1
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It follows that the expression above is smaller than

(1 + γ )

d∑
j=1

rj − (
c1 − (1 − γ )

)
ra + γ r0 + c1r0 + γ ra � (1 + γ )

d∑
j=0

rj

as desired. The result then follows from Lemma 2.11 below. �
Lemma 2.11. Let X be a smooth rational normal curve, p1, . . . , pn ∈ X distinct, λ : C∗ →
SL(d + 1) a 1-PS, and xi coordinates on Pd so that λ is normalized as in Section 2.2. Further-
more, assume that c1 � ci for all i and c1 > 1 − γ . Then there is a smooth rational normal curve
X′ with n distinct points p′

1, . . . , p
′
n on X′ and 1-PS λ′ such that p′

1 = (1,0, . . . ,0) and

γ eλ(X) +
∑

cieλ(pi) � γ eλ′
(
X′) +

∑
cieλ′

(
p′

i

)
.

Proof. Let Vk ⊂ Pd be the k-dimensional linear space cut out by xk+1 = xk+2 = · · · = xd = 0.
We let k be the smallest integer such that X ∩ Vk is nonempty, and write λ′ for the 1-PS acting
with weights (rk, rk, . . . , rk, rk+1, . . . , rd). Note that

∑n
i=1 cieλ(pi) = ∑n

i=1 cieλ′(pi).
We claim that eλ(X) = eλ′(X) as well. Indeed, let W denote the linear series on X ∼= P1

generated by xk, . . . , xd . By assumption, W is basepoint-free, so it contains a basepoint-free
pencil. Using the basepoint-free pencil trick, we see that the map

W ⊗ H 0(X,O
(
(m − 1)d

)) → H 0(X,O(md)
)

is surjective for all m� 2. By induction on m, the map

Symm−1W ⊗ H 0(X,O(d)
) → H 0(X,O(md)

)
is surjective as well. It follows that dim(R[t]/Im)m depends only linearly on ri for all i < k.
In other words, these ri ’s do not contribute to the normalized leading coefficient, so eλ(X) =
eλ′(X). Moreover, since the first k + 1 weights are same, by using an element g of PGL(d + 1)

which preserves xk+1, . . . , xd , we can take a smooth rational normal curve X′ := g · X such that
eλ′(X) = eλ′(X′) and (1,0,0, . . . ,0) ∈ X′.

Next, relabel the points as follows:

p′
i =

{
(1,0,0, . . . ,0) if i = 1,

p1 if pi = (1,0,0, . . . ,0),

pi otherwise.

Note that
∑n

i=1 cieλ(pi) �
∑n

i=1 cieλ(p
′
i ). In particular, if pi = (1,0,0, . . . ,0) for some i �= 1,

then since c1 � ci and r0 � rj for all j , we have

r0c1 + rkci = (r0 − rk)c1 + rkci + rkc1 � r0ci + rkc1.

This concludes the proof. �
Note that if ci > 1 for any i, then no element of Ud,n is semistable by Corollary 2.6. The

only remaining case, therefore, is when ci = 1 for some i. In this case we will see that every
semistable point is strictly semistable, and the resulting quotient is a compactification of M0,n if
and only if d is larger than the number of i’s for which equality holds. We delay the proof of this
until Section 6.4.
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2.5. The space of effective linearizations

Recall (cf. Section 2.1) that we have been working with the cross-section � of the cone of
linearizations defined by (d − 1)γ + ∑n

i=1 ci = d + 1. As we remarked earlier, the quotients we
are interested in satisfy γ < 1, since otherwise all stable curves are isomorphic to P1. Moreover,
by Corollary 2.6 we can assume that ci � 1 for all i. In fact, by Proposition 2.10 we know that
if ci < 1 for all i then the linearization (γ, �c) is effective, i.e., the semistable locus is nonempty.
To avoid boundary issues such as non-ample linearizations, it is convenient to assume also that
ci > 0 for all i. Therefore, we are led to the following space of effective linearizations:

�◦ :=
{

(γ, c1, . . . , cn) ∈ Qn+1
∣∣∣ 0 < γ < 1, 0 < ci < 1, (d − 1)γ +

n∑
i=1

ci = d + 1

}
.

This is the space of linearizations of most interest to us. By Proposition 2.10, Ud.n//L SL(d + 1)

is a compactification of M0,n for any L ∈ �◦.

3. Degrees of components in stable curves

In this section we apply the stability results of the previous section to get a fairly explicit
description of the pointed curves (X,p1, . . . , pn) corresponding to stable points of Ud,n. Specif-
ically, we show that for a generic linearization, GIT stability completely determines the degrees
of subcurves of X. This is then used to describe the walls in the GIT chamber decomposition
of �◦.

We begin by defining a numerical function that will be useful for describing the degrees of
subcurves. First, some notation: given a linearization (γ, �c) and a subset I ⊂ [n], we set

cI :=
∑
i∈I

ci and c :=
n∑

i=1

ci .

3.1. Weight functions

Consider the function

ϕ : 2[n] × �◦ →Q, ϕ(I, γ, �c) = cI − 1

1 − γ
.

For a fixed linearization (γ, �c) ∈ �◦, we define

σ(I) =
{ �ϕ(I, γ, �c)� if 1 � cI � c − 1,

0 if cI < 1,

d if cI > c − 1.

Before relating this to the degrees of subcurves in GIT stable curves, let us make a few ele-
mentary observations:

Lemma 3.1. For any I ⊂ [n], we have σ(I) ∈ {0,1, . . . , d}. If σ(I) = d , then cI > c − 1.

Proof. It is enough to show that ϕ(I, γ, �c)� d − 1 whenever 1 � cI � c − 1. But in this case we
have
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ϕ(I, γ, �c) = cI − 1

1 − γ
� c − 2

1 − γ
= (d + 1 − (d − 1)γ ) − 2

1 − γ
= d − 1,

so this indeed holds. �
Lemma 3.2. For any collection of disjoint subsets I1, . . . , Im ⊂ [n],

σ

(
m⋃

j=1

Ij

)
�

m∑
j=1

σ(Ij ).

Proof. The statement is trivial for m = 1, so assume m � 2. Note that if σ(Ij ) = 0 for any j ,
then it does not contribute to the sum, so we may ignore it. If there is a j with cIj

> c − 1, then
by the disjointness hypothesis we have cIk

< 1, and hence σ(Ik) = 0, for all k �= j . Therefore,
we are reduced to the case that σ(Ij ) = �ϕ(Ij , γ, �c)� for every j . In this case, since 1

1−γ
� 1, we

have
m∑

j=1

σ(Ij ) =
m∑

j=1

⌈
cIj

− 1

1 − γ

⌉
<

m∑
j=1

(
cIj

− 1

1 − γ
+ 1

)

=
∑m

j=1 cIj
− 1

1 − γ
− m − 1

1 − γ
+ 1 �

∑m
j=1 cIj

− 1

1 − γ

�
⌈∑m

j=1 cIj
− 1

1 − γ

⌉
=

⌈
cI1∪···∪Im − 1

1 − γ

⌉
,

which by definition is σ(
⋃m

j=1 Ij ). �
Perhaps most significantly, σ satisfies a convenient additivity property for most linearizations:

Lemma 3.3. If ϕ(I, γ, �c) /∈ Z for each nonempty I ⊂ [n], then

σ(I) + σ
(
I c

) = d

for each I .

Proof. If cI < 1 then cIc = c − cI > c − 1, so σ(I) + σ(I c) = 0 + d = d . The case cI > c − 1
is analogous, so without loss of generality assume that cI and cIc are between 1 and c − 1. Then

σ
(
I c

) =
⌈

cIc − 1

1 − γ

⌉
=

⌈
(d + 1) − (d − 1)γ − cI − 1

1 − γ

⌉
=

⌈
d − 1 − cI − 1

1 − γ

⌉
= d − σ(I),

where the last equality uses the non-integrality assumption. �
3.2. Degrees of tails

As we show below, the function σ computes the degree of a certain type of subcurve. For
notational convenience, given a marked curve (X,p1, . . . , pn) and a subcurve Y ⊂ X, let us set

ϕ(Y, γ, �c) = ϕ
({i | pi ∈ Y }, γ, �c)

and similarly for σ(Y ).
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Definition 3.4. Let X ∈ Chow(1, d,Pd). A subcurve Y ⊂ X is called a tail if it is connected and
|Y ∩ X\Y | = 1.

We do not require tails to be irreducible. Moreover, the “attaching point” of a tail need not be
a node.

Proposition 3.5. For a fixed (γ, �c) ∈ �◦, suppose that ϕ(I, γ, �c) /∈ Z for any nonempty I ⊂ [n].
If X is a GIT-semistable curve and E ⊂ X a tail, then deg(E) = σ(E).

Proof. Write r := deg(E). The dimension of the linear span of E is r by Corollary 2.4, so we
may assume that E ⊂ V := V (xr+1, . . . , xd) ⊂ Pd . Now

γ
(
2 degX(V ) + eλ(Y )

) +
∑
pi∈V

ci � γ (2r + 1) +
∑
pi∈E

ci,

so by Proposition 2.2 we have∑
pi∈E

ci � (r + 1)(1 + γ ) − γ (2r + 1) = r + 1 − γ r,

or equivalently,

r �
(
∑

pi∈E ci) − 1

1 − γ
.

Since r is a positive integer, it follows that r � σ(E). Note that if σ(E) = d , then r > c−2
1−γ

=
d − 1, so the result still holds in this case.

Now, if E is a tail then so is X\E, hence

deg(X\E) � σ(X\E) � σ
({i|pi /∈ E}).

