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We establish Geometric Invariant Theory (GIT) semistability of the 2nd Hilbert point of

every Gieseker–Petri general canonical curve by a simple geometric argument. As a con-

sequence, we obtain an upper bound on slopes of general families of Gorenstein curves.

We also explore the question of what replaces hyperelliptic curves in GIT quotients of

the Hilbert scheme of canonical curves.

1 Introduction

The log minimal model program for the moduli space of stable curves, also known as

the Hassett–Keel program, offers a promising approach to understanding the birational

geometry of M̄g. The goal of this program is to find a functorial interpretation of the log

canonical models

M̄g(α)= Proj
⊕
m≥0

H0(M̄g, �m(KM̄g
+ αδ)�).

Such an interpretation could then be used to study properties of rational contractions

M̄g ��� M̄g(α) and to obtain structural results about effective divisors on M̄g, in particu-

lar, the Mori chamber decomposition of the effective cone.
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Hassett and Hyeon proved that the first two log canonical models of M̄g are Geo-

metric Invariant Theory (GIT) quotients of asymptotically linearized Hilbert schemes of

tricanonical and bicanonical curves [14, 15]. It is widely expected that further progress

in the Hassett–Keel program will require GIT stability analysis of finite (i.e., nonasymp-

totic) Hilbert points of bicanonical and canonical curves; see [3, 12, 19, 20]. The case of

canonical curves is of particular interest because it should lead to birational contrac-

tions of M̄g affecting the interior Mg.

Only recently it was shown that finite Hilbert points of general canonical curves

are semistable in all genera [2]. Still, the question of which smooth canonical curves

have (semi)stable mth Hilbert points for a given m is widely open. Here we make par-

tial progress toward answering this question. Our main result is a geometric proof of

semistability of the 2nd Hilbert point of a general canonical curve, which gives a suffi-

cient condition for semistability, something that the previous results lack.

Theorem 1.1. Let C be a Gieseker–Petri general smooth curve of genus g ≥ 4. Then its

canonical embedding C ↪→ PH0(C , KC ) has semistable 2nd Hilbert point. �

This result strengthens and complements the results of [2] in the case of 2nd

Hilbert points of canonical curves. Not only do we show that the GIT quotient of the

variety of 2nd Hilbert points of canonical curves is nonempty, but also that this GIT

quotient parameterizes all curves whose linear systems behave generically. Assuming

the expected stability of the general canonical curve, this GIT quotient is an interesting

projective birational model of M̄g:

If G is the quotient in question, then the map f : M̄g ��� G is not a local isomor-

phism along the locus of curves of low Clifford index. As we show in this paper, f is not

regular along the hyperelliptic locus H̄g ⊂ M̄g (see Section 4). In addition, f is not regular

along the locus Trigg(+) of trigonal curves with positive Maroni invariant and contracts

the locus Trigg(0) of trigonal curves with Maroni invariant 0 to a point (this locus is

nonempty only for even g); see Corollary 3.2. We also observe that f is not regular along

the bielliptic locus for g ≥ 7. Finally, when g = 6, the rational map f contracts both the

bielliptic locus (see Proposition 5.3) and the locus of plane quintics (see Corollary 3.5).

In addition to studying the indeterminacy locus of the map f : M̄g ��� G, we also

examine the indeterminacy locus of its inverse f−1 : G ��� M̄g. To this end, we show that

G parameterizes many different types of singular curves, a large number of which are

enumerated in Theorem 3.3. Each of these singular curves is predicted to play a role

in a functorial interpretation of M̄g(α); see [1] for precise predictions. As a consequence
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of our analysis, we discover a class of curves, the A2g-rational curves, which lie in the

total transform under f of the hyperelliptic locus H̄g.

Finally, we include an important application of our semistability result, provid-

ing an upper bound on slopes of one-parameter families of Gorenstein curves with a

sufficiently general generic fiber.

Theorem 1.2. Let B be a complete curve. Consider a flat and proper family C → B of

Gorenstein curves with a relatively ample dualizing sheaf. Suppose that the generic fiber

is a canonically embedded curve with semistable 2nd Hilbert point. Then the degree λ

of the Hodge bundle and the degree δ of the discriminant divisor satisfy the inequality

δ

λ
≤ 7 + 6

g
. (1.1)

�

This theorem is an extension of a celebrated result of Cornalba and Harris [8],

also independently obtained by Xiao [24], saying that the slope of any generically smooth

family of Deligne–Mumford stable curves of genus g is at most 8 + 4/g. In the case of

trigonal fibrations, a result analogous to that of Theorem 1.2 was obtained by Barja and

Stoppino [6].

