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1. Introduction

The classical maximal rank conjecture in algebraic geometry predicts the Hilbert 
function in each degree m for the general embedding of a general algebraic curve of 
fixed genus g and degree d in projective space Pr, by specifying that certain linear 
multiplication maps on global sections should be of maximal rank.

Maximal Rank Conjecture. Suppose g, r, d, and m are positive integers, with r ≥ 3, 
such that g ≥ (r + 1)(g − d + r), and let X ⊂ P

r be a general curve of genus g and 
degree d. Then the multiplication map
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μm : Symm H0(X,OX(1)) → H0(X,OX(m))

is either injective or surjective.

In previous work, we introduced the notion of tropical independence to study ranks 
of such multiplication maps combinatorially, using minima of piecewise-linear functions 
on graphs arising via tropicalization. As first applications, we gave a new proof of the 
Gieseker–Petri theorem [10], and formulated a purely combinatorial analogue on tropical 
curves of the maximal rank conjecture for algebraic curves, which we proved for m = 2
[11].

Tropical Maximal Rank Conjecture. Suppose g, r, d, and m are positive integers, with 
r ≥ 3, such that g ≥ (r + 1)(g − d + r) and d < g + r. Then there is a divisor D of 
rank r and degree d whose class is vertex avoiding on a chain of g loops with generic 
edge lengths, and a tropically independent subset A ⊂ {ψI | |I| = m} of size

|A| = min
{(

r + m

m

)
, md− g + 1

}
.

Note that each case of the tropical maximal rank conjecture implies the classical maximal 
rank conjecture for the same parameters g, r, d, and m, through well-known tropical 
lifting and specialization arguments [11, Proposition 4.7].

As the links to algebraic geometry are already established, the main purpose of this 
paper is to introduce new combinatorial methods for approaching the tropical maximal 
rank conjecture, and to use these methods to prove the conjecture for canonical divisors 
(i.e. the case where r = g − 1 and d = 2g − 2, for all m), and for a wide range of 
cases with m = 3. Our results include inductive statements through which new cases 
of the tropical maximal rank conjecture can be deduced from other cases with smaller 
parameters (Theorems 1.1 and 1.2), along with explicit combinatorial calculations in 
increasingly intricate examples (see Sections 5–7), providing base cases for applying 
such inductions.

To state our results as cleanly as possible, we find it helpful to divide the space 
of parameters (g, r, d, m) into the injective range, where 

(
r+m
m

)
≤ md − g + 1, and the 

surjective range, where 
(
r+m
m

)
≥ md −g+1. Under the hypotheses of the classical maximal 

rank conjecture, when m > 1 the vector spaces Symm H0(X, OX(1)) and H0(X, OX(m))
have dimension 

(
r+m
m

)
and md −g+1, respectively, so the injective range (resp. surjective 

range) is exactly the set of parameters for which the classical maximal rank conjecture 
predicts μm to be injective (resp. surjective). In the setting of the tropical maximal rank 
conjecture, the set {ψI | #I = m} has size 

(
r+m
m

)
, so (g, r, d, m) is in the injective or 

surjective range, respectively, according to whether the tropically independent set A is 
supposed to consist of all possible ψI , or a subset of size md − g + 1.

We also find it convenient to change coordinates on the space of parameters in the 
conjectures, setting s = g − d + r and ρ = g − (r + 1)(g − d + r). These new parameters 
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are natural from the point of view of algebraic geometry; in the context of the classical 
maximal rank conjecture, s = h1(X, OX(1)), and ρ is the Brill–Noether number, which 
gives the dimension of the space of linear series of degree d and rank r on a general curve 
of genus g. Note that (r, s, ρ, m) uniquely determines (g, r, d, m), by the formulas

g = rs + ρ and d = g + r − s.

Also, when d < g + r and g ≥ (r + 1)(g − d + r), the parameters s and ρ satisfy s ≥ 1
and 0 ≤ ρ ≤ g − 1. We say that (r, s, ρ, m) is in the injective (resp. surjective) range if 
the corresponding (g, r, d, m) is in the injective (resp. surjective) range.

Theorem 1.1. Suppose (r, s, ρ, m) is in the injective range. Then the tropical maximal rank 
conjecture for (r, s, ρ, m) implies the tropical maximal rank conjecture for (r, s, ρ + 1, m)
and (r, s + 1, ρ, m).

Theorem 1.2. Suppose r ≥ s and (r, s, ρ, m) is in the surjective range. Then the tropical 
maximal rank conjecture for (r, s, ρ, m) implies the tropical maximal rank conjecture for 
(r + 1, s, ρ, m).

Note that both of these inductive procedures increase the genus and keep m fixed. 
Also, if (r, s, ρ, m) is in the injective range then so are (r, s, ρ + 1, m) and (r, s + 1, ρ, m). 
Similarly, if (r, s, ρ, m) is in the surjective range, then so is (r + 1, s, ρ, m). Therefore, 
proving any single case of the tropical maximal rank conjecture (e.g. by explicit compu-
tation) yields infinitely many other cases of increasing genus.

For m = 3, we prove the cases where ρ = 0 and either s ≥ r2/4 or r = s +1 by explicit 
computation, and deduce the following result.

Theorem 1.3. The tropical maximal rank conjecture holds for (r, s, ρ, 3) when

(1) s ≥ r2/4, or
(2) ρ = 0 and r ≥ s + 1.

Fig. 1 illustrates the cases covered by Theorem 1.3 when ρ = 0. One computes that 
(r, s, 0, 3) is in the injective range exactly when

s ≥ (r + 3)(r + 2)(r + 1) − 6(3r + 1)
6(2r − 1) ,

and the dotted curve represents the boundary between the injective range and the sur-
jective range. The cases covered by (1) are in the injective range, and the cases covered 
by (2) are in the surjective range.