Thus, by Lemma 3.3, deg(X\E) � d − σ(E). But we know that r + deg(X\E) = d , so the
inequality r � σ(E) also holds. �
3.3. Arbitrary subcurves

Removing an irreducible component from a semistable curve in Chow(1, d,Pd) yields a finite
collection of tails. This holds more generally for any connected subcurve. We can combine this
fact with the above result on tails to deduce the following:

Corollary 3.6. Suppose that ϕ(I, γ, �c) /∈ Z for any ∅ �= I ⊂ [n], and let E ⊆ X be a connected
subcurve of (X,p1, . . . , pn) ∈ Uss

d,n. Then

deg(E) = d −
∑

σ(Y )

where the sum is over all connected components Y of X\E.

Proof. If Y is a connected component of X\E, then it is a tail. It follows from Proposition 3.5
that deg(Y ) = σ(Y ). Since the total degree of X is d , we see that deg(E) = d − ∑

σ(Y ). �
We now have enough information to completely describe stability of pointed curves in Ud,n,

though we postpone the proof of the following result until Section 4.
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Proposition 3.7. Let L = (γ, c1, . . . , cn) ∈ � be such that Uss
d,n(L) = Us

d,n(L). A pointed curve

(X,p1, . . . , pn) ∈ Ud,n is stable with respect to L if and only if X ⊂ Pd is non-degenerate,
for any point p ∈ X with multiplicity m,

∑
pi=p ci < 1 − (m − 1)γ , and for any tail Y ⊂ X,

deg(Y ) = σ(Y ).

3.4. GIT Walls

These results are sufficient to determine the wall and chamber decomposition of �◦. Specifi-
cally, for any integer k with 0 � k � d − 1, the set ϕ(I, ·)−1(k) defines a hyperplane in �◦. Note
that, by additivity,

ϕ(I, ·)−1(k) = ϕ
(
I c, ·)−1

(d − 1 − k),

but otherwise these hyperplanes are distinct.

Lemma 3.8. If (γ, �c) is not contained in any hyperplane of the form ϕ(I, ·)−1(k), then:

(1) An irreducible tail E has at least two distinct marked points on its smooth locus Esm.
(2) An irreducible component E with |E ∩ X\E| = 2 has at least one marked point on Esm.

Proof. Let E ⊂ X be an irreducible tail. Since E has positive degree, by Proposition 3.5
we have σ(E) � 1, so by additivity σ(X\E) � d − 1, and hence by definition we see that∑

pi∈X\E ci � c − 1. By the non-integrality assumption this inequality must be strict, and conse-
quently

∑
pi∈Esm ci > 1. On the other hand, by Corollary 2.6, the sum of the weights at a smooth

point of E cannot exceed 1. It follows that the marked points on E must be supported at 2 or
more points of E other than the singular point.

Similarly, let E ⊂ X be a bridge—a component such that |E ∩ X\E| = 2. Let Y1, Y2 denote
the connected components of X\E. If the smooth part of E contains no marked points, then by
Lemma 3.3 we see that σ(Y1)+ σ(Y2) = d . Again, since E has positive degree, by Corollary 3.6
this is impossible. �
Proposition 3.9. If (γ, �c) is not contained in any hyperplane of the form ϕ(I, ·)−1(k), then every
semistable pointed curve has trivial automorphism group.

Proof. By Corollary 2.4, every semistable curve is a union of rational normal curves meeting in
multinodal singularities. We claim that an automorphism f of a semistable curve (X,p1, . . . , pn)

does not permute its irreducible components nontrivially. Indeed, it is straightforward to see that
if there is a nontrivial permutation of irreducible components of X, then there are two distinct
irreducible tails E1,E2 such that f (E1) = E2. But by (1) of Lemma 3.8, they have marked points
(say p1 and p2) on their smooth parts. This is impossible because f (p1) = p1 ∈ E1. Thus the
automorphism f induces automorphisms of its irreducible components, which are isomorphic
to P1.

It follows that such a curve (X,p1, . . . , pn) has a nontrivial automorphism if and only if it
contains either:
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(1) an irreducible tail E with all marked points of its smooth locus Esm supported on at most
one point, or

(2) an irreducible component E with |E ∩ X\E| = 2 such that Esm contains no marked points.

Both cases are impossible due to Lemma 3.8. �
Corollary 3.10. If (γ, �c) is not contained in any hyperplane of the form ϕ(I, ·)−1(k), then the
corresponding GIT quotient admits no strictly semistable points.

Proof. If Uss
d,n contains strictly semistable points, then some of these points must have positive-

dimensional stabilizer. If (X,p1, . . . , pn) is such a curve, then since X spans Pd by Propo-
sition 2.3, such a stabilizer cannot fix X pointwise. It follows that (X,p1, . . . , pn) admits a
positive-dimensional family of automorphisms, contradicting Proposition 3.9. �
Proposition 3.11. The hyperplanes ϕ(I, ·)−1(k) are the walls in the GIT chamber decomposition
of �◦.

Proof. By Corollary 3.10, if a linearization does not lie on any of these hyperplanes, then it
admits no strictly semistable points. Hence the GIT walls must be contained in these hyperplanes.
To see that each hyperplane ϕ(I, ·)−1(k) yields a wall in �◦, we must show that the stable locus
changes when each such hyperplane is crossed. But it is clear from the definition that the function
σ in Section 3.1 changes along these hyperplanes, so by Proposition 3.5, GIT stability changes
as well. �
4. From Deligne–Mumford to GIT

In this section we prove item (2) of Theorem 1.1, i.e., that the GIT quotients Ud,n//SL(d + 1)

receive a birational morphism from the moduli space of stable curves M0,n. The main tool we
use is the Kontsevich space of stable maps M0,n(P

d , d) [10]. The basic idea is as follows. The
product of evaluation maps yields a morphism M0,n(P

d , d) → (Pd)n. By pushing forward the
fundamental cycle of each curve under each stable map, there is also a morphism M0,n(P

d , d) →
Chow(1, d,Pd). By functoriality, one sees that together these yield a morphism

φ : M0,n

(
Pd , d

) → Ud,n ⊂ Chow
(
1, d,Pd

) × (
Pd

)n
.

This map is clearly SL(d + 1)-equivariant. We prove below that for a general linearization L on
Ud,n, there is a corresponding linearization L′ on M0,n(P

d , d) such that there is an induced

(1) morphism M0,n(P
d , d)//L′ SL(d + 1) → Ud,n//L SL(d + 1), and

(2) isomorphism M0,n(P
d , d)//L′ SL(d + 1) ∼= M0,n.

This is enough to draw the desired conclusion:

Lemma 4.1. If (1) and (2) above hold for all L ∈ �◦ that do not lie on a GIT wall, then for any
L ∈ �◦ there is a regular birational morphism M0,n → Ud,n//L SL(d + 1).
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Proof. Given L ∈ �◦, we can perturb it slightly to obtain a linearization Lε such that stability
and semistability coincide. By general variation of GIT, there is a birational morphism from the
Lε -quotient to the L-quotient. Using (1) and (2) we then have

M0,n
∼= M0,n

(
Pd , d

)
//L′

ε
SL(d + 1) → Ud,n//Lε SL(d + 1) → Ud,n//LSL(d + 1).

Birationality of this morphism follows from Proposition 2.10. �
4.1. Equivariant maps and GIT

Here we prove a generalized form of the result needed for item (1) above.

Lemma 4.2. Let f : X → Y be a G-equivariant birational morphism between two projective va-
rieties. Suppose X is normal, and let L be a linearization on Y . Then there exists a linearization
L′ on X such that

f −1(Y s(L)
) ⊂ Xs

(
L′) ⊂ Xss

(
L′) ⊂ f −1(Y ss(L)

)
.

Proof. Take an f -ample divisor M , the existence of which is guaranteed by [13, 5.3, 5.5]. Since
X is normal, some integral multiple of M is G-linearized [27, Corollary 1.6], so we may assume
that M is G-linearized. Let L′ = f ∗(Lm) ⊗ M for sufficiently large m. Then L′ is ample and the
above inclusions hold by [17, Theorem 3.11]. �

In particular, if Y s(L) = Y ss(L), then Xs(L′) = Xss(L′) = f −1(Y s(L)).

Corollary 4.3. With the same assumptions as the previous lemma, there is an induced morphism
of quotients

f : X//L′G → Y//LG.

Proof. By Lemma 4.2, we have f (Xss(L′)) ⊂ Y ss(L), so there is a morphism Xss(L′) →
Y//LG. This is G-invariant, so it must factor through the categorical quotient of Xss(L′) by G,
which is precisely the GIT quotient X//L′G. �
4.2. Invariant maps and unstable divisors

In this subsection we address item (2) above. To begin, recall that there is a forgetting-
stabilizing map π : M0,n(P

d , d) → M0,n. Since this is SL(d + 1)-invariant, the universal prop-
erty of categorical quotients implies that there is an induced map

π : M0,n

(
Pd , d

)
//L′ SL(d + 1) → M0,n,

for any linearization L′. The main result here is that if L ∈ �◦ does not lie on a GIT wall and
L′ is as in Lemma 4.2, then this induced quotient morphism is in fact an isomorphism. In what
follows, we always consider a linearization L′ on M0,n(P

d , d)//L′ SL(d + 1) that is of this form,
so that stability and semistability coincide. To show that π is an isomorphism, we show that it
has relative Picard number zero.

We first recall some divisor classes on M0,n(P
d , d). For 0 � i � d and I ⊂ [n], let Di,I be the

closure of the locus of stable maps (f : (C1 ∪ C2,p1, . . . , pn) → Pd) such that
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• the domain of f has two irreducible components C1,C2;
• pj ∈ C1 if and only if j ∈ I ;
• degf∗C1 = i (equivalently, degf∗C2 = d − i).