We prove Theorem 1.2 in Section 5, where we explain the assumptions and give

precise definitions of λ and δ. We note, in particular, that the condition that the generic

fiber is canonically embedded and has GIT semistable 2nd Hilbert point implies that

it is neither hyperelliptic nor trigonal with positive Maroni invariant. It has long been

expected that lower bounds on the slope of a family of curves should depend on the

Clifford index and other geometric properties of the generic fiber; see, for example

[5, 17, 21].

We work over the field of complex numbers C.

2 Semistability of 2nd Hilbert Points

We briefly recall the necessary definitions. Let C ↪→ P
g−1 be a canonically embedded

smooth curve of genus g ≥ 4. Using Max Noether’s theorem on projective normality

of canonical curves [4, p. 117], we define the 2nd Hilbert point of C ↪→ Pg−1 to be the

quotient

[H0(Pg−1,OPg−1(2))→ H0(C ,OC (2))→ 0] ∈ Grass

(
3g − 3,

(
g + 1

2

))
.
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We denote by Hilb
2
g the closure of the locus of 2nd Hilbert points of canonically

embedded curves in the Grassmannian Grass(3g − 3, ( g+1
2 )) and endow Hilb

2
g with

the linearization O(1) coming from the Plücker embedding of the Grassmannian into

P
∧3g−3 H0(Pg−1,OPg−1(2)). Finally, we set

G := Hilb
2,ss
g //SL(g)= Proj

⊕
m≥0

H0(Hilb
2
g,O(m))SL(g)

to be the resulting GIT quotient.

One reason that this construction is of particular interest is that the map

f : M̄g ��� G

is not an isomorphism on the interior Mg ⊂ M̄g. More precisely, we show that curves

of Clifford indices 0 and 1 are outside of the locus where this map is locally an isomor-

phism. We consider hyperelliptic, trigonal, and bielliptic curves in the later sections of

the paper.

We proceed to state the main result of our paper in its greatest generality and to

record its most important corollaries.

Theorem 2.1. A canonically embedded curve not lying on a quadric of rank 3 or less

has semistable 2nd Hilbert point. �

Proof. Our key geometric tool is the SL(g)-invariant effective divisor D ⊂ Grass(3g −
3, ( g+1

2 )) defined as the locus of (3g − 3)-dimensional quotients of H0(Pg−1,OPg−1(2))

whose kernel contains a quadric of rank at most 3. The fact that D is a divisor fol-

lows directly from the fact that the locus of quadrics of rank at most 3 has dimension

3g − 3 in H0(Pg−1,OPg−1(2)). Since Grass(3g − 3,
(

g+1
2

)
) is smooth and has Picard number

1, the divisor D is defined by a global section of some power of O(1). Since SL(g) has

no nontrivial characters, this section is SL(g)-invariant. It follows that any curve whose

Hilbert point is not contained in D is semistable. �

Recall that a complete smooth curve C is said to be Gieseker–Petri general if it

satisfies the Petri condition that

μ : H0(C , L)⊗ H0(C , KC − L)→ H0(C , KC )
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is injective for all L ∈ Pic(C ). That a general curve in Mg is Gieseker–Petri general

was proved by Gieseker [13], as well as Eisenbud and Harris [10] using degeneration

arguments.

Lemma 2.2. The canonical embedding of a Gieseker–Petri general curve does not lie on

a rank 3 quadric. �

Proof. Suppose a canonically embedded curve lies on a quadric of rank 3 whose vertex

is a linear space Λ of dimension g − 3. The projection away from Λ maps C onto a conic

R� P
1 in P

2. It follows that there is a decomposition KC = 2L + B. Here, B is an effective

divisor with Supp(B)=Λ ∩ C , and L is a pullback of O(1) from R. In particular, we have

h0(C , L)≥ 2. Let s0 and s1 be two distinct nonzero global sections of L, and s′
0 and s′

1 be

the same rational functions considered now as sections of L + B. Then

μ(s0 ⊗ s′
1 − s1 ⊗ s′

0)= 0,

violating the Petri condition. �

Proof of Theorem 1.1: Theorem 1.1 follows from Theorem 2.1 using Lemma 2.2. �

3 Degenerations to Rational Normal Surface Scrolls

Aside from canonical curves, there is another variety of interest in P
g−1 with ideal gener-

ated by
(

g−2
2

)
quadrics, namely a rational normal surface scroll. Recall that for nonneg-

ative integers a and b satisfying a + b = g − 2, a rational normal surface scroll Sa,b ⊂ P
g−1

is the join of two rational normal curves of degrees a and b whose linear spans do not

intersect.