We can improve Theorem 1.3 by using explicit computations to prove additional 
cases in the unshaded region and then bootstrapping via our inductive methods. Note 
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Fig. 1. Cases of the maximal rank conjecture covered by Theorem 1.3 for ρ = 0 and m = 3.

in particular that, for fixed r and m, Theorems 1.1 and 1.2 reduce the tropical maximal 
rank conjecture to finitely many cases. For m = 3 and small r, we can carry out the 
necessary computations by hand.

Theorem 1.4. The tropical maximal rank conjecture holds for m = 3 and r ≤ 4.

As mentioned above, each case of the tropical maximal rank conjecture implies the 
corresponding case of the classical maximal rank conjecture. The cases of the maximal 
rank conjecture in the injective range given by part (1) of Theorem 1.3 follow from 
Larson’s maximal rank theorem for sections of curves [12]. Indeed, Larson shows that, 
when s ≥ r2/4 and X ⊂ P

r is general, any cubic hypersurface that contains a general 
hyperplane section of X must contain the hyperplane. It follows easily that X is not 
contained in any cubic hypersurface, and hence μ3 is injective.

If (g, r, d, m) is in the surjective range, then so is (g, r, d, m +1), and the classical maxi-
mal rank conjecture for (g, r, d, m) implies the maximal rank conjecture for (g, r, d, m +1)
(see, e.g. the proof of [11, Theorem 1.2]). Unfortunately, we do not know how to prove 
the corresponding induction on m for the tropical maximal rank conjecture in general. 
Nevertheless, given that the maximal rank conjecture holds for m = 2 and using the in-
ductive statement for the classical maximal rank conjecture, it follows that the maximal 
rank conjecture holds for (g, r, d, m), for all m, provided that it holds for (g, r, d, 3), and 
this is in the surjective range.

Corollary 1.5. The maximal rank conjecture holds for (g, r, d, m), for all m, provided that 
either

(1) (g, r, d, 3) is in the surjective range and r ≤ 4, or
(2) ρ(g, r, d) = 0 and r ≥ s + 1.



142 D. Jensen, S. Payne / Journal of Combinatorial Theory, Series A 152 (2017) 138–158
Fig. 2. The graph Γ.

These cases of the maximal rank conjecture appeared previously in [5,6], over a field of 
characteristic zero; the present paper gives an independent and characteristic free proof.

The canonical divisor (i.e. the case where r = g−1 and d = 2g−2) is in the surjective 
range for all m, and in this special case we do manage to give an inductive argument 
starting from m = 2 to prove the tropical maximal rank conjecture for all m.

Theorem 1.6. Suppose r = g−1 and d = 2g−2. Then the tropical maximal rank conjecture 
holds for (g, r, d, m).

Equivalently, in terms of the parameters (r, s, ρ, m), the tropical maximal rank conjecture 
holds for s = 1 and ρ = 0.

This paper, like many other recent tropical geometry papers such as [1–4,9,13], is 
devoted to essentially combinatorial constructions on graphs, drawing inspiration and 
direction from analogous constructions on algebraic curves, with a view toward appli-
cations in algebraic geometry via lifting theorems and specialization. The structure of 
the paper is as follows. We briefly review the basic setup, with chains of loops, vertex 
avoiding divisors, and tropical independence of distinguished sections in Section 2. In 
Section 3, we present a mild generalization of the notion of permissible functions, which 
was one of the key combinatorial tools in [11]. In Section 4, we discuss inductive meth-
ods for tropical independence results, proving Theorems 1.1 and 1.2. We apply these 
methods first to the canonical divisor in Section 5, proving Theorem 1.6, and then to 
prove Theorem 1.3 in Section 6. Finally, in Section 7, we prove enough additional cases 
for m = 3 and r ≤ 4 by explicit computation to deduce Theorem 1.4.

2. Combinatorics of the chain of loops

In this section, we recall the setup from [11], including definitions of all terms ap-
pearing in the statement of the tropical maximal rank conjecture. The material of this 
section is developed in more detail in that paper and its precursors [8,10], to which we 
refer the reader for further details.

Let Γ be a chain of loops with bridges, as pictured in Fig. 2. Note that Γ has 2g + 2
vertices, one on the lefthand side of each bridge, which we label w0, . . . , wg, and one on the 
righthand side of each bridge, which we label v1, . . . , vg+1. There are two edges connecting 
the vertices vk and wk, the top and bottom edges of the kth loop, whose lengths are 
denoted �k and mk, respectively, as shown schematically in Fig. 2. For 1 ≤ k ≤ g + 1
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Fig. 3. The graph Γ, with three blocks of four loops, when g = 12, r = 2, and s = 4.

there is a bridge connecting wk and vk+1, which we refer to as the kth bridge βk, of 
length nk. Throughout, we assume that Γ has admissible edge lengths in the following 
sense.

Definition 2.1. The graph Γ has admissible edge lengths if

4gmk < �k � min{nk−1, nk} for all k,

there are no nontrivial linear relations c1m1 + · · ·+ cgmg = 0 with integer coefficients of 
absolute value at most g + 1, and

(α+1)s∑
i=αs+1

�i +
(α+1)s−1∑
i=αs+1

ni � min{nαs, n(α+1)s}, (1)

for every integer α ≤ r.

Remark 2.2. The only difference between this notion of admissible edge lengths and [11, 
Definition 4.1] is the addition of the last condition (1), which can be thought of in the 
following way. We divide the first g − ρ loops of Γ into r + 1 blocks consisting of s loops 
each, such that the bridges separating these blocks are much longer than the blocks 
themselves. This allows us to place additional restrictions on which functions can obtain 
the minimum at some point in a block, beyond those that come from each individual 
loop; see Section 3 and [11, Section 6]. Fig. 3 illustrates the decomposition of a chain of 
12 loops into three blocks of four loops each.