It is well known that Di,I is codimension one if it is nonempty. By definition, Di,I = Dd−i,I c so
whenever we write down Di,I , we may assume that |I | � n

2 . Note that Di,I = ∅ if and only if
i = 0 and |I | � 1. Also, let

Ddeg = {
f : (C,p1, . . . , pn) → Pd

∣∣ span of f (C) is not Pd
}
,

which is a divisor as well.
First, a couple preliminary results:

Lemma 4.4. For 0 � i � d and I ⊂ [n], if 1 < |I | � n
2 , at most one of Di,I for i = 0,1, . . . , d

can be stable. If |I | � 1, then none of the Di,I are stable.

Proof. By Lemma 4.2 and the stability assumption, to compute stability of x ∈ M0,n(P
d , d), it

suffices to consider the stability of φ(x) ∈ Ud,n.
Choose a general point (f : (C1 ∪ C2,p1, . . . , pn) → Pd) in Di,I . Then f (C1) ⊂ Pd is a

degree i rational normal curve and f (C2) ⊂ Pd is a degree d − i rational normal curve. (If
i = 0, then f (C1) is a point.) By dimension considerations, the linear spans of f (C1) and f (C2)

meet at a unique point, namely f (C1 ∩ C2). By Proposition 3.5, f (C1 ∪ C2) is stable only if
deg(f |C1) = σ(I) and deg(f |C2) = σ(I c), so at most one Di,I , i ∈ {0, . . . , d}, is stable. On the
other hand, if I contains at most 1 marked point, then σ(I) = 0, so Di,I is not stable. �
Lemma 4.5. Let X be a normal projective variety with a linearized SL(n)-action, and suppose
that Xss = Xs . Then

Pic
(
X//SL(n)

)
Q

∼= Pic
(
Xss

)
Q
.

Proof. Since X is normal, by [6, Theorem 7.2] we have a canonical exact sequence

PicSL(n)
(
Xss

) α−→ Pic
(
Xss

) → Pic
(
SL(n)

)
where PicSL(n)(Xss) is the group of SL(n)-linearized line bundles. Thus α is surjective, since
Pic(SL(n)) = 0. Moreover, since Hom(SL(n),C∗) is trivial, by [27, Proposition 1.4] we see that
α is injective. Thus PicSL(n)(Xss) ∼= Pic(Xss).

On the other hand, let PicSL(n)(Xss)0 be the subgroup of SL(n)-linearized line bun-
dles L such that the stabilizer of a point in a closed orbit acts on L trivially. Since any
point over Xss = Xs has finite stabilizer, PicSL(n)(Xss)0 has finite index in PicSL(n)(Xss)

and PicSL(n)(Xss)0
Q

∼= PicSL(n)(Xss)Q. Finally, by Kempf’s descent lemma [8, Theorem 2.3],

Pic(X//SL(n)) ∼= PicSL(n)(Xss)0. In summary, we have a sequence of isomorphisms

Pic
(
Xss

)
Q

∼= PicSL(n)
(
Xss

)
Q

∼= PicSL(n)
(
Xss

)0
Q

∼= Pic
(
X//SL(n)

)
Q
. �

We now prove the main result.

Proposition 4.6. The map π : M0,n(P
d , d)//L′ SL(d + 1) → M0,n is an isomorphism.



N. Giansiracusa et al. / Advances in Mathematics 248 (2013) 242–278 259
Proof. For d = 1, this is exactly [18, Theorem 3.4], since M0,n(P
1,1) ∼= P1[n], the Fulton-

MacPherson space of P1. We prove for d � 2 cases.
The space M0,n(P

d , d) is a normal variety with finite quotient singularities only [10, Theo-
rem 2]. Since π is a birational morphism between two projective varieties, it is projective. Thus
there is a π -ample line bundle A. Since π is a birational morphism between two normal varieties,

π∗ : N1(M0,n)Q → N1(M0,n

(
Pd , d

)
//L′ SL(d + 1)

)
Q

is injective. If π is not an isomorphism, then there is a curve C that is contracted by π . Note that
C · A > 0. This implies that π∗ is not surjective, so to show that π is an isomorphism it suffices
to show that the Picard numbers of both varieties are the same.

By [21], the Picard number of M0,n is 2n−1 − (
n
2

)−1. By [28, Theorem 2], the Picard number
of M0,n(P

d , d), for d � 2, is (d + 1)2n−1 − (
n
2

)
. Therefore, it suffices to show that there are

d · 2n−1 + 1 numerically independent unstable divisors.
Take a partition I � I c of [n]. Among D0,I ,D1,I , . . . ,Dd,I , there are at least d unstable

divisors by Lemma 4.4. It follows from [28, Lemma 1.2.3] that these are all numerically inde-
pendent. Since degenerate curves in Ud,n are unstable by Proposition 2.3, their inverse image
Ddeg is unstable, too. One checks that this divisor is independent of the preceding divisors either
by explicitly constructing a curve in M0,n(P

d , d) or by using the formula for Ddeg in the n = 0
case in [5, Lemma 2.1] and pulling back to M0,n(P

d , d).
Combining this with Lemma 4.5, and writing ρ for the Picard number, we obtain

ρ
(
M0,n

(
Pd , d

)
//L′ SL(d + 1)

) = ρ
(
M0,n

(
Pd, d

)s)
� (d + 1)2n−1 −

(
n

2

)
− d2n−1 − 1

= 2n−1 −
(

n

2

)
− 1 = ρ(M0,n).

The opposite inequality holds due to the existence of the birational morphism π . This completes
the proof. �

From the idea of the proof of Proposition 4.6, we can obtain a proof of the stability result in
Proposition 3.7.

Proof of Proposition 3.7. Suppose that (X,p1, . . . , pn) ∈ Uss
d,n(L). Then X ⊂ Pd is non-

degenerate by Proposition 2.3. For any point p ∈ X of multiplicity m,
∑

pi=p ci < 1 − (m − 1)γ

by Proposition 2.5. Also, for any tail Y ⊂ X, deg(Y ) = σ(Y ) by Proposition 3.5.
Conversely, let (X,p1, . . . , pn) ∈ Ud,n be a pointed curve satisfying the assumptions above.

Let (f : (C,x1, . . . , xn) → Pd) ∈ M0,n(P
d , d) be a stable map such that φ(f ) = (X,p1, . . . , pn)

where φ : M0,n(P
d , d) → Ud,n be the cycle map. For an irreducible component D ⊂ C,

if f (D) ⊂ X is not a point, we claim that D has at least three special points (singular
points and marked points). Indeed, if Y = f (D) is a tail, then σ(f (D)) � 1 or equivalently,∑

pi∈f (D)sm ci > 1 because
∑

pi∈f (D) ci > 2 − γ and on the unique singular point p of f (D),∑
pi=p ci < 1 − γ by Proposition 2.5. Since the sum of the weights at a smooth point is at most

one, there must be at least two marked points on f (D)sm. Similarly, if f (D) is a bridge, f (D)

can be regarded as a complement of two (possibly reducible) tails E1 and E2. If there is no
marked points on f (D)sm, then
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σ(E1) + σ(E2) = σ
({pi ∈ E1}

) + σ
({pi ∈ E2}

) = d

by Lemma 3.3, thus f (D) must be a point. It follows that a bridge f (D) must have a marked
point on f (D)sm. In the remaining cases, f (D) has at least three singular points.

If f (D) is a point, there exist at least three special points since f is a stable map. Thus the
domain (C,x1, . . . , xn) is already an n-pointed stable rational curve. So π(f ) = (C,x1, . . . , xn)

for π : M0,n(P
d , d) → M0,n.

Since π : M0,n(P
d , d)ss(L′) → M0,n is surjective, there exists(

f̃ : (C′, x′
1, . . . , x

′
n

) → Pd
) ∈ π−1(C,x1, . . . , xn) ∩ M0,n

(
Pd , d

)ss(
L′).

We claim that C′ ∼= C and f̃ ∼= f up to projective equivalence. If C′ � C, then there exists a
nontrivial contraction c : C′ → C and a contracted irreducible component D′ ⊂ C′ which has at
most two special points. Note that for every (possibly reducible) tail D ⊂ C′ we can determine
deg f̃ (D) by Lemma 4.4 and it must be equal to σ(D) = σ(c(D)) = degf (c(D)). In partic-
ular, the sum of degrees of f̃ on the non-contracted irreducible components is already d and
deg f̃ (D′) = 0. This is impossible since f̃ is a stable map so a degree zero component must have
at least three special points. The projective equivalence of f̃ and f can be shown by induction
on the number of irreducible components, since for each irreducible component D ⊂ C, f (D)

is a rational normal curve in its span and there is a unique rational normal curve up to projective
equivalence.

Therefore, f is in the SL(d + 1)-orbit of f̃ . Hence f ∈ M0,n(P
d , d)ss(L′). From

φ−1(Uss
d,n(L)) = M0,n(P

d , d)ss(L′) (Lemma 4.2), we have φ(f ) = (X,p1, . . . , pn) ∈ Uss
d,n(L).�

Remark 4.7. This proof tells us that if L ∈ �0 is a linearization admitting no strictly semistable
points, then for the forgetting map

π : M0,n

(
Pd, d

)ss(
L′) → M0,n

restricted to the semistable locus, there is no contraction on the domain curve.

4.3. Relation to Hassett’s spaces

We prove here that the morphism constructed above factors through a Hassett moduli space of
weighted pointed curves. First observe that for any linearization (γ, �c) ∈ �◦, the vector �c defines
a Hassett space M0,�c .