Rational normal surface scrolls are of particular interest to us because the linear

system of quadrics containing a smooth trigonal canonical curve C ⊂ P
g−1 cuts out pre-

cisely such a surface. Namely, by the geometric Riemann–Roch the g1
3’s on C are collinear

in P
g−1, and the resulting lines sweep out a rational normal surface scroll Sa,b. The dif-

ference |a − b| is classically known as the Maroni invariant of C . An important fact is

that the ideal of the rational normal surface containing C is generated by the quadrics

containing C [4]. It follows that the 2nd Hilbert point of a smooth trigonal canoni-

cal curve C ⊂ P
g−1 coincides with the 2nd Hilbert point of the rational normal scroll

containing it.



Stability of 2nd Hilbert Points of Canonical Curves 5275

In this section, we show that a rational normal surface scroll Sa,b is semistable

if and only if a= b, that is, if it is a P
1 × P

1 embedded by the complete linear system

|OP1×P1(1,a)| in P
2a+1.

Proposition 3.1. A rational normal surface Sa,b has semistable 2nd Hilbert point if and

only if a= b. �

Proof. The scroll Sa,a in P2a−1 is the image of the homogeneous space P1 × P1 embed-

ded via the complete linear system |O(a − 1,1)|. The fact that its mth Hilbert point is

semistable now follows from Kempf’s stability results [16, Corollary 5.3].

Suppose now that a �= b. To see that the scroll Sa,b is nonsemistable, recall that

the ideal of Sa,b is generated by the determinants of the 2 × 2 minors of the following

matrix (
x0 x1 · · · xa−1 y0 y1 · · · yb−1

x1 x2 · · · xa y1 y2 · · · yb

)
.

We consider the one-parameter subgroup ρ of Aut(Sa,b)⊂ SL(g) acting with

weight −(b + 1) on xi’s and weight a + 1 on yi’s. The ideal of Sa,b becomes homogeneous

with respect to ρ. It follows that every monomial basis of H0(Sa,b,O(m)) has the same

ρ-weight. For m = 2, we compute that the ρ-weight of H0(Sa,b,O(2)) is

2(b + 1)

(
a

2

)
− 2(a + 1)

(
b

2

)
− ab(a − b)= (a − b)(a + b − 1) �= 0.

Since the ρ-weight is nonzero, we conclude that Sa,b is nonsemistable. �

As a corollary, we obtain the following two results.

Corollary 3.2. Trigonal curves with positive Maroni invariant have nonsemistable 2nd

Hilbert points. Trigonal curves with Maroni invariant 0 are strictly semistable and are

identified in G = Hilb
2,ss
g //SL(g) with the point corresponding to the balanced rational

normal surface scroll in Pg−1. �

Proof. This follows immediately from Proposition 3.1 and the fact that the 2nd Hilbert

point of a trigonal curve of genus g and Maroni invariant r coincides with the 2nd Hilbert

point of the scroll S(g+r)/2−1,(g−r)/2−1. �
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We note that nonsemistability of trigonal curves with a positive Maroni invari-

ant reflects the fact that the locus in M̄g of trigonal curves contained in an unbalanced

scroll is covered by families of slope strictly greater than 7 + 6
g ; in particular, when g is

odd, Trigg is covered by families of slope 7 + 20
3g+1 [9].

The second corollary of Proposition 3.1 shows that G = Hilb
2,ss
g //SL(g) parame-

terizes curves with numerous singularities, as predicted by Alper et al. [1].

Theorem 3.3. Suppose g ≥ 6 is even. There exist nontrigonal canonical curves of

genus g with semistable 2nd Hilbert point and possessing the following classes of

singularities:

(a) All An singularities with n≤ 2g + 1.

(b) All Dn singularities with n≤ 2g.

(c) If g = 6m − 2, the singularity y3 = xg+2 and its deformations.

(d) If g = 6m − 4, the singularity y3 = xg+1 and its deformations.

(e) If g = 6m, the singularity y3 = xg+1 and its deformations. �

Proof. Let g = 2k. We begin by constructing a curve C , with a desired singularity p∈ C ,

in the class (3,k + 1) on P
1 × P

1. Next, we embed C via the restriction of the complete

linear system |OP1×P1(1,k − 1)|, which is evidently a canonical linear system on C . The

2nd Hilbert point of the canonical embedding of C will then be the 2nd Hilbert point

of the balanced normal scroll Sk−1,k−1, hence semistable by Proposition 3.1. We can then

deform C out of the scroll preserving singularities of C and the semistability of its 2nd

Hilbert point.