Let uk be the midpoint of βk, and decompose Γ into locally closed subgraphs 
γ0, . . . , γg+1, as follows. The subgraph γ0 is the half-open interval [w0, u0). For 1 ≤ i ≤ g, 
the subgraph γi, which includes the ith loop of Γ, is the union of the two half-open in-
tervals [ui−1, ui), which contain the top and bottom edges of the ith loop, respectively. 
Finally, the subgraph γg+1 is the closed interval [ug, vg+1]. We further write γ◦

i for the 
ith embedded loop in Γ, which is a closed subset of γi, for 1 ≤ i ≤ g. The decomposition

Γ = γ0 � · · · � γg+1

is illustrated by Fig. 4. For a ≤ b, we let Γ[a,b] be the locally closed, connected subgraph

Γ[a,b] = γa � · · · � γb.

We write PL(Γ) for the set of continuous, piecewise linear functions on Γ with integral 
slope. For any divisor D on Γ, we write
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Fig. 4. Decomposition of the graph Γ into locally closed pieces {γk}.

R(D) := {ψ ∈ PL(Γ)| divψ + D ≥ 0}

for the complete linear series of the divisor D.
The special divisor classes on Γ, i.e. the classes of degree d and rank greater than d −g, 

are classified in [8], where it is show that the Brill–Noether locus W r
d (Γ) parameterizing

divisor classes of degree d and rank r is a union of ρ-dimensional tori. These tori are in 
bijection with certain types of lingering lattice paths in Zr. These are sequences p0, . . . , pg
starting and ending at

p0 = pg = (r, r − 1, . . . , 1),

such that, for all i, pi − pi−1 is equal to 0, a standard basis vector ej, or the vector 
(−1, . . . , −1), and satisfying

pi(0) > · · · > pi(r − 1) > 0

for all i.
The lingering lattice paths described above are in bijection with rectangular tableaux 

of size (r+ 1) × (g− d + r) with alphabet 1, . . . , g. This bijection is given by placing i in 
the jth column when pi − pi−1 = ej , and placing i in the last column when pi − pi−1 =
(−1, . . . , −1). When pi − pi−1 = 0, the number i is omitted from the tableau.

An open dense subset of the special divisor classes of degree d and rank r on Γ consists 
of vertex avoiding divisors. We refer the reader to [7, Definition 2.3] for a definition. If D
is a divisor of rank r on Γ whose class is vertex avoiding, then there is a unique effective 
divisor Di ∼ D such that degw0

(Di) = i and degvg+1
(Di) = r − i. Throughout, we 

will write D for a w0-reduced divisor on Γ of degree d and rank r whose class is vertex 
avoiding, and ψi for a piecewise linear function on Γ such that D + div(ψi) = Di. Note 
that ψi is uniquely determined up to an additive constant, and for i < r the slope of ψi

along the bridge βj is pj(i). The function ψr is constant, so we set pj(r) = 0 for all j.
For a multiset I ⊂ {0, . . . , r} of size m, let DI =

∑
i∈I Di and let ψI be a piecewise 

linear function such that mD + divψI = DI . By construction, since divψI + mD = DI

is effective, the function ψI is in R(mD) and agrees with 
∑

i∈I ψi up to an additive 
constant.

Before stating our combinatorial conjecture, we recall the definition of tropical inde-
pendence from [10].
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Definition 2.3. A set of piecewise linear functions {ψ0, . . . , ψr} on a metric graph Γ is 
tropically dependent if there are real numbers b0, . . . , br such that for every point v in Γ
the minimum

min{ψ0(v) + b0, . . . , ψr(v) + br}

occurs at least twice. If there are no such real numbers then {ψ0, . . . , ψr} is tropically 
independent.

Remark 2.4. Since the functions ψI are determined only up to an additive constant, we 
often suppress the constants bI in the definition of tropical dependence and assume that 
the minimum of the set {ψI(v)} occurs at least twice at every point v ∈ Γ.

3. Permissible functions

Our strategy for proving cases of the tropical maximal rank conjecture will proceed 
by contradiction. We choose a set A of size min{

(
r+m
m

)
, md − g + 1} and let θ be the 

piecewise linear function

θ = min
I∈A

{ψI},

which is in R(mD), with Δ the corresponding effective divisor

Δ = mD + div θ.

We will assume that the minimum occurs everywhere at least twice and use this to 
deduce properties of the function θ and the corresponding divisor Δ, and ultimately 
obtain a contradiction.

For any function ψ ∈ PL(Γ), we let σkψ denote the slope of ψ at uk going to the 
right. So, for example, we have

σkψI =
∑
i∈I

pk(i).

For ease of notation, we write

σi = σiθ and δi = deg(Δ|γi
).

The nonnegative integer vector δ = (δ0, . . . , δg+1) restricts the functions ψI that 
can obtain the minimum on a given loop of Γ, as observed in [11, Section 6]. Here we 
restate this observation in terms of the vector of slopes σ = (σ0, . . . , σg+1), which makes 
the following definition and its basic properties particularly transparent. We also give 
additional restrictions on functions that can obtain the minimum on a given block of 
loops, using condition (1) in Definition 2.1.
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Definition 3.1. Let I ⊂ {0, . . . , r} be a multiset of size m. We say that ψI is σ-permissible
on γ◦

k if

σk−1ψI ≤ σk−1 and σkψI ≥ σk.