Proposition 4.8. For any (γ, �c) ∈ �◦, there is a commutative triangle:

M0,n
φ

Ud,n//(γ,�c) SL(d + 1)

M0,�c

Proof. Recall that an F-curve is an irreducible component M0,4 ↪→ M0,n of a boundary
1-stratum, and it parameterizes a P1 with four “legs” attached; the curve is traced out by varying
the cross-ratio of these attaching points. By a result of Alexeev (cf. [9, Lemma 4.6]), it is enough
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to show that every F-curve contracted by the map M0,n → M0,�c is also contracted by φ. The F-
curves contracted by this Hassett morphism are precisely those for which one of the tails carries
� c − 1 weight of marked points. By Proposition 3.5, for a generic linearization these F-curves
are also contracted by φ because their leg carrying the most weight must have degree d , leaving
degree zero for the component with the four attaching points. If the linearization is not generic,
then we can obtain the result by perturbing the linearization slightly:

M0,n → M0,�c → M0,�c−ε → Ud,n//γ ′,�c−ε SL(d + 1) → Ud,n//γ,�c SL(d + 1).

Everything is separated and the interior M0,n is preserved, so this composition coincides
with φ. �
5. Modular interpretation of chambers

In the absence of strictly semistable points, i.e., for linearizations in open GIT chambers, the
GIT quotients Ud,n//SL(d + 1) are fine moduli spaces of pointed rational curves. In this section
we describe explicitly the functors they represent. One approach is to describe each quotient as a
moduli space of polarized pointed rational curves, as in Section 5.1. Another useful framework
for accomplishing this is provided by Smyth’s notion of a modular compactification [31], cf.
Section 5.2.

5.1. GIT quotient as a moduli space of polarized curves

In this section, we provide a description of the GIT quotient as a moduli space of abstract
genus 0 polarized curves with marked points. This is accomplished in Theorem 5.2 below. Fix
d > 0, and let L = (γ, �c) ∈ �0 be a general linearization.

Definition 5.1. Let B be a noetherian scheme. A family of (γ, �c)-stable d-polarized curves over
B consists of

• a flat proper morphism π : X → B whose geometric fibers are reduced projective arithmetic
genus zero curves;

• n sections s1, . . . , sn : B → X;
• a π -ample line bundle L on X of degree d

satisfying the following numerical properties:

• for b ∈ B and a point p ∈ Xb of multiplicity m,∑
si (b)=p

ci < 1 − (m − 1)γ ;

• for each (possibly reducible) tail C ⊂ Xb, degL|C = σ(C).

Here σ is the weight function from Section 3.1. Note that the last numerical condition is
sufficient to decide the degrees of all irreducible components.

Two families (π1 : X1 → B, {si},L1), (π2 : X2 → B, {ti},L2) are isomorphic if there exists a
B-isomorphism φ : X1 → X2 such that si ◦ φ = ti and φ∗L2 ∼= L1 ⊗ π∗M for some line bundle
1
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M over B . Note that if L is π -ample, then L is very ample over any geometric fiber because of
the genus condition. Also it is straightforward to check that h0(Xb,Lb) = d + 1.

With a natural pull-back over base schemes, the category of families of (γ, �c)-stable
d-polarized curves forms a fibered category over the category of locally noetherian schemes.

Theorem 5.2. Let Mγ,�c be the fibered category of families of (γ, �c)-stable d-polarized
rational curves. Then Mγ,�c is a Deligne–Mumford stack. Moreover, it is represented by
Ud,n//γ,�c SL(d + 1).

Proof. The proof relies on standard arguments in moduli theory, so we only outline it here.
First of all, for a family of (γ, �c)-stable d-polarized curves π : X → B , one can show that

H 1(Xb,LXb
) = 0 for all geometric fibers by a straightforward induction on the number of ir-

reducible components. Thus by [15, Theorem III.12.11], π∗L is locally free of rank d + 1. By
Grothendieck’s descent theory, families of (γ, �c)-stable d-polarized curves descend effectively
and Isom is a sheaf. Therefore Mγ,�c is a stack [24, Definition 3.1].

Let Hilb(1, d,Pd) be the irreducible component of the Hilbert scheme containing rational
normal curves. Let

HC : Hilb
(
1, d,Pd

) → Chow
(
1, d,Pd

)
be the restricted Hilbert–Chow morphism, and let H0 ⊂ Hilb(1, d,Pd) be the open subset pa-
rameterizing reduced non-degenerate curves. Then the restriction HC : H0 → C0 := HC(H0) is
injective. Moreover, there is an inverse C0 → H0, because the Hilbert polynomial of fibers of the
family over C0 is constant, so the family of algebraic cycles over C0 is flat over C0. Therefore
H0 ∼= C0.

Let U ⊂ Hilb(1, d,Pd) × (Pd)n be the locally closed subscheme parametrizing tuples
(X,p1, . . . , pn) satisfying

• X ⊂ Pd is reduced, nodal and arithmetic genus zero;
• pi ∈ X;
• (X, {pi},OX(1)) is a (γ, �c)- stable d-polarized curve.

Note that for any linearization L ∈ �0, Uss
d,n(L) ⊂ C0 × (Pd)n. Also by Proposition 3.7, U ∼=

Uss
d,n(L) within the identification H0 ∼= C0.
Any (γ, �c)-stable d-polarized curve (X, {pi},L) is represented by a point in U , because L is

very ample. Also by Proposition 3.9, an isomorphism between polarized curves is induced only
by Aut(Pd) ∼= PGL(d + 1). Therefore the map U → Mγ,�c is a principal PGL(d + 1)-bundle. In
particular, it is representable and faithfully flat. Moreover, the diagonal Mγ,�c → Mγ,�c ×Mγ,�c
is representable, separated and quasi-compact. By Artin’s criterion ([24, Theorem 10.1]), Mγ,�c
is an algebraic stack. Moreover, since the objects have no nontrivial automorphisms, it is an
algebraic space and isomorphic to its coarse moduli space.

Finally, from the above construction and the non-existence of nontrivial automorphisms,

Mγ,�c ∼= [
U/PGL(d + 1)

] ∼= U/PGL(d + 1) ∼= Ud,n//L SL(d + 1),

as claimed. �
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5.2. Modular compactifications

We briefly recall here the relevant results from [31]. A modular compactification is defined to
be an open substack of the stack of all curves that is proper over SpecZ [31, Definition 1.1]. A
main result of Smyth is that in genus zero these are classified by certain combinatorial gadgets.

Definition 5.3. (See [31, Definition 1.5].) Let G be the set of isomorphism classes of dual graphs
of strata in M0,n. An extremal assignment Z is a proper (though possibly empty) subset of
vertices Z(G) � G for each G ∈ G such that if G � G′ is a specialization inducing v � v′

1 ∪
· · · ∪ v′

k , then v ∈Z(G) ⇔ v′
1, . . . , v

′
k ∈Z(G′).

Smyth states an additional axiom that for any G ∈ G, the set Z(G) is invariant under Aut(G),
but in genus zero there are no nontrivial automorphisms since G is a tree with marked points on
all the leaves.

Definition 5.4. (See [31, Definition 1.8].) Let Z be an extremal assignment. A reduced marked
curve (X,p1, . . . , pn) is Z-stable if there exists (Xs,ps

1, . . . , p
s
n) ∈ M0,n and a surjective mor-

phism π : Xs �X, π(ps
i ) = pi , with connected fibers such that:

(1) π maps Xs\Z(Xs) isomorphically onto its image, and
(2) if X1, . . .Xk are the irreducible components of Z(Xs), then π(Xi) is a multinodal singularity

of multiplicity |Xi ∩ Xc
i |.

The beautiful culmination of Smyth’s story, in genus zero, is the following result:

Theorem 5.5. (See [31].) For any extremal assignment Z , the stack M0,n(Z) of Z-stable
curves is an algebraic space and a modular compactification of M0,n. There is a morphism
M0,n → M0,n(Z) contracting the assigned components of each DM-stable curve. Every modu-
lar compactification is of the form M0,n(Z) for an extremal assignment Z .

5.3. Extremal assignments from GIT

For GIT situations such that there are no strictly semistable points, the corresponding quotient
is not only a categorical quotient of the semistable locus but in fact a geometric quotient [27].
In the present situation, it is not hard to see that in such cases the quotient Ud,n//SL(d + 1)

is a modular compactification of M0,n in the sense of [31]. In particular, for each linearization
(γ, �c) in an open GIT chamber, there is a corresponding extremal assignment. We define here
an extremal assignment Zγ,�c and then show below that it is in fact the extremal assignment
associated to the corresponding GIT quotient.

Definition 5.6. Let E ⊂ X be an irreducible component of a DM-stable curve. Set E ∈ Zγ,�c(X)

if and only if
∑

σ(Y ) = d , where the sum is over all connected components Y of X\E.