Construction of the singular curve (C , p) on the scroll:

(a) Consider a smooth rational curve C1 in the class (2,1) on P
1 × P

1. Since

h0(OC1(−1,k − 1))= h1(OC1(−1,k − 1))= 0, the restriction map |OP1×P1(1,k)| → |OC1(2k +
1)| is bijective. It follows that for every p∈ C1, there exists a unique divisor C2 ∈
|OP1×P1(1,k)| such that (C1 · C2)p = (2k + 1). Evidently, such a divisor is smooth if p is

not a ramification point of the projection C1 → P
1 onto the second factor.

It follows that for the general point p∈ C1, there is a smooth rational curve C2 ∈
|OP1×P1(1,k)| such that C1 and C2 are maximally tangent at p. Namely, we have (C1 ·
C2)p = (2k + 1). It follows that C := C1 ∪ C2 is a curve of class (3,k + 1) on P

1 × P
1 with a

unique singularity of type A2g+1. The complete linear system |O(1,k − 1)| embeds P1 ×
P

1 in P
g−1, mapping C1 and C2 to rational normal curves, meeting in a singularity of

type A2g+1 at p. Thus, the image of C under this embedding is an A2g+1-rational curve

of Definition 4.1.
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(b) A curve with a D2g singularity is obtained by taking a nodal curve C1 of class

(2,2) and a curve C2 of class (1,k − 1) that is tangent with multiplicity 2k − 1 to one of

the branches at the node of C1.

(c) If k= 3m − 1, then we take three rational curves in the class (1,m), all meet-

ing at a single point where they pairwise intersect with multiplicity 2m. The resulting

singularity is analytically isomorphic to y3 = xg+2.

(d) This part may be proved analogously to Part (c). Specifically, when k= 3m − 2,

we may take three maximally tangent rational curves in the classes (1,m), (1,m), and

(1,m − 1). The resulting singularity is analytically isomorphic to y3 = xg+1.

(e) We exhibit an explicit curve in the class (3,3m + 1) with singularity analyti-

cally isomorphic to y3 = x6m+1. Namely, consider

(y − xm)3 − x3m+1y3 = 0. (3.1)

This curve has a rational parameterization x = t3, y= t3m/(1 − t3m+1). Evidently, under

this parameterization x = t3 and y − xm = t6m+1 + · · · . The claim follows.

Having established the existence of a curve C , with a desired singularity p∈ C ,

in the class (3,k + 1) on P
1 × P

1, we must now show that there exists a nontrigonal

canonical curve with the same singularity and semistable 2nd Hilbert point. To do this,

we observe that a general equisingular deformation of C in P
g−1 is nontrigonal. More

precisely, the deformations of C as a subscheme of P
g−1 and the deformations of C

as a (3,k + 1) divisor on P
1 × P

1 both surject smoothly onto the deformation space of

the singularity p∈ C . Since the dimension of the Hilbert scheme of canonical curves is

(3g − 3)+ (g2 − 2g), the dimension of the SL(g)-orbit of the scroll is g2 − 2g − 6, and the

dimension of the linear system |OP1×P1(3,k + 1)| is 2g + 7, we conclude that the general

equisingular deformation of (C , p) does not lie on the scroll if and only if 3g − 3> 2g + 1,

or g> 4. This concludes the proof. �

In the specific case of g = 6, there is another surface of interest—the Veronese

surface: If C ⊂ P
5 is a smooth canonical curve of genus 6 that admits a g2

5, then any five

points in a g2
5 are coplanar by the geometric Riemann–Roch. It follows that each of the

quadrics containing C also contains the conic through these five points. The resulting

two-dimensional family of conics sweeps out the Veronese surface in P
5. Moreover, the

ideal of the Veronese surface is generated by the quadrics containing C .

Proposition 3.4. The Veronese surface in P
5 has semistable 2nd Hilbert point. �
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Proof. This also follows immediately from [16, Corollary 5.3], as the Veronese surface

is simply P
2 embedded in P

5 via the complete linear system |OP2(2)|. �

Corollary 3.5. A canonically embedded plane quintic has semistable 2nd Hilbert point,

coinciding with the 2nd Hilbert point of a Veronese surface in P
5. �

4 An Answer to the Riddle

What is the limit of the canonical model of a smooth curve as it degenerates to a hyperel-

liptic curve? This is the question that opens a well-known paper of Bayer and Eisenbud

[7]. In this section, we aim to show that their answer—a ribbon—is only part of the story.

In fact, there is a larger class of curves, the A2g-rational curves, that give a canonical

answer to this question, at least from the point of view of GIT for canonical curves.