Similarly, we say that ψI is σ-permissible on a block Γ[αs+1,(α+1)s] if

σαsψI ≤ σαs and σ(α+1)sψI ≥ σ(α+1)s.

Note that if a function ψI is σ-permissible on a block, then it must be σ-permissible on 
some loop in that block. On the other hand, ψI may be σ-permissible on a loop without 
being σ-permissible on the block containing that loop. The following lemma shows that 
both conditions are necessary for a function to obtain the minimum at some point of a 
loop or block.

Lemma 3.2. If ψI(v) = θ(v) for some v ∈ γ◦
k then ψI is σ-permissible on γ◦

k. Similarly, 
if ψI(v) = θ(v) for some v ∈ Γ[αs+1,(α+1)s] then ψI is σ-permissible on Γ[αs+1,(α+1)s].

Proof. The first statement is [11, Lemma 6.2]. The second statement follows by the same 
argument, using the fact that the bridges between blocks are much longer than the blocks 
themselves. �

A consequence of Lemma 3.2 is the following proposition, which controls the degree 
distribution of the divisor Δ.

Proposition 3.3. Suppose that the number t appears in the ith column of the tableau, 
and let β be the minimum multiplicity of i among multisets I such that ψI obtains the 
minimum at some point of γ◦

t . Then δt ≥ m − β.

Proof. Note that the degree δt can be determined directly from the slopes σt−1 and σt

along the bridges to the left and right of γt. More precisely, we have

δt = σt−1 − σt + m deg(D|γt
).

It therefore suffices to show that

σt ≤ σt−1 + m deg(D|γt
) + β −m.

To see this, let I be a multiset such that i has multiplicity β in I, and ψI obtains the 
minimum at some point of γ◦

t . By Lemma 3.2, ψI is σ-permissible, so σt ≤ σtψI and 
σt−1ψI ≤ σt−1. Note that, if D has a chip on γt, then by definition σtψj = σt−1ψj for 
all j 
= i, whereas σtψi = σt−1ψi + 1. It follows that the slope of ψI increases by β from 
ut−1 to ut. Similarly, if D has no chips on γt, then the slope of ψI decrease by m −β. In 
other words,
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σtψI = σt−1ψI + m deg(D|γt
) + β −m,

and the proposition follows. �
Proposition 3.3 can be seen as a generalization of [11, Proposition 5.2], which we 

reprove here.

Corollary 3.4. Suppose the minimum of {ψI(v)}I occurs at least twice at every point v
in Γ. Then δt ≥ 2 for all t.

Proof. Suppose the minimum occurs at least twice at every point in Γ. Then we can 
choose ψI and ψJ such that both obtain the minimum at ut−1, and σt−1ψI = σt−1ψJ .

We now assume δt ≤ 1 and proceed to find a contradiction. By Proposition 3.3, 
since δt ≤ 1, the multisets I and J , which have size m, must contain the value i with 
multiplicity at least m − 1. In other words, I = {i(m−1)α} and J = {i(m−1)β} for some 
α 
= β. However, σt−1ψα 
= σt−1ψβ , and hence σt−1ψI 
= σt−1ψJ , which contradicts the 
choice of ψI and ψJ . �
4. Inductive methods

In this section, we show how to deduce new cases of the tropical maximal rank conjec-
ture, of increasing genus, from any given case. This allows us to induct on the parameters 
and thereby prove the conjecture in a wide range of cases.

We first prove Theorem 1.1, which says that, when the tropical maximal rank con-
jecture holds for parameters (r, s, ρ, m) in the injective range, then it also holds for 
(r, s, ρ + 1, m) and (r, s + 1, ρ, m).

Proof of Theorem 1.1. By assumption, there exists a divisor D on the chain of g loops 
of rank r and degree d, whose class is vertex avoiding, such that the set of all functions 
ψI is tropically independent. We first show that we can increase ρ by 1. It suffices to 
construct a divisor D′ on the chain of g+1 loops of rank r and degree d +1, whose class 
is vertex avoiding, such that the set of all functions ψI is tropically independent.

We construct D′ by specifying that D′|Γ[0,g] = D, and the last step of the correspond-
ing lattice path is lingering, with the point of D′ on γ◦

g+1 in sufficiently general position 
so that the class of D′ is vertex avoiding. Then, the restrictions of the functions ψI to 
Γ[0,g] are tropically independent, so the functions themselves are tropically independent 
as well.

We now show that we can increase s by 1. It suffices to construct a divisor D′ on 
a chain of g + r + 1 loops of rank r and degree d + r, whose class is vertex avoiding, 
such that the set of all functions ψI is tropically independent. As before, we construct 
D′ such that D′|Γ[0,g] = D, and now the last r + 1 steps of the lingering lattice path 
are, in order, in each of the coordinate directions. (This is equivalent to appending an 
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Fig. 5. The change in tableau when inducting on s in Theorem 1.1.

extra row containing the numbers g + 1, . . . , g + r + 1 to the bottom of the tableau 
corresponding to D, as shown in Fig. 5.) Again, the restrictions of the functions ψI to 
Γ[0,g] are tropically independent, so the functions themselves are tropically independent 
as well. �

We now prove Theorem 1.2, which says that, when r ≥ s and the tropical maximal 
rank conjecture holds for parameters (r, s, ρ, m) in the surjective range, then it also holds 
for (r + 1, s, ρ, m).

Proof of Theorem 1.2. Let g′ = g + s and d′ = g + r + 1. By assumption, there exists 
a divisor D on the chain of g loops of rank r and degree d and a tropically independent 
set A of functions ψI of size

|A| = md− g + 1 = (md′ − g′ + 1) − ((m− 1)(s + 1) + 1).