Proposition 5.7. Let (γ, �c) ∈ �◦ be a linearization admitting no strictly semistable points. Then
Zγ,�c is an extremal assignment.
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Proof. It suffices to show that Z := Zγ,�c satisfies the axioms of Definition 5.3. We first show that
Z is invariant under specialization. Let v ∈ Z(G), and suppose that G � G′ is a specialization
with v � v′

1 ∪ v′
2 ∪ · · · ∪ v′

k . To see that v′
i ∈ Z for all i as well, notice that the marked points

on the connected components of G\{v′
i} contain unions of the marked points of the connected

components of G\{v}. Thus, the result follows from Lemma 3.2.
Next, suppose that v′

i ∈ Z(G) for i = 1, . . . , k. We must show that v ∈ Z(G) as well. We
prove this by induction on k, the case k = 1 being trivial. To prove the inductive step, let T be the
subtree spanned by all of the v′

i and let v′ be a leaf of T . Let A1, . . . ,As denote the connected
components of G′\{v′}, and let B1, . . . ,Bt denote the connected components of (G′\T ) ∪ {v′}.
By assumption,

∑s
i=1 σ(Ai) = d , and by induction we may assume that

∑t
i=1 σ(Bi) = d . Note

that exactly one of the Bi ’s contains v′. Without loss of generality, we assume that this is Bt .
Similarly, since v′ is a leaf of T , exactly one of the Ai ’s contains T \{v′}, and we will assume
that this is As . Note that As ∪ Bt = G′, hence by additivity σ(As) + σ(Bt ) = d . It follows that∑s−1

i=1 σ(Ai) + ∑t−1
i=1 σ(Bi) = d . But the components appearing in this sum are precisely the

connected components of G′\T , and the marked points on these connected components are the
same as those on the components of G\{v}. Thus v ∈Z .

Finally, we note that Z(G) �= G for each G, since otherwise the specialization property proved
above would imply that the graph with one vertex corresponding to a smooth curve is in Z , which
is clearly not the case. �

Consequently, by Theorem 5.5, there is a moduli space M0,n(Zγ,�c) of Zγ,�c-stable curves and
a morphism M0,n → M0,n(Zγ,�c) contracting all the assigned components.

Theorem 5.8. Let (γ, �c) ∈ �◦ be a linearization admitting no strictly semistable points. Then

Ud,n//γ,�c SL(d + 1) ∼=Mγ,�c ∼= M0,n(Zγ,�c).

Moreover, a curve is GIT-stable if and only if it is Zγ,�c-stable.

Proof. By Theorem 5.2, it suffices to prove an equivalence of the two stacks Ud,n//γ,�c SL(d +1)

and M0,n(Zγ,�c).
Consider the universal family (π :X ↪→ Uss

d,n ×Pd → Uss
d,n, {si}) of pointed algebraic cycles.

By forgetting the embedding structure, we have a family of reduced curves. We show that each
fiber is a Zγ,�c-stable curve, thus there is a morphism Uss

d,n → M0,n(Zγ,�c). Indeed, for a cycle

(X,p1, . . . , pn) ⊂ Pd in Uss
d,n, take a stable map (f : (X̃,p1, . . . , pn) → Pd) ∈ M0,n(P

d , d)ss

whose image is (X,p1, . . . , pn). Then by Remark 4.7, the domain of f is a stable curve. Let ρ :
X̃ → X̄ be the Zγ,�c-stable contraction. For any component E ⊂ X̃, if

∑
Y⊂X̃\E σ(Y ) = d where

the sum is taken for all irreducible components of X̃\E, then ρ(E) is a point by the definition
of Zγ,�c . It follows from Corollary 3.6 that f |E must have degree 0 and hence E is contracted
by f . Conversely, if

∑
Y⊂X̃\E σ(Y ) �= d (so ρ(E) is not a point), then since degf (X̃) = d ,

degf |E �= 0 and hence E is not contracted. Therefore X̄ ∼= X.
Obviously the map Uss

d,n → M0,n(Zγ,�c) is PGL(d + 1)-invariant. So we have a map

Ud,n//γ,�c SL(d + 1) ∼= Uss
d,n/PGL(d + 1) → M0,n(Zγ,�c).

Conversely, let (π : X → B, {si}) be a family of Zγ,�c-stable curves. By definition of
Zγ,�c-stability, there is a family (πs : Xs → B, {ss

i }) of stable curves such that some of its ir-
reducible components are contracted by the extremal assignment Zγ,�c . Since M0,n(P

d , d)ss →
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M0,n is a principal PGL(d + 1)-bundle, after replacing B by an étale covering B ′ → B , we ob-
tain a family of stable maps (π : Xs ×B B ′ → B ′, f : Xs ×B B ′ → Pd , {si}). By taking the image
cycle, we obtain a family (π̄ : X ×B B ′ → B ′, f̄ : X ×B B ′ ↪→ Pd × B ′, {si}) of pointed alge-
braic cycles. So we have a morphism B ′ → Uss

d,n. From the construction, it is easy to see that it
descends to B → Uss

d,n/PGL(d + 1) ∼= Ud,n//γ,�c SL(d + 1).
We claim that this construction is independent of the choice of family (πs : Xs → B, {ss

i })
of stable curves and hence defines a morphism M0,n(Zγ,�c) → Ud,n//γ,�c SL(d + 1). To see this,
we need to check that the contracted component of Xs by Zγ,�c-stability is also contracted by the
cycle map. The computation is identical to the previous one.

It is straightforward to see that the two morphisms constructed above give an equivalence of
categories between M0,n(Zγ,�c) and Ud,n//γ,�cSL(d + 1) ∼= Mγ,�c . �
6. Maps between moduli spaces

In this section we describe maps between the various different quotients of Ud,n. The gluing
maps are related to known maps defined on M0,n. The projection and VGIT maps, on the other
hand, form a large set of explicit maps that do not appear previously in the literature.

6.1. Gluing maps

The first maps we consider are helpful for understanding the boundary of these moduli spaces.
Recall that each of the boundary divisors in M0,n corresponds to a subset I ⊂ [n] with |I | =
i,2 � i � n

2 . Each such divisor DI is the image of a gluing map:

M0,i+1 × M0,n−i+1 → M0,n.

In this section we describe a natural analogue of these gluing maps for the GIT quotients
Ud,n//γ,�c SL(d + 1) ∼= M0,n(Zγ,�c).

Proposition 6.1. Let (γ, �c) ∈ �◦ be such that there are no strictly semistable points, and let
I ⊂ [n] be a subset such that σ(I) �= 0, d and write i = |I |. We write �cI for the vector consisting
of the weights ci for all i ∈ I . Then there is a “gluing” morphism Γi such that the following
diagram commutes:

M0,i+1 × M0,n−i+1 M0,n

M0,i+1(Zγ,�cI ,bI
) × M0,n−i+1(Zγ,�cIc ,bIc )

Γi
M0,n(Zγ,�c)

where bI = (1 − γ )σ (I ) − (cI − 1) + γ . Similarly, if σ(I) = d , then there is a commutative
diagram:

M0,i+1 × M0,n−i+1 M0,n

M0,i+1(Zγ,�cI ,bI
)

Γ
M0,n(Zγ,�c).

Moreover, the horizontal maps are all injective.
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Proof. First of all, we prove the existence of Γi . By using Theorem 5.8, let Mγ,�cI ,bI
:=

M0,i+1(Zγ,�cI ,bI
) and let Mγ,�cIc ,bIc := M0,n−i+1(Zγ,�cIc ,bIc ). For a base scheme B , let (π1 :

X1 → B, {sj ,p},L1) (resp. (π2 : X2 → B, {tk, q},L2)) be a family of (γ, �cI , bI )-stable
d1-polarized curves (resp. (γ, �cIc , bIc )-stable d2-polarized curves). Note that the gluing of two
schemes along isomorphic closed subschemes always exists in the category of schemes. So we
can glue X1 and X2 along two isomorphic sections p and q , and obtain X. Since we glued along
sections, there is a morphism π : X → B and sections {sj , tk : B → X}. Finally, two line bundles
L1 and L2 also can be glued if we consider them as A1-fibrations over X1 and X2. So over X,
there is a line bundle L which is of degree d := d1 + d2 over each fiber of π . This is a flat family,
since the Hilbert polynomials of fibers are constant. This construction is functorial, thus we have
a morphism of stacks from Mγ,�cI ,bI

×Mγ,�cIc ,bc
I

to the stack of n-pointed genus zero curves.
Now we need to show that the glued family (π : X = X1 ∪p=q X2 → B, {pi} := {sj , tk},L) is

in Mγ,�c ∼= M0,n(Zγ,�c). It suffices to check this fiberwise. So we may assume that B is a closed
point. For a point x ∈ X, if it is not the gluing point, then∑

pi=x

ci < 1 − (m − 1)γ

is immediate. If x is the gluing point of p and q of multiplicity m1 and m2 respectively,∑
pi=x

ci =
∑
sj =p

ci +
∑
tk=q

ci < 1 − (m1 − 1)γ − bI + 1 − (m2 − 1)γ − bIc

= 1 − (m1 + m2 − 1)γ.

Since the multiplicity of x in X is m1 + m2, it satisfies the first numerical condition in Defini-
tion 5.1.

Next, since X is a gluing of two curves at one point, for a tail Y , Y or its complement tail
X\Y is contained in one of X1 or X2. If Y = X1 (so X\Y = X2), then degL|X1 = degL1|X1 =
� cI +bI −1

1−γ
� � � cI −1

1−γ
� = σ(X1) = d1. By the same idea, degL|X2 � σ(X2) = d2. Now since d1 +

d2 = d = degL|X1 + degL|X2 , degL|X1 = σ(X1) and degL|X2 = σ(X2).
If Y is a proper subset of X1, then degL|Y = degL1|Y = σ(Y ) because σ(Y ) depends only

on {ci}pi∈Y and γ , not on d1 or d . Finally if X\Y is a proper subset of X1, then

degL|Y = d − degL|X\Y = d − degL1|X\Y = d − σ(X\Y ) = σ(Y ).

Note that the last equality holds because the numerical data (γ, �c) satisfies the normalization
condition (d − 1)γ + ∑

ci = d + 1, hence the additivity lemma (Lemma 3.3) holds. Therefore
all tails have correct degrees. So it is in Mγ,�c.