Definition 4.1. A complete connected reduced curve of genus g with a unique singular-

ity of type A2g (y2 = x2g+1) is called an A2g-rational curve. A complete connected reduced

curve of genus g with a unique singularity of type A2g+1 (y2 = x2g+2) is called an A2g+1-

rational curve. �

Note that the genera of the singularities A2g+1 and A2g both equal g. Therefore,

an A2g-rational curve is necessarily irreducible and its normalization is isomorphic to

P
1. Similarly, an A2g+1-rational curve necessarily has two irreducible components, each

isomorphic to P
1. We will denote an A2g+1-rational curve C with the singularity ÔC ,p �

C[[x, y]]/(y2 − x2g+2) by (C , p).

Isomorphism classes of A2g+1-rational curves with a fixed pointed normalization

are in bijection with closed points of C
∗ × C

g−1. Indeed, let the pointed normalization of

an A2g+1-rational curve be a disjoint union of two-pointed rational curves (P1, p1) and

(P1, p2), where the uniformizer at p1 is x and at p2 is y. Then the isomorphism class of

a (parameterized) A2g+1-curve is specified by a gluing datum y �→ a1x + · · · + agxg, where

a1 �= 0, that defines an isomorphism

C[y]/(yg+1)→ C[x]/(xg+1)

along which the two length g + 1 subschemes supported at p1 and p2, respectively, are

glued. We call (a1,a2, . . . ,ag) ∈ C
∗ × C

g−1 the crimping, and refer the reader to [23] for a

systematic treatment of crimping for singular curves.
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Suppose that C is an A2g+1-rational curve given by the gluing datum y �→ a1x +
· · · + agxg. Since C is a local complete intersection curve, it admits a dualizing line bundle

ωC . While there are numerous ways to obtain a handle on this line bundle, we will only

consider the one that, to us, is the most explicit. Namely, we use the defining property

which says that ωC is the unique line bundle that restricts to O(g − 1) on each irreducible

rational component and has g global sections. It follows that we can identify KC with

the triple (O(g − 1),O(g − 1), κC ) where

κC = 1 + k1x + · · · + kgxg ∈ (C[x]/(xg+1))∗

is a gluing datum for a line bundle on C . Thus, the determination of ωC reduces to

computing κC .

Proposition 4.2. The canonical line bundle ωC is defined by

κC = 1 + k1x + · · · + kg−1xg−1 + kgxg,

where kg = 0 and ki, 1 ≤ i ≤ g − 1, are (uniquely determined) polynomials in

a1, (a1)
−1,a2, . . . ,ag. �

Proof. Since ωC |C1 �O(g − 1) has exactly g global sections 1, y, . . . , yg−1, all of

them have to lift to global sections of ωC . This means that each of the elements

κC , κC y, . . . , κC yg−1 of C[x]/(xg+1)must be a linear combination of 1, x, . . . , xg−1. From this,

we immediately obtain that kg = 0. Next, setting to 0 the coefficient of xg in

κC yn = (1 + k1x + · · · + kg−1xg−1)(a1x + · · · + agxg)n,

we obtain

an
1kg−n + nan−1

1 a2kg−n−1 + · · · = 0. (4.1)

Setting n= g − 1, this gives k1 = −na2/a1, which determines k1 uniquely. The assertion

for k2, . . . ,kg−1 follows by induction by applying (4.1) for n= g − 2, . . . ,1 repeatedly. �

Example 4.3 (See [11, Section 2.3.7]). Up to projectivities, there is a unique canonically

embedded A9-curve C ⊂ P
3. It can be defined by the crimping datum y �→ x + x2 + x3 +
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x4. A quick computation shows that the gluing datum of ωC is κC = 1 − 3x + 5x2 − 5x3.

It follows that the normalization of C is given by

x0 =
(

1

1 − 3x + 5x2 − 5x3

)
, x1 =

(
y

x − 2x2 + 2x3

)
, x2 =

(
y2

x2 − x3

)
, x3 =

(
y3

x3

)
. �

Example 4.4. Suppose g = 2k + 1. Consider the crimping datum

y �→ x − txk+2,

where t �= 0 is a parameter. One easily computes that κC = 1 + tkxk+1 and that the follow-

ing is a basis of H0(C , ωC ):

ωi = (xi + t(k − i)xk+1+i, yi), i = 0, . . . ,k − 1, ωi = (xi, yi), i = k, . . . ,2k. �

We recall the definition of the balanced canonical ribbon R of genus g = 2k + 1

from [2]: R is a canonical ribbon obtained by gluing Spec C[u, ε]/(ε2) and Spec C[v, η]/(η2)

via the isomorphism

u �→ v−1 − v−k−2η,

ε �→ v−g−1η

of distinguished open affines Spec C[u,u−1, ε]/(ε2) and Spec C[v, v−1, η]/(η2).