We construct a divisor D′ on the chain of g′ loops of rank r + 1 and degree d′ such 
that D′|Γ[s+1,g′] = D, and the first s steps in the lingering lattice path are all in the 
first coordinate direction. (This is equivalent to adding s to every entry of the tableau 
corresponding to D, and then appending an extra column containing the numbers 1, . . . , s
to the left of this tableau, as shown in Fig. 6.)

We construct a set A′ of md′ − g′ + 1 functions on the chain of g′ loops as follows. 
First, replace each function ψI ∈ A with ψI+1, where I + 1 = {i + 1|i ∈ I}. Note that 
this is well defined, as we have increased the rank by 1. Now, append to the set A the 
function ψ0(m) and all functions of the form ψ0(k)1(m−1−k)α, where 1 ≤ k ≤ m − 1 and 
1 ≤ α ≤ s + 1. Note that, since r ≥ s, all of these functions exist. Moreover, this is 
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Fig. 6. The change in tableau when inducting on r Theorem 1.2.

precisely (m − 1)(s + 1) + 1 functions, so the set A′ obtained by adding these functions 
has cardinality md′ − g′ + 1.

Now, suppose that the minimum of the functions ψI ∈ A′ occurs everywhere at least 
twice. On the bridge βs, all (m −1)(s +1) +1 of the added functions have distinct slopes, 
and all have slope larger than σsψ1(m) = mr, which is the largest possible slope among 
all functions ψI+1 for ψI ∈ A. It follows that the only functions that may obtain the 
minimum to the right of βs are contained in the set A. By assumption, however, the 
functions in A are tropically independent on this subgraph, and the result follows. �
Example 1. Figs. 5 and 6 illustrate the change in tableaux for the inductive steps in 
Theorems 1.1 and 1.2, starting from the case (r, s, ρ, m) = (3, 2, 0, 3) to deduce the cases 
(3, 3, 0, 3) and (4, 2, 0, 3), respectively. This is a rare case where 

(
r+m
m

)
= md −g+1, so it 

is in both the injective and surjective ranges (i.e. the maximal rank conjecture predicts 
μm to be an isomorphism), and hence both theorems can be applied. Note, however, 
that some cases of the tropical maximal rank conjecture, such as (r, s, ρ, m) = (4, 3, 0, 3), 
cannot be deduced from any cases of smaller genus using Theorems 1.1 and 1.2, so 
additional arguments are required to handle these base cases. The case (r, s, ρ, m) =
(4, 3, 0, 3) is proved in Theorem 1.3.

5. The canonical divisor

Max Noether’s theorem states that, if X is a nonhyperelliptic curve and D = KX is 
the canonical divisor, then the maps μm are surjective for all m. This can be seen as a 
strong form of the maximal rank conjecture in the special case of the canonical divisor. 
The results of [11, §3] provide a new proof of this result for sufficiently general curves, by 
proving the tropical maximal rank conjecture for m = 2 and using an algebraic geometry 
argument to deduce the classical maximal rank conjecture for m > 2. In this section, 
we give a purely combinatorial proof of Max Noether’s theorem for a general curve, by 
showing that the tropical maximal rank conjecture holds for all m, in the case of the 
canonical divisor.

Proof of Theorem 1.6. Fig. 7 illustrates the tableau corresponding to the canonical 
divisor. By Theorem 1.2, if the tropical maximal rank conjecture holds for r = g − 1, 
s = 1, and ρ = 0 then it also holds for r′ = g, s = 1, and ρ = 0. The smallest genus of a 
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1 2 3 · · · g

Fig. 7. The tableau corresponding to the canonical divisor.

nonhyperelliptic curve is 3, so to prove the result by induction on g, it suffices to prove 
the base case g = 3.

Suppose g = 3. We must construct a set Am of 4m − 2 functions that are tropically 
independent on the chain of 3 loops. We let A2 be the set of all functions ψij , and 
define Am recursively as follows. For each function ψI ∈ Am−1, we let I ′ be the multiset 
obtained by adding an additional 1 to the multiset I, and include the function ψI′ in 
Am. We then add to this set the 4 functions

ψ0(m) , ψ0(m−1)2, ψ02(m−1) , ψ2(m) .

We first show that the functions ψI ∈ Am are tropically independent. Suppose that 
the minimum θ = minψI∈Am

{ψI} occurs everywhere at least twice. Then at the point 
u1, the minimum must be obtained by two functions with the same slope. Note that

σ1ψ0(a)1(b)2(m−a−b) = 3a + b.

We show, by induction on m, that the largest slope σ1ψI that is obtained twice among 
the functions ψI ∈ Am is m. To see this, first note that there is no multiset I of size 
m − 1 with σ1ψI = 3m − 4. It follows that ψ0(m−1)2 is the only function in A with 
σ1ψI = 3m − 3. From this we see that the largest slope σ1ψI that is obtained twice 
among the functions ψI ∈ Am is either σ1ψ02(m−1) = 3 or is obtained by two functions 
of the form ψI′ for ψI ∈ Am−1. The claim then follows by induction on m. Thus, 
σ1 ≤ m.

Similarly, we have

σ2ψ0(a)1(b)2(m−a−b) = 3a + 2b.

It follows that there is no multiset I of size m − 1 with σ2ψI = 1. Therefore, ψ02(m−1)

is the only function in A with σ2ψI = 3. From this we see that the smallest slope σ2ψI

that is obtained twice among functions ψI ∈ Am is either σ2ψ0(m−1)2 = 3(m − 1) or is 
obtained by two functions of the form ψI′ for ψI ∈ Am−1. It follows by induction on m
that the smallest slope σ2ψI that is obtained twice among functions ψI ∈ Am is 2m. 
Thus, σ2 ≥ 2m.