Having proven the existence of the gluing morphism, to check commutativity of the diagram
is straightforward. We leave the simpler case σ(I) = d to the reader. �
Remark 6.2. We would like to conclude more strongly that the gluing maps are all embeddings,
which would follow if the varieties in question were all normal. Several of the results below
about maps between these GIT quotients could be similarly strengthened using normality. We
note here that, since the map M0,n → M0,n(Zγ,�c) has connected fibers, the normalization map
M0,n(Zγ,�c)ν → M0,n(Zγ,�c) (equivalently, Ud,n//γ,�c SL(d + 1)ν → Ud,n//γ,�c SL(d + 1)) is bi-
jective. Although we strongly suspect that it is indeed an isomorphism, at present we have no
proof.
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6.2. Projection maps

Another natural set of maps between these moduli spaces is given by projection from the
marked points.

Proposition 6.3. Let (γ, �c) ∈ �◦ be such that there are no strictly semistable points, and suppose
that d � 2 and c1 > 1 − γ . Then projection from p1 defines a birational morphism

πi : Ud,n//(γ,�c) SL(d + 1) → Ud−1,n//(γ,c1−(1−γ ),c2,...,cn) SL(d).

Proof. First, note that since c1 > 1−γ , every GIT-stable curve is smooth at p1 by Corollary 2.6.
It follows that, if (X,p1, . . . , pn) is a GIT-stable curve, then its projection πp1(X,p1, . . . , pn) is
a connected rational curve of degree d − 1 in Pd−1. We show that this projected curve is stable
for the linearization (γ, c1 − (1 − γ ), c2, . . . , cn) if and only if the original curve is stable for
the linearization (γ, c1, . . . , cn). Indeed, every component of πp1(X) has the same degree as its
preimage, unless its preimage contains p1, in which case the degree drops by one. It follows that,
for any tail Y ⊂ πp1(X), we have

deg(Y ) =
⎧⎨⎩ � (

∑
pi∈Y ci )−1

1−γ
� if p1 /∈ Y,

� (
∑

pi∈Y ci )−(1−γ )−1

1−γ
� if p1 ∈ Y.

But this is exactly the condition for stability of points in Ud−1,n for the linearization (γ, c1 −
(1 − γ ), c2, . . . , cn). �
Proposition 6.4. The projection map π1 is a bijective morphism if and only if, for every partition
{2, . . . , n} = I1 � · · · � Ik into at least 3 disjoint sets, we have

∑k
i=1 σ(Ii) �= d − 1.

Proof. Let E ⊂ X be a component of a GIT-stable curve with respect to the linearization (γ, �c).
E is contracted by the projection map if and only if p1 ∈ E and deg E = 1. It follows that the map
is bijective if and only if every such component has no moduli, which is equivalent to every such
component having exactly three special points, where here a “special point” is either a singular
point (regardless of the singularity type) or a marked point (regardless of how many of the pi ’s
collide at that point). By Corollary 3.6, we therefore see that π1 is a bijective morphism if and
only if the hypothesis holds. �
6.3. Wall-crossing maps

One of the benefits of our GIT approach is that, by varying the choice of linearization, we
obtain explicit maps between our moduli spaces. The nature of these maps can be understood
using the general theory of variation of GIT.

Recall that, by Proposition 3.11, the GIT walls in �◦ are of the form ϕ(I, ·)−1(k) for any
given subset I ⊂ [n] and integer k. For a fixed such I and k, we let (γ, �c) ∈ ϕ(I, ·)−1(k) =
ϕ(I c, ·)−1(d − 1 − k) be such that (γ, �c) does not lie on any other walls, and we write

Ud,n//γ,�c,0 SL(d + 1) := Ud,n//γ,�c SL(d + 1).

Similarly, we will write Ud,n//γ,�c,+ SL(d + 1) and Ud,n//γ,�c,− SL(d + 1) for the GIT quo-
tients corresponding to the neighboring chambers, which are contained in ϕ(I, ·)−1({x > k})
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and ϕ(I, ·)−1({x < k}), respectively. We will write σ+, σ− for the σ functions on either side of
the wall. Note that, for any subset A ⊂ [n], σ+(A) = σ−(A) if and only if A �= I, I c. By general
VGIT, there is a commutative diagram:

Ud,n//γ,�c,+ SL(d + 1) Ud,n//γ,�c,− SL(d + 1)

Ud,n//γ,�c,0 SL(d + 1) .

We now consider stability conditions at a wall. For these linearizations, a new type of
semistable curve appears:

Definition 6.5. A pointed curve (X,p1, . . . , pn) ∈ Ud,n is a (γ, �c)-bridge if:

(1) X has a degree 1 component D such that |D ∩ X\D| = 2;
(2) If we write XI ,XIc for the connected components of X\D, then XI is marked by the points

in I and XIc is marked by the points in I c;
(3) If E ⊂ XI (resp. XIc ) is a connected subcurve, then the degree of E is equal to d −∑

Y σ−(Y ) (resp. d −∑
Y σ+(Y )), where the sum is over all connected components of X\E.

Note that, by definition, deg(XI ) = k and deg(XIc ) = d − (k + 1), as in the following picture:

YI

degk + 1

XIc

degd − (k + 1)

XI

degk

YIc

degd − k

XI

degk

deg 1

D

degd − (k + 1)

XIc

Proposition 6.6. Every (γ, �c)-bridge is GIT-semistable at the wall ϕ(I, ·)−1(k).

Proof. Let (X,p1, . . . , pn) be a (γ, �c)-bridge. It suffices to construct a (γ, �c,+)-stable curve
(Y, q1, . . . , qn) and a 1-PS λ such that

μλ(Y, q1, . . . , qn) = 0 and

lim λ(t) · (Y, q1, . . . , qn) = (X,p1, . . . , pn).

t→0
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Let (XI ,p1, . . . , pm,p) denote the tail of X labeled by points in I , where p is the “attaching
point”. Note that, by Proposition 6.1 and the fact that (γ, �c) does not lie on any walls other than
ϕ(I, ·)−1(k), XI is stable for the linearization (γ, c1, . . . , cm, γ − ε). Because the projection
map is proper and birational, there is a curve (YI , q1, . . . , qm, q), stable for the linearization
(γ, c1, . . . , cm,1 − ε), such that πq(YI ) = XI .

Choose coordinates so that the span of YI is V (xk+2, . . . , xd) and q = V (x0, . . . , xk,

x̂k+1, xk+2, . . . , xd). Now, let λ be the 1-PS that acts with weights (0, . . . ,0,1, . . . ,1), where
the first k + 1 weights are all zero. Let i : YI ↪→ Pd be the inclusion and consider the rational
map

U := C× YI ��� Pd

given by (t, r) �→ λ(t) · i(r). Note that this map is regular everywhere except the point (0, q).
If we blow up U at this point, we obtain a regular map Ũ → Pd whose special fiber is the
union of πq(YI ) = XI and a line. Since the image of the point q is constant in this family, we
may glue on XIc to obtain a family of connected degree d curves. By Proposition 6.1, Y =
YI ∪ XIc is a (γ, �c,+)-stable curve. Note that, since (Y, q1, . . . , qn) is (γ, �c)-semistable, but its
limit under the 1-PS λ is not isomorphic to itself, we must have μλ(Y, q1, . . . , qn) = 0. It follows
that (X,p1, . . . , pn) is semistable. �

We will see that the (γ, �c)-bridges are the only “new” curves that appear at the wall.

Proposition 6.7. A pointed curve (X,p1, . . . , pn) ∈ Ud,n is stable for the linearization (γ, �c,0)

if and only if it is stable for the linearization (γ, �c,+) (equivalently, (γ, �c,−)) and does not
contain a tail labeled by the points in I or I c. It is strictly semistable if and only if it contains a tail
labeled by the points in I or I c , and is either (γ, �c,+)-stable, (γ, �c,−)-stable, or a (γ, �c)-bridge.
Moreover, the (γ, �c)-bridges are exactly the strictly semistable curves with closed orbits.

Proof. We first show that each of the curves above is (semi)stable. It is a standard fact from
variation of GIT that, if a curve is stable for both linearizations (γ, �c,+) and (γ, �c,−), then it
is stable for the linearization (γ, �c,0) as well. By assumption, the only wall that (γ, �c) lies on
is ϕ(I, ·)−1(k) = ϕ(I c, ·)−1(d − 1 − k), so any curve that does not contain a tail labeled by the
points in I will be stable for one of these linearizations if and only if it is stable for the other.
Similarly, if a curve is stable for either linearization (γ, �c,+) or (γ, �c,−), then it is semistable
for the linearization (γ, �c,0). It therefore suffices to show that (γ, �c)-bridges are GIT-semistable,
but this was shown in Proposition 6.6.

To see the converse, let (X,p1, . . . , pn) ∈ Ud,n be semistable for the linearization (γ, �c,0).
Notice that the degree of each tail Y ⊂ X is completely determined by σ unless Y is labeled by
points in I or I c. We therefore see that, if X contains no tails labeled by points in I or I c , then
for any connected subcurve E ⊂ X we have

deg(E) = d −
∑

σ(Y )

and (X,p1, . . . , pn) is a (γ, �c,+)-stable curve.
Similarly, suppose that X contains a subcurve E such that X\E contains a connected compo-

nent XI labeled by I but no connected component labeled by I c . Then the degree of XI is either
k or k + 1, and thus either

deg(E) = d − k −
∑

σ(Y )
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or

deg(E) = d − (k + 1) −
∑

σ(Y )

where the sum is over all connected components Y ⊂ X\E other than XI . It follows that
(X,p1, . . . , pn) is either (γ, �c,+)-stable or (γ, �c,−)-stable.