Lemma 4.5. The flat limit as t → 0 of the A2g+1-curve in Example 4.4 is the balanced

canonical ribbon R of genus g = 2k + 1. �

Proof. Recall from [2, Lemma 3.1] that there is a basis of H0(R, ωR) whose elements can

be identified with the following polynomials in u and ε (here ε2 = 0):

zi = ui, 0 ≤ i ≤ k, zi = ui + (i − k)ui−k−1ε, k + 1 ≤ i ≤ 2k.

Keeping the notation of Example 4.4, we note that if we set ψi :=ωi/(x2k, y2k) and

w := 1/x, then

ψi = (wi, y−i), 0 ≤ i ≤ k, ψi = (wi + (i − k)wi−k−1t, y−i), k + 1 ≤ i ≤ 2k.
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To prove the lemma, it suffices to show that any quadratic relation among the zi’s is a flat

limit of a quadratic relation among the ψi’s as t → 0. If we evaluate a quadratic relation

among zi’s on ψi, we obtain an expression of the form ( f(w)t2,0), where deg f(w)≤ 2k− 2.

It remains to show that (wit,0) can be obtained as a quadratic polynomial in the ψ ’s for

0 ≤ i ≤ 2k − 2. Indeed, we have

(wit,0)= (wk+i+1 + (i + 1)wit, y−k−i−1)(1,1)− (wk+i + iwi−1t, y−k−i)(w, y−1)

=ψk+i+1ψ0 − ψk+iψ1 for 0 ≤ i ≤ k − 1

and

(wit,0)= (w2k + kwk−1t, y−2k)(xi−k+1, y−i+k−1)− (w2k−1 + iwk−2t, y−2k+1)(wi−k+2, y−i+k−2)

=ψ2kψi−k+1 − ψ2k−1ψi−k+2 for k≤ i ≤ 2k − 2. �

We conclude with an observation that the general A2g+1-rational curve is

semistable. We would prefer the stronger statement that such a curve is in fact stable,

but at present we have no proof.

Proposition 4.6. A general A2g+1-rational curve has semistable 2nd Hilbert point. �

Proof. By the above, the variety of A2g+1-rational curves in P
g−1 is irreducible. Thus, it

suffices to find a single A2g+1-rational curve with semistable 2nd Hilbert point. When g

is even, this is already done by Theorem 3.3(a). In the case of odd genus, the balanced

canonical ribbon R has semistable 2nd Hilbert point by Alper et al. [2, Theorem 4.1].

Since R deforms flatly to A2g+1-rational curves by Lemma 4.5, we are done. �

Corollary 4.7. A general A2g-rational curve is semistable. �

Proof. The general A2g-rational curve is a deformation of the general A2g+1-rational

curve. The statement now follows from Proposition 4.6. �

5 A Slope Inequality Après Cornalba and Harris

In this section, we prove Theorem 1.2. To set notation, let B be a complete smooth curve

and consider a flat proper family π : C → B of Gorenstein curves of arithmetic genus
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g ≥ 2. Suppose that the relative dualizing line bundle ω :=ωC/B is relatively ample. Then

π∗(ωm) is a vector bundle of rank g if m = 1 and rank (2m − 1)(g − 1) if m ≥ 2. We set

λ := c1(π∗ω), λ2 := c1(π∗ω2).

After a finite base change, we will assume that λ is divisible by g in Pic(B) and

we let ω̃ :=ω(−π∗(λ/g). Then the normalized Hodge bundle E := π∗ω̃ has a triv-

ial determinant, that is, the transition matrices of E are given by elements of

SL(g,OB).

5.1 Line bundles on the moduli stack of Gorenstein curves

Consider the stack of all complete Gorenstein curves of arithmetic genus g with an ample

dualizing sheaf. Let Ug be its irreducible component parameterizing smoothable curves.

Then λ and λ2 are well-defined line bundles on Ug. We formally define δ := 13λ− λ2. Note

that M̄g ⊂ Ug is an open substack and that the line bundle δ on M̄g has a geometric

interpretation as the line bundle associated to the Cartier divisor of nodal curves. Under

certain conditions this geometric interpretation can be extended to a larger open sub-

stack of Ug. To do this, we consider the regular locus U reg
g ⊂ Ug and define Δ := U reg

g � Mg

to be the locus parameterizing singular curves. Let Δ′ be the union of those irreducible

components of Δ whose generic points parameterize worse than nodal curves. Then on

U◦
g := U reg

g �Δ′ the irreducible components ofΔ are Cartier divisors whose generic points

parameterize nodal curves. By construction, the locus of worse than nodal curves in U◦
g

is of codimension at least two. Thus, the relation O(Δ)= 13λ− λ2 extends from M̄g to

U◦
g . We conclude that at least on U◦

g , the formally defined line bundle δ is the associated

line bundle of the Cartier divisor Δ⊂ U◦
g parameterizing singular curves.