We therefore see that σ2 ≥ σ1 + m, and hence δ2 ≤ 0. But this contradicts Corol-
lary 3.4, which says that δt ≥ 2 for all t. �
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6. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Throughout, our tableau will be the one in 
which the numbers 1, 2, . . . , s appear in the first column, s +1, s +2, . . . , 2s appear in the 
second column, and so on. We let D be the corresponding divisor on the generic chain 
of loops. Our goal is to find a set A of functions ψijk of size |A| = min{

(
r+3
3
)
, 3d − g+1}

that are tropically independent.
After we choose the set A, we will suppose that the minimum

min
ψijk∈A

{ψijk}

occurs everywhere at least twice, and let θ denote this minimum. We let Δ = div(θ) +3D
be the divisor corresponding to the function θ. By Corollary 3.4, we see that

δt := deg(Δ|γt
) ≥ 2 ∀t.

Equivalently, we have

σt ≤ σt−1 + 1 ∀t ≤ rs.

Moreover, equality can hold only if, for all functions ψijk obtaining the minimum on γt, 
at least one of i, j, k is equal to t.

To show that the functions ψijk ∈ A are tropically independent, we will proceed from 
left to right across the graph, bounding the slope of θ on the long bridges βαs between 
the blocks. Before choosing the set A, we treat the first two blocks and the last two 
blocks separately, in the following two lemmas.

Lemma 6.1. If r ≤ s + 1, we have σs ≤ 3r + s − 4. Similarly, σrs ≥ 2s + 4.

Proof. Since r ≤ s + 1, every function of the form ψ00α has larger slope on βs than any 
function not of this form. It follows that the largest slope that is obtained by two or 
more of the functions ψijk on βs is

3r + s− 4 = (r + s) + (r − 1) + (r − 3) = (r + s) + (r − 2) + (r − 2).

It follows that σs ≤ 3r + s − 4. A symmetric argument shows that σrs ≥ 2s + 4. �
Lemma 6.2. If r ≤ s + 1, we have σ2s ≤ 3r + s − 5. Similarly, σ(r−1)s ≥ 2s + 5.

Proof. We first show that σ2s ≤ 3r+ s − 4. We do this in two cases. First, suppose that, 
for each function ψijk obtaining the minimum along βs, at least one of i, j, k is equal to 
1. Since the minimum occurs at least twice, there must be two such functions that have 



152 D. Jensen, S. Payne / Journal of Combinatorial Theory, Series A 152 (2017) 138–158
the same slope at us. We see that the largest slope that can be obtained more than once 
by functions involving 1 is

3r − 5 = σsψ113 = σsψ122.

Since σt ≤ σt−1 + 1 for all t, it follows that σ2s ≤ 3r + s − 5.
Now, suppose conversely that the minimum at some point of βs is obtained by a func-

tion ψijk where none of i, j, k is equal to 1. Then, since σsψijk = σ2sψijk, by Lemma 3.2, 
we have σ2s ≤ σs. By Lemma 6.1, it follows that σ2s ≤ 3r + s − 4.

To see that this inequality is strict, note that there is only one function ψijk with 
σ2sψijk = 3r+ s −4, namely ψ022. It follows that σ2s < 3r+ s −4. That σ(r−1)s ≥ 2s +5
follows by a symmetric argument. �

We now prove Theorem 1.3 in the injective case.

Proof of part (1) of Theorem 1.3. Our goal is to show that, if s ≥ r2

4 , then the full set of 
functions ψijk is tropically independent. We show that σαs ≤ 3r + s − 2α for all α ≤ r. 
We prove this by induction on α, the cases α = 1, 2 being Lemmas 6.1 and 6.2. Suppose 
that σαs ≤ 3r + s − 2α, and for contradiction assume that σ(α+1)s > 3r + s − 2α − 2. 
Then any function ψijk obtaining the minimum on Γ[αs+1,(α+1)s] must satisfy

σαsψijk ≤ 3r + s− 2α and σ(α+1)sψijk > 3r + s− 2α− 2.

Note that, if none of i, j, k are equal to α, then either

σαsψijk ≥ 2(r − α + s + 1) > 3r + s− 2α,

(if at least two of i, j, k are smaller than α), or

σ(α+1)sψijk ≤ r + s + 2(r − α− 1) = 3r + s− 2α− 2

(if at least two of i, j, k are greater than α).
It follows that at least one of i, j, k must be equal to α. Moreover, since 3r+ s − 2α <

3r + 2s − 3α + 2 = σαsψ(α−1)2α, at most one of i, j, k can be smaller than α. Similarly, 
since 3r + s − 2α− 2 > 3r + s − 3α− 2 = σ(α+1)sψα(α+1)2 , at most one of i, j, k can be 
larger than α. In other words, for each function ψijk that obtains the minimum at some 
point of Γ[αs+1,(α+1)s], we may assume after reordering that i ≤ α, j = α, and k ≥ α. 
Note that the number of such triples is (α + 1)(r + 1 − α), which is maximized when 

α = r
2 , in which case it is equal to (r+2)2

4 .
We now show that the restrictions of these functions to Γ[αs+1,(α+1)s] are tropically 

independent. Note that all of these functions contain ψj = ψα as a summand, so it 
suffices to show that the functions ψik = ψijk −ψj are tropically independent. We write

θα = min{ψik|Γ[αs+1,(α+1)s]}.
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For σαsψαr = r − α + s ≤ σ ≤ (r + s) + (r − α) = σ(α + 1)sψ0α, let Γσ denote the 
union of the loops γt ⊂ Γ[αs+1,(α+1)s] for which σt−1θα = σ. If no such t exists, let Γσ

be a segment of the bridge between Γσ+1 and Γσ−1. Let Aσ be the set of functions ψik

that are permissible on Γσ. If Γσ has positive genus g(Γσ), then by a minor variant of 
[11, Proposition 7.6], we see that

|Aσ| > g(Γσ) + 1.