The remaining case is where X contains a component E such that X\E contains a connected
component XI labeled by the points in I and a connected component XIc labeled by the points in
I c . Since degXI � k + 1,degXIc � d − (k + 1), and degE � 1, we see that the only possibility
is if all three inequalities hold. Thus, E is a degree 1 subcurve of X such that |E ∩ X\E| = 2,
and (X,p1, . . . , pn) is a (γ, �c)-bridge.

Finally, note that if a semistable curve does not have a closed orbit, then it degenerates to
a semistable curve with higher-dimensional stabilizer. Furthermore, a strictly semistable curve
with closed orbit cannot have a 0-dimensional stabilizer. Since (γ, �c)-bridges have 1-dimensional
stabilizers and all other semistable curves have 0-dimensional stabilizers, we see that the
(γ, �c)-bridges must be precisely the strictly semistable curves with closed orbits. �

We can restate the results of Proposition 6.7 in the following way. Each of the maps in the
diagram

Ud,n//γ,�c,+ SL(d + 1) Ud,n//γ,�c,− SL(d + 1)

Ud,n//γ,�c,0 SL(d + 1)

restricts to an isomorphism away from the image of DI ⊂ M0,n. If k �= 0, d − 1, then along the
image of this divisor, the maps restrict to the following:

M0,i+1(Zγ,�cI ,1−ε) × M0,n−i+1(Zγ,�cIc ,γ+ε)
Γi

(πi+1,id)

Ud,n//γ,�c,+ SL(d + 1)

M0,i+1(Zγ,�cI ,γ+ε) × M0,n−i+1(Zγ,�cIc ,γ+ε) Ud,n//γ,�c,0 SL(d + 1)

M0,i+1(Zγ,�cI ,γ+ε) × M0,n−i+1(Zγ,�cIc ,1−ε)
Γi

(id,πn−i+1)

Ud,n//γ,�c,− SL(d + 1)

where the central map is obtained by gluing a line between the attaching points.
Similarly, if k = d − 1, the maps restrict to:

M0,i+1(Zγ,�cI ,1−ε)
Γi

πi+1

Ud,n//γ,�c,+ SL(d + 1)

M0,i+1(Zγ,�cI ,γ+ε) Ud,n//γ,�c,0 SL(d + 1)

M0,i+1(Zγ,�cI ,γ+ε) × M0,n−i+1(Zγ,�cIc ,1−ε)
Γi

(id,·)

Ud,n//γ,�c,− SL(d + 1).
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6.4. Quotients at the boundary of �◦

There are four distinct types of top-dimensional boundary walls, corresponding to when γ =
0, γ = 1, ci = 0 for some i, and ci = 1 for some i. In this section, we consider each in turn.

Corollary 6.8. Suppose c1 = 1 − ε for ε � 1. Then after replacing GIT quotients by their nor-
malizations, the map induced by passing to the GIT wall c1 = 1 is a projection map:

Ud,n//γ,c1,...,cn SL(d + 1)

f
π1

Ud,n//γ− ε
d−1 ,1,c2,...,cn

SL(d + 1)
∼=
g Ud−1,n//γ,γ−ε,c2,...,cn SL(d).

Proof. If we replace all GIT quotients by their normalizations, the morphisms between them
form algebraic fiber spaces. In particular, we can apply the rigidity lemma ([22, Proposition
II.5.3]).

Note that the boundary wall c1 = 1 is equal to the hyperplane ϕ({1}, ·)−1(0). Let X be a
(γ, �c,−)-stable curve. By Proposition 6.6, we see that there is a (γ, �c,0)-semistable curve with
closed orbit consisting of the projected curve π1(X) together with a degree 1 tail L contain-
ing p1 and attached at π(p1). Conversely, all (γ, �c,0)-semistable curves with closed orbits are
of this form. Thus for such a curve Y , the fiber f −1(Y ) is positive-dimensional if and only
if X ∈ f −1(Y ) has a unique irreducible tail of degree 1 containing p1 and at least two more
marked points on its smooth locus. Now it is easy to see that f −1(Y ) is contracted by π1.
Therefore, by the rigidity lemma we have a morphism g : Ud,n//γ− ε

d−1 ,1,c2,...,cn
SL(d + 1) →

Ud−1,n//γ,γ−ε,c2,...,cn SL(d).
Since the points of the GIT quotient are in bijection with the closed orbits of semistable

points, it is straightforward to check that the induced horizontal map is bijective and indeed an
isomorphism. �
Proposition 6.9. When γ = 1, we have the following isomorphism:

Ud,n//1,�c SL(d + 1) ∼= (
P1)n

//�c SL(2).

Proof. By Corollary 2.8, every GIT-stable curve is smooth, and by Corollary 2.6, at most half of
the total weight may collide at a marked point. We therefore have a map

Ud,n//1,�c SL(d + 1) → (
P1)n

//�c SL(2).

On the other hand, note that Kapranov’s morphism M0,n → M0,�c+ε → (P1)n//�c SL(2) is a com-
position of divisorial contractions. Thus one may run the same argument as in Proposition 4.8
(and in [9, Lemma 4.6]), thinking of (P1)n//�c SL(2) as an analogue of the Hassett space M0,�c
when

∑n
i=1 ci = 2, to see that there is a map f : (P1)n//�c SL(2) → Ud,n//1,�c SL(d + 1). �

With Corollary 6.8 and Proposition 6.9, we now have a complete description of all of the
boundary walls of the GIT cone �◦. If ci = 1 for some i, then the corresponding map is a
projection map. If γ = 1, then the quotient is isomorphic to (P1)n//�c SL(2). On the other hand, if
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ci = 0 for some i, then the corresponding map is a forgetful map, whereas if γ = 0, the quotient
is isomorphic to the spaces Vd,n//�c SL(d + 1) studied in [11].2

6.5. Behavior of wall-crossing maps

By the above diagram, we also have a nice description of wall-crossing behavior along the
interior walls.

Corollary 6.10. The morphism

Ud,n//γ,�c,+ SL(d + 1) → Ud,n//γ,�c,0 SL(d + 1)

contracts a divisor if and only if 3 � |I | � n − 2 and k = 0. Similarly, the morphism

Ud,n//γ,�c,− SL(d + 1) → Ud,n//γ,�c,0 SL(d + 1)

contracts a divisor if and only if 2 � |I | � n − 3 and k = d − 1.

Proof. This follows directly from the diagram above. Because the map restricts to an isomor-
phism away from the image of DI,Ic ⊂ M0,n, the only divisor that could be contracted by the
map is the image of this divisor. In the diagram above, however, which details the restriction of
this map to this divisor, all of the restricted maps are birational unless k = 0 and 3 � |I | � n − 2
or k = d − 1 and 2 � |I | � n − 3. �
Corollary 6.11. If k �= 0, d − 1, then the rational map

Ud,n//γ,�c,+ SL(d + 1) ���Ud,n//γ,�c,− SL(d + 1)

either induces a morphism on the normalizations, its inverse induces a morphism on the normal-
izations, or it is a flip.

Proof. Consider the diagram:

Ud,n//γ,�c,+ SL(d + 1)

f +
Ud,n//γ,�c,− SL(d + 1)

f −

Ud,n//γ,�c,0 SL(d + 1) .

The result follows from [32, Theorem 3.3], since if neither f + nor f − is bijective then both are
small contractions, by the gluing diagram above. �

Note that this is a flip in the sense of [32]. That is, there exists a Q-Cartier divisor class D

on Ud,n//γ,�c,− SL(d + 1), such that O(−D) is relatively ample over Ud,n//γ,�c,0 SL(d + 1), and
if g : Ud,n//γ,�c,− SL(d + 1) ��� Ud,n//γ,�c,+ SL(d + 1) is the induced birational map, then the
divisor class g∗D is Q-Cartier, and O(D) is relatively ample over Ud,n//γ,�c,0 SL(d + 1).

2 In the latter two statements, the line bundles in question are only semi-ample rather than ample, and hence by Mum-
ford’s definition the corresponding GIT quotients are quasi-projective rather than projective. If, however, one defines the
GIT quotient to be Proj of the invariant section ring, then these statements are fine.
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Because of Corollary 6.11, it is interesting to ask when the wall-crossing map is regular.
Although we are unable to answer this question at present, we can provide a condition for the
map to contract no curves. If the GIT quotients were normal, this would be sufficient to conclude
that the inverse map is regular in precisely this case (see Remark 6.2).

Proposition 6.12. The rational map

Ud,n//γ,�c,+ SL(d + 1) ���Ud,n//γ,�c,− SL(d + 1)

contracts no curves if and only if, for every partition I = I1 � · · · � Im into at least 3 disjoint sets,
we have

∑m
i=1 σ(Ii) �= k.

Proof. By the diagrams above, the map f + is bijective if and only if the projection map

M0,n−i+1(Zγ,�cI ,1−ε) → M0,n−i+1(Zγ,�cI ,γ+ε)

is bijective. By Proposition 6.4, this is the case if and only if, for every partition I = I1 � · · · � Im

into at least 3 disjoint sets, we have
∑m

i=1 σ(Ii) �= k. It follows that the composite rational map
(f −)−1 ◦ f + contracts no curves in precisely this case. �
7. Examples

In this section we consider examples of the quotients Ud,n//γ,�c SL(d + 1) for specific choices
of (γ, �c) ∈ �. We will see that many previously constructed compactifications of M0,n arise as
such quotients.

7.1. Hassett’s spaces

In [16], Hassett constructs the moduli spaces of weighted pointed stable curves M0,�c . A genus
0 marked curve (X,p1, . . . , pn) is Hassett stable if:

(1) The singularities are at worst nodal;
(2) The are no marked points at nodes;
(3) The weight at any smooth point is at most 1, and
(4) ωX(

∑n
i=1 cipi) is ample.