5.2 Slopes of families of Gorenstein curves

Given a family C → B as above, we define its slope to be (δ · B)/(λ · B). We proceed to prove

Theorem 1.2, which is a generalization of a special case of a well-known result of Cor-

nalba and Harris regarding divisor classes associated to families of Hilbert (semi)stable

varieties [8]. In the case of curves, the Cornalba–Harris theorem says that the slope of

an arbitrary generically smooth family of stable curves of genus g is at most 8 + 4/g

[8, Theorem 1.3]. This result was proved independently by Xiao [24] for the wider

class of fibered algebraic surfaces using a vector bundle argument and more recently

by Moriwaki [18] using semistability of a certain vector bundle on M̄g.
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Note that the Cornalba–Harris theorem is sharp: the general family of hyperel-

liptic curves of genus g has slope precisely 8 + 4/g, while there exist families of biellip-

tic curves of slope 8 [5, Theorem 2.1] and there are families of trigonal curves of slope

36(g + 1)/(5g + 1) by [1, 21].

Our proof of Theorem 1.2 follows closely the original argument of Cornalba and

Harris, which relies on GIT. We also note that the Cornalba–Harris GIT approach was

recently generalized to more general families by Stoppino [22].

Proof of Theorem 1.2. The key input in Cornalba–Harris method [8] is the asymptotic

Hilbert semistability of the canonically embedded general fiber of C → B. Our assump-

tion that the general fiber C has semistable 2nd Hilbert point is much stronger than

asymptotic semistability and so leads to a stronger inequality. On the other hand, not

every smooth canonical curve has a semistable 2nd Hilbert point (see Proposition 5.3),

so while our inequality is stronger, not every family will satisfy it.

To begin, GIT-semistability of the 2nd Hilbert point of C is equivalent

to the existence of an SL(g)-invariant polynomial f ∈ H0(PW,O(d)), where W =∧3g−3 Sym2H0(C , ωC ), that does not vanish at the point

3g−3∧
Sym2H0(C , ωC )→

3g−3∧
H0(C , ω2

C )→ 0

of PW. Under the usual identification H0(PW,O(d))� SymdW, the polynomial f corre-

sponds to a section of SymdW that maps to a nonzero section of Symd∧3g−3 H0(C , ω2
C ).

Consider now the family π : C → B as in the statement of the theorem. Let

E = π∗(ω̃) be the normalized Hodge bundle, so det E �OB . Since f is SL(g)-invariant,

it defines a section F of Symd∧3g−3 Sym2
E that restricts to f on C . By construction,

F maps to a generically nonvanishing section of Symd∧3g−3
π∗(ω̃2). Since

∧3g−3
π∗(ω̃2) is

a line bundle on B, we conclude that

c1

(
3g−3∧

π∗(ω̃2)

)
≥ 0.

It follows that c1(π∗(ω̃2))≥ 0.

Since c1π∗(ω̃2)= λ2 − 2λ(3g − 3)/g, we conclude

13λ− δ = λ2 ≥ 2(3g − 3)λ/g,
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which gives the desired inequality
δ

λ
≤ 7 + 6

g
. �

As an immediate consequence of Theorem 1.2, we obtain the following result.

Corollary 5.1. Suppose π : C → B is a relatively minimal fibration of a smooth projective

surface over a smooth complete curve such that the generic fiber is a Gieseker–Petri

general curve of genus g ≥ 4. Then

δ · B

λ · B
≤ 7 + 6

g
. (5.1)

�

Proof. Note that the fibers of π are Gorenstein curves by adjunction. The general fiber

of π is a smooth nonhyperelliptic curve whose canonical embedding has semistable

2nd Hilbert point by Theorem 1.1. Passing to the relative canonical model of π , we

can assume that π has relatively ample dualizing sheaf. The claim now follows from

Theorem 1.2. �

5.3 Bielliptic curves

As [24, Example 4.3] shows, certain double covers of trivial families of elliptic curves

give rise to families of bielliptic curves of genus g and slope 8; for reader’s convenience,

we recall this construction below. Interestingly, Barja proved that any family of curves

with a bielliptic generic fiber has slope at most 8 and those of slope 8 are necessarily

double covers of isotrivial families of smooth elliptic curves [5, Theorem 2.1].