By applying Corollary 3.4 in the case m = 2, we see that the slopes σtθα do not increase. 
Since the slopes σtψik do not decrease, we see that Aσ ∩ Aσ′ = ∅ for σ 
= σ′. Moreover, 
by considering the functions ψik where neither i nor k is equal to α, we see that Aσ 
= ∅
for all σ. It follows that

|
(r+s)+(r−α)⋃
σ=r−α+s

Aσ| ≥
(r+s)+(r−α)∑
σ=r−α+s

|Aσ| >
(r+s)+(r−α)∑
σ=r−α+s

(g(Γσ) + 1) = s + r + 1.

Note that this inequality is strict. By assumption, however, we have

s + r + 1 ≥ r2

4 + (r + 1) = (r + 2)2

4 ,

a contradiction.
We therefore see that σrs ≤ r + s. But by Proposition 3.3 we have

σt ≤ σt−1 − 2 for rs < t ≤ (r + 1)s,

so σ(r+1)s ≤ r − s < 0, a contradiction. �
And now we prove Theorem 1.3 in the surjective case.

Proof of part (2) of Theorem 1.3. We first consider the case s = r − 1, ρ = 0, m = 3. 
Note that

3d− g + 1 = 2g + 3r − 3s + 1

= 2(r2 + 1) =
(
r + 3

3

)
−

(
r − 1

3

)
.

We let A be the set of functions ψijk such that at least one of i, j, k is equal to 0, 1, 
r − 1, or r. The above computation shows that |A| = 3d − g + 1, as desired. It suffices 
to show that the functions ψijk ∈ A are tropically independent.

We will show that, for all α in the range 1 ≤ α < r−1, we have σ(α+1)s ≤ 4r−4 −2α. 
As a consequence, we see that σ(r−1)s ≤ 2r, contradicting the second part of Lemma 6.2. 
We prove this by induction on α, the case α = 1 being the first part of Lemma 6.2.
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We first show that σ(α+1)s ≤ 4r−2 −2α. By induction, we know that σαs ≤ 4r−2 −2α. 
Recall that the slope of θ may increase by at most 1 from one bridge to the next. If 
σ(α+1)s > 4r − 2 − 2α, then there must be a t such that

σαs+t = σαs+t−1 + 1 = 4r − 1 − 2α.

By Lemma 3.2, all of the functions ψijk obtaining the minimum on γ◦
t must have at least 

one of i, j, k equal to α, and since no 2 functions have identical restrictions to γ◦
t , by 

[11, Lemma 5.1] there must be at least 3 such functions. By construction of the set A, 
however, no such set of 3 functions exists. It follows that σ(α+1)s ≤ 4r − 2 − 2α.

Now, we note that there is only one function ψijk with σ(α+1)sψijk = 4r−3 −2α, and 
only one with σ(α+1)sψijk = 4r − 2 − 2α. To see this, note that if j and k are greater 
than α, then

σ(α+1)sψijk ≤ (2r − 1) + 2(r − α− 1) = 4r − α− 3,

with equality if and only if i = 0, j = k = α + 1. Similarly, if i and j are less than or 
equal to α, then

σ(α+1)sψijk ≥ 2(2r − α− 1) = 4r − 2α− 2,

with equality if and only if i = j = α, k = r. It follows that σ(α+1)s ≤ 4r − 4 − 2α.
Finally, by Theorem 1.2, we see that the tropical maximal rank conjecture therefore 

holds for r ≥ s + 1, ρ = 0, and m = 3 by induction on r. �
7. Divisors of small rank

A consequence of Theorem 1.1 is that, for fixed r and m, it suffices to prove the 
tropical maximal rank conjecture for finitely many s and ρ. In this section, we use this 
observation to prove the tropical maximal rank conjecture for m = 3 and r ≤ 4. We 
also prove the case m = 3, r = 5, ρ = 0. We hope that the examples in this section 
will illuminate some of the additional complexities that arise when we move beyond the 
cases explored in the earlier sections, while simultaneously suggesting that the tropical 
maximal rank conjecture should hold far more generally.

7.1. Rank 3

Fix r = 3 and m = 3. By Theorem 1.3, the tropical maximal rank conjecture holds 
for s = 2 and ρ = 0. Since

(
3 + 3

)
= 3 · 9 − 8 + 1,
3
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1 3 4 5

Fig. 8. The case r = 3, s = 1, ρ = 1.

1 3 5 6

Fig. 9. The case r = 3, s = 1, ρ = 2.

we can use Theorem 1.1 to conclude that the tropical maximal rank conjecture holds for 
all s ≥ 2, ρ ≥ 0. It therefore suffices to consider the cases where s = 1. When s = 1 and 
ρ = 0, the tropical maximal rank conjecture holds by Theorem 1.6.

Let us consider the case s = 1, ρ = 1 in detail. In this case, consider the tableau 
pictured in Fig. 8, and let A be the set of all functions ψijk other than

ψ003, ψ023, ψ033.

We show that the set A is tropically independent. To see this, suppose that the minimum 
min{ψijk} occurs everywhere at least twice, and let θ denote this minimum. The largest 
slope σ1ψijk that is obtained at least twice among functions ψijk ∈ A is

σ1ψ013 = σ1ψ022 = σ1ψ111 = 6.