Here we show that each of Hassett’s spaces arises as a quotient of Ud,n.

Theorem 7.1. Let (γ, �c) be a linearization such that there are no strictly semistable points and
1 > γ > max{ 1

2 ,1−c1, . . . ,1−cn}. Then there is an isomorphism M0,�c ∼= Ud,n//(γ,�c) SL(d +1).

Proof. It is enough to prove the existence of a morphism Ud,n//(γ,�c) SL(d + 1) → M0,�c preserv-
ing the interior. Indeed, both sides are separated, so such a morphism is automatically inverse to
the morphism in Proposition 4.8.

We claim that the hypotheses imply that the universal family over the semistable locus
(Ud,n)

ss is a family of Hassett-stable curves for the weight vector �c. Indeed,

• The singularities are at worst nodal, by Corollary 2.7 and the assumption γ > 1 ;
2
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• The are no marked points at nodes, by Proposition 2.5 and the fact that γ > 1 − ci for
i = 1, . . . , n;

• The weight at any smooth point is at most 1, by Corollary 2.6; and
• The ampleness condition of Hassett-stability is satisfied.

The only item here that needs explanation is the last one. Hassett-stability, in genus zero, requires
that the weight of marked points on any component, plus the number of nodes on that component,
is strictly greater than 2. This follows by the same argument as Proposition 3.9.

Having shown that we have a family of Hassett-stable curves over the semistable locus, the
representability of this moduli space implies that we have a morphism (Ud,n)

ss → M0,�c . This is
clearly SL(d + 1)-invariant, so it descends to a morphism from the categorical quotient, which is
precisely the GIT quotient: Ud,n//(γ,�c) SL(d +1) → M0,�c . The interior M0,n is clearly preserved,
so this concludes the proof. �
Corollary 7.2. For all n� 3, there exists d � 1 such that every Hassett space of n-pointed genus
zero curves, including M0,n, is a quotient of Ud,n.

Proof. Note that there is a chamber structure on the space of weight data [16, §5]. Chambers are
separated by hyperplanes{

(c1, . . . , cn)

∣∣∣ ∑
i∈I

ci = 1

}
for some I ⊂ {1,2, . . . , n}. Therefore we can find ε > 0 satisfying the following property: For
any weight datum �c, there is a weight datum �c′ in the same chamber and c′

i > ε for all i. Now we
can take d satisfying d+1−n

d−1 > 1 − ε. Then this d satisfies

1 >
d + 1 − c

d − 1
� d + 1 − n

d − 1
> 1 − ε � max

{
1

2
,1 − c′

1, . . . ,1 − c′
n

}
,

for every weight datum �c′. The result follows immediately from Theorem 7.1, since any Hassett
space with weight datum lying on a wall is isomorphic to one with weight datum lying in an
adjacent chamber. �

We note the following fact, which was remarked in the introduction:

Corollary 7.3. There exists L ∈ �◦ with Un−2,n//L SL(n − 1) ∼= M0,n.

Proof. The Hassett space M0,�c with �c = ( 1
2 + ε, . . . , 1

2 + ε) is isomorphic to M0,n (in fact they
have the same universal curves) since no points are allowed to collide. Thus, it suffices to take

a linearization (γ, �c) ∈ �◦ with γ > 1
2 . Now, γ = d+1−( n

2 +nε)

d−1 , so γ > 1
2 is equivalent to d >

n − 2nε − 3, so indeed for ε small enough we can take d = n − 2. �
7.2. Kontsevich–Boggi compactification

In [23], Kontsevich described certain topological modifications of the moduli spaces Mg,n

which for g = 0 were given an algebraic description by Boggi as an alternate compactification of
M0,n [4]. This compactification was later independently constructed by Smyth in [31]. A genus
0 marked curve (X,p1, . . . , pn) is Boggi-stable if:
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(1) The singularities are multinodal;
(2) There are no marked points at the singular points;
(3) There are at least two points on any tail, and
(4) There are no unmarked components.

The Boggi space corresponds to the extremal assignment in which all components without
marked points are assigned. We will see that the Boggi space also arises as a quotient of Ud,n, in
the case d = n, ci = 1 − ε ∀i. Note that in this case γ = 1+dε

d−1 .

Proposition 7.4. The GIT quotient Ud,n// 1+dε
d−1 , �1−ε

SL(d + 1) is isomorphic to the Boggi space

M
Bog
0,n .

Proof. Let (X,p1, . . . , pn) ∈ M0,n be a Deligne–Mumford stable curve. It suffices to show that
a component of X is Z 1+dε

d−1 , �1−ε
-assigned if and only if it is unmarked. Let Y ⊂ X be a tail

containing k marked points. Then

σ(Y ) =
⌈

k(1 − ε) − 1

1 − γ

⌉
= k.

Hence, for any component E ⊂ X, E is assigned if and only if the total number of points on the
connected components of X\E is equal to d = n. In other words, E is assigned if and only if it
is unmarked. �
7.3. Variation of GIT

In addition to previously constructed moduli spaces, our GIT approach also recovers known
maps between these moduli spaces. As an example we consider the case where n = d = 9 and the
weights are symmetric – that is, ci = cj ∀i, j . By the results above, we see that U9,9//γ,�c SL(10)

is isomorphic to a Hassett space for all γ > 1
2 , and isomorphic to the Boggi space for 1

9 < γ < 2
7 .

In the range 2
7 < γ < 1

2 , the space M
trip
0,9 = U9,9//γ,�c SL(10) is isomorphic to M0,9, but the

corresponding moduli functor is different. Specifically, a curve consisting of three components
meeting in a triple point, each containing three marked points, is GIT-stable, while the corre-
sponding Deligne–Mumford stable curve obtained by replacing the triple point with a rational
triborough is not GIT-stable. We note furthermore that since all of the moduli spaces just de-
scribed are normal, the corresponding wall-crossing maps are all regular by Proposition 6.12. As
we increase γ from 1

9 to 1, we therefore obtain the following picture:

γ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1
9

2
7

1
2

11
16

7
8

31
32 1

M
Bog
0,9

M
trip
0,9 M0,9

∼=
M

0,
�1

3 +ε

∼=

M
0,

�1
4 +ε

M
0,

�1
5 +ε

(
P1

)9
//SL(2)

∼=
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7.4. An example of a flip

While the previous example includes several previously constructed spaces, it does not include
any flips. To see an example of a flip, we consider the case where d = 5, n = 19, and the weights
are symmetric. Let Ik denote any set of k marked points. When γ = 4

9 + ε, we see that

σ(Ik) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if k � 4,

1 if 5 � k � 7,

2 if 8 � k � 9,

3 if 10 � k � 11,

4 if 12 � k � 14,

5 if 15 � k.

On the other hand, when γ = 4
9 − ε, then each of these remains the same, except for σ(I7) which

becomes 2, and σ(I12), which becomes 3. Now, consider the diagram

U5,19// 4
9 +ε,

�2
9 −ε

SL(6)

f +
U5,19// 4

9 −ε,
�2

9 +ε
SL(6)

f −

U5,19// 4
9 ,

�2
9

SL(6) .

By Corollary 6.10, neither f + nor f − contracts a divisor. On the other hand, the map f + con-
tracts the F-curve class (10,7,1,1), whereas the map f − contracts the F-curve class (12,5,1,1),
so neither f + nor f − is trivial. (The numerical class of an F-curve is determined by the number
of marked points on each leg, whence the preceding notation.) It follows from Corollary 6.11
that the diagram is a flip.

Finally we note that the moduli space U5,19// 4
9 ,

�2
9

SL(6) is not isomorphic to a modular com-

pactification as in [31] (this does not contradict Proposition 5.7 because the linearization lies
on a GIT wall, hence there are strictly semistable points). In this sense it is truly a “new” com-
pactification of M0,19. To see this, consider the Deligne–Mumford stable curve X which is a
chain of 4 rational curves, each component containing 10, 2, 2, and 5 marked points, respec-
tively. The image of X in the GIT quotient has three components. These components have 10,
0, and 5 marked points on their interiors, and there are 2 marked points at each of the nodes
– the two interior components of X are contracted. On the other hand, the original curve is a
specialization of a Deligne–Mumford stable curve Y consisting of 3 components, containing
10, 4, and 5 marked points, respectively. Hence, if this space were modular, then by [31] the
interior component of Y would have to be contracted as well. But we see that this is not the
case.



N. Giansiracusa et al. / Advances in Mathematics 248 (2013) 242–278 277
2 pts 2 pts

X Y

∈ M0,n

�

�

↓ ↓

∈ Ud,n// 4
9 ,

�2
9

SL(6)

7.5. Modular compactifications not from GIT

In the above subsection we saw an example of a GIT compactification of M0,n which is
not modular in the sense of [31]. On the other hand, there are also examples of modular com-
pactifications which do not arise from our GIT construction. For instance, consider a partition
[n] = I � J � K into three nonempty subsets. It is easy to see that assigning a tail if and only
if the marked points on it are indexed entirely by I or entirely by J yields an extremal assign-
ment. Suppose this assignment is given by a geometric quotient of Ud,n. If a tail has only two
marked points, pi1,pi2 , both indexed by I , then by Proposition 3.5 we have σ({i1, i2}) = 0 and
so ci1 + ci2 < 1. Similarly, considering a tail with two points pj1,pj2 both indexed by J forces
ci1 + ci2 < 1. Without loss of generality write ci1 � ci2 and cj1 � cj2 . Then ci1 + cj1 < 1, so
σ({i1, j1}) = 0, and hence a tail with only pi1 and pj1 would be contracted, contradicting the
definition of the extremal assignment.
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