Example 5.2 (Bielliptic family of slope 8, cf. [24, Example 4.3]). Let E be a curve of

genus one. Consider a constant family X := E × B and a divisor D ⊂ X of relative degree

(2g − 2) over B. Since KX = π∗KB , adjunction gives KD − π∗KB = (KX + D) · D − π∗KB ·
D = D2. Thus, the number of branch points of D → B is D2 by Riemann–Hurwitz for-

mula. Consider now the double cover Y → X branched over D. The singular fibers of

Y → B correspond to branch points of D → B. Assuming the branch points are simple,

we conclude that δY/B = D2. On the other hand, by Mumford’s formula

12λY/B − δY/B = κY/B = 2(ωX/B + D/2)2 = D2/2.
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It follows that

λY/B = D2/8 = δ/8.
�

We now contrast the computation of Example 5.2 with Theorem 1.2. Since

8> 7 + 6
g for g ≥ 7, Theorem 1.2 implies that the canonically embedded general bielliptic

curve of genus g ≥ 7 must have a nonsemistable 2nd Hilbert point. In fact, we have a

more precise result.

Proposition 5.3. The 2nd Hilbert point of a canonically embedded smooth bielliptic

curve of genus g ≥ 7 is nonsemistable. The 2nd Hilbert point of a canonically embedded

smooth bielliptic curve of genus g = 6 is strictly semistable. �

Proof. Consider a genus one curve E ⊂ P
g−2 embedded by a degree g − 1 complete

linear system. There are
(g

2

)− (2g − 2)= (g+1
2

)− 3(g − 1)− 1 quadrics containing E .

It follows that a projective cone Cone(E) over E in Pg−1 is cut out by one less quadric

than a smooth canonical curve. In fact, any smooth quadric section of Cone(E) is a

canonically embedded bielliptic curve of genus g, as can be easily verified using adjunc-

tion, and conversely every canonically embedded bielliptic curve lies on such a cone.

If C ∈ |OCone(E)(2)|, then there are
(g+1

2

)− 3(g − 1)− 1 quadrics in H0(C , IC (2)) that

are singular at the vertex of Cone(E). Suppose the vertex has coordinates [0 : 0 :

. . . : 0 : 1]. Now, if ρ is the one-parameter subgroup of SL(g) acting with weights

(−1,−1, . . . ,−1, g − 1), then the ρ-weight of any monomial basis of H0(C , IC (2)) is at

most

−2

((
g + 1

2

)
− 3(g − 1)− 1

)
+ 2(g − 1)= −g2 + 7g − 6 = −(g − 1)(g − 6).

Thus a bielliptic curve has a nonstable 2nd Hilbert point for all g ≥ 6, and a non-

semistable 2nd Hilbert point for all g ≥ 7.

It remains to establish the semistability of a canonically embedded smooth biel-

liptic curve of genus 6. Every such curve is a quadric section of a projective cone over

a genus one curve of degree 5 in P
4. Hence, a canonically embedded smooth bielliptic

curve can be degenerated isotrivially to a double hyperplane section of a projective cone

over an elliptic curve in P
4. The semistability of this nonreduced curve follows from

Kempf’s results [16]. �



5286 M. Fedorchuk and D. Jensen

Acknowledgement

The first author thanks Aise Johan de Jong for several discussions that gave an impetus to this

paper and Anand Deopurkar for many fruitful discussions about ribbons, canonical curves, and

slopes of sweeping families of trigonal loci. The second author thanks Sean Keel for several helpful

conversations during the initial stages of this project.

References
[1] Alper, J., M. Fedorchuk, and D. I. Smyth. “Singularities with Gm-action and the log minimal

model program for M̄g.” (2010): preprint arXiv:1010.3751v2 [math.AG].

[2] Alper, J., M. Fedorchuk, and D. I. Smyth. “Finite Hilbert stability of (bi)canonical curves.”

Inventiones Mathematicae, 2012. doi:10.1007/s00222-012-0403-6.

[3] Alper, J. and D. Hyeon. “GIT constructions of log canonical models of M̄g.” Compact

Moduli Spaces and Vector Bundles. Contemporary Mathematics 564, 87–106. Providence,

RI: American Mathematical Society, 2012.

[4] Arbarello, E., M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of Algebraic

Curves, vol. I. Grundlehren der Mathematischen Wissenschaften 267. New York: Springer,

1985.

[5] Barja, M. A. “On the slope of bielliptic fibrations.” Proceedings of the American Mathemat-

ical Society 129, no. 7 (2001): 1899–906 (electronic).
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