It follows that σ1 ≤ 6. If σ2 ≥ 6, then the three functions listed above are precisely 
the σ-permissible functions on γ◦

2 . One can check, however, that the restrictions of these 
three functions to γ◦

2 are tropically independent, and thus σ2 < 6. We then see that, if 
ψijk ∈ A obtains the minimum at some point of Γ[3,5], then none of i, j, or k is equal 
to 0. That the restrictions of these functions to Γ[3,5] are tropically independent follows 
from Theorem 1.6.

The cases where ρ = 2 or ρ = 3 follow by a similar argument. In the first case, we 
consider the tableau depicted in Fig. 9, and let A be the set of all functions ψijk other 
than ψ003. In the second case, we consider the tableau depicted in Fig. 10 and let A be 
the full set of functions ψijk. Finally, using Theorem 1.1 to argue by induction from the 
base case ρ = 3, we see that the tropical maximal rank conjecture holds for s = 1 and all 
ρ ≥ 3. We therefore see that the maximal rank conjecture for cubics holds when r = 3.

7.2. Rank 4

Now fix r = 4 and m = 3. By part (1) of Theorem 1.3, the tropical maximal rank 
conjecture holds for s ≥ 4 and all ρ ≥ 0. Similarly, by part (2) of Theorem 1.3, the 
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1 4 6 7

Fig. 10. The case r = 3, s = 1, ρ = 3.
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Fig. 11. The case r = 4, m = 3, s = 3, ρ = 1.

tropical maximal rank conjecture holds for s ≤ 3 and ρ = 0. So it suffices to consider the 
cases where s ≤ 3 and ρ > 0. Moreover, if the tropical maximal rank conjecture holds 
for some pair (s, ρ) satisfying 7s + 2ρ ≥ 22, then by Theorem 1.1, it holds for all larger 
values of s and ρ. It therefore suffices to consider the following pairs:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1).

To examine each of these cases individually would be somewhat tedious, so we will 
focus on just one, the case where s = 3 and ρ = 1. In this case, consider the tableau 
pictured in Fig. 11. We adjust the edge lengths so that the middle block has genus 4. 
That is, rather than setting the bridges βt to be longer when t is a multiple of 3, we 
instead specify the bridges β3, β6, β10, and β13 to be longer than the others. Suppose 
that the minimum min{ψijk} occurs everywhere at least twice, and let θ denote this 
minimum.

Following the proof of part (1) of Theorem 1.3, we see that σ3 ≤ 13 and consequently 
σ6 ≤ 11. As in the same proof, if σ10 > 9, then the only σ-permissible functions on 
the block Γ[7,10] are of the form ψij2, where i ≤ 2 and j ≥ 2. Note that there are 9 
such functions. This is one larger than the bound s + r + 1 obtained in the proof of 
Theorem 1.3, but because we have also increased the genus of the block by one, the same 
argument shows that these 9 functions have tropically independent restrictions to the 
block. It follows that σ10 ≤ 9. Continuing to follow the proof of Theorem 1.3, we see that 
σ13 ≤ 7, and thus σ16 ≤ 1. This is a contradiction, because there is only one function 
ψijk with σ16ψijk = 1, and only one with σ16ψijk = 0.

In a similar way, we can prove the tropical maximal rank conjecture for r = 4, m = 3, 
and all s and ρ.
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7.3. Rank 5

Now fix r = 5 and m = 3. This is the first case where not all of the ρ = 0 cases are 
covered by Theorem 1.3. We will show that the tropical maximal rank conjecture for 
cubics holds when r = 5 and ρ = 0. More specifically, part (2) of Theorem 1.3 shows 
that the tropical maximal rank conjecture holds for s ≤ 4 and ρ = 0, whereas part (1) 
shows that the tropical maximal rank conjecture for cubics holds for s ≥ 7 and all ρ ≥ 0. 
We now consider the case where r = s = 5 and ρ = 0. Note that, by Theorem 1.1, this 
implies the cases where r = 5, s ≥ 5, and ρ ≥ 0. In particular, it implies the remaining 
ρ = 0 case, that of s = 6.

Again, we consider the rectangular tableau with 6 columns and 5 rows, in which the 
numbers 1, 2, . . . , 5 appear in the first column, 6, 7, . . . , 10 appear in the second column, 
and so on. We let D be the corresponding divisor on the generic chain of loops. Our 
goal is to show that the full set of functions ψijk is tropically independent. To that end, 
suppose that the minimum min{ψijk} occurs everywhere at least twice, and let θ denote 
this minimum.

As in Lemma 6.1, we see that σ4 ≤ 15. If σ5 > 15, then the only σ-permissible 
functions on γ◦

5 are ψ013 and ψ022. Since no two functions have identical restrictions 
to the loop γ◦

5 , this is impossible, and thus σ5 ≤ 15. Now, the same argument as in 
Lemma 6.2 shows that σ9 ≤ 14. If σ10 > 14, then the only σ-permissible functions on 
γ◦
10 are ψ023 and ψ122, which is again impossible. It follows that σ10 ≤ 14.

If we can show that σ15 ≤ 14, then by a symmetric argument, we will be done. To 
see this, we follow the argument in part (1) of Theorem 1.3. If σ15 > 14, then the 
σ-permissible functions on the block Γ[11,15] are those of the form ψij2, where i ≤ 2 and 
j ≥ 2. If σ13 > 15, then the σ-permissible functions on Γ[11,13] are

ψ024, ψ123, ψ025, ψ124, ψ222.

But, by the argument in Theorem 1.3, these 5 functions have independent restrictions to 
Γ[11,13]. It follows that σ13 ≤ 15. But there do not exist two functions of the form 
ψij2 with i ≤ 2 ≤ j and σ13ψij2 ≤ 15 that have the same slope on β13. It fol-
lows that σ15 ≤ 14, and therefore the tropical maximal rank conjecture holds in this 
case.
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