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Splitting type loci are the natural generalizations of Brill-
Noether varieties for curves with a distinguished map to the 
projective line. We give a tropical proof of a theorem of H. 
Larson, showing that splitting type loci have the expected 
dimension for general elements of the Hurwitz space. Our 
proof uses an explicit description of splitting type loci on a 
certain family of tropical curves. We further show that these 
tropical splitting type loci are connected in codimension one, 
and describe an algorithm for computing their cardinality 
when they are zero-dimensional. We provide a conjecture for 
the numerical class of splitting type loci, which we confirm in 
a number of cases.
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1. Introduction

The Picard variety of a curve C is stratified by the subschemes W r
d (C), parameterizing 

line bundles of degree d and rank at least r. The study of these subschemes, known as 
Brill-Noether theory, is a central area of research in algebraic geometry. The celebrated 
Brill-Noether Theorem of Griffiths and Harris says that, if C ∈ Mg is general, then 
the varieties W r

d (C) are equidimensional of the expected dimension, with the convention 
that a variety of negative dimension is empty [15].
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If C is not general, what can we say about its Brill-Noether theory? The gonality
of C is the smallest integer k such that W 1

k (C) is nonempty, and a consequence of the 
Brill-Noether Theorem is that the gonality of a general curve is � g+3

2 �. If we assume 
that C has smaller gonality than this, what effect does this assumption have on the 
dimensions of W r

d (C) for other values of r and d? Along these lines, several recent 
papers have focused on the Brill-Noether theory of curves that are general in the Hurwitz 
space Hg,k, rather than the moduli space Mg [11,12,28,18,23,9,24,13]. The Hurwitz space 
Hg,k parameterizes degree k branched covers of P 1, where the source has genus g. If 
k < � g+3

2 � and (C, π) ∈ Hg,k is general, then the varieties W r
d (C) can have multiple 

components of varying dimensions, prohibiting a naive generalization of the Brill-Noether 
Theorem.

In this setting, however, the Picard variety of C admits a more refined stratification. 
We say that a line bundle L ∈ Pic(C) has splitting type μ = (μ1, . . . , μk) if π∗L ∼=
⊕k

i=1O(μi). (See Section 2.2.) Since the splitting type of a line bundle determines that 
line bundle’s rank and degree, it is a more refined invariant. The splitting type locus
Wμ(C) ⊆ Pic(C) parameterizing line bundles of splitting type μ is locally closed, of 
expected codimension

|μ| :=
∑
i<j

max{0, μj − μi − 1}.

In [23], H. Larson proves an analogue of the Brill-Noether Theorem for the strata Wμ(C).

Theorem 1.1. [23] Let (C, π) ∈ Hg,k be general. If g ≥ |μ|, then

dimWμ(C) = g − |μ|.

If g < |μ|, then Wμ(C) is empty.

Theorem 1.1 is proven by considering analogous closed strata W
μ(C) containing 

Wμ(C). We refer the reader to Section 2.2 for a precise definition. As in the origi-
nal Brill-Noether Theorem, the fact that the dimension of Wμ(C) is at least g − |μ|
holds for all (C, π) ∈ Hg,k. This follows from standard results about degeneracy loci, 
provided that Wμ(C) is nonempty. Larson demonstrates the nonemptiness of Wμ(C)
by showing that a certain intersection number is nonzero.

The fact that the dimension of Wμ(C) is at most g−|μ| is much deeper. In this paper, 
we give a new proof of this result using tropical and combinatorial techniques. In Sec-
tion 2.3, we define tropical analogues of splitting type loci, and prove that these contain 
the image of the corresponding splitting type loci under tropicalization. Our approach 
builds on earlier work exploring the divisor theory of a certain family of tropical curves 
known as chains of loops [10,28,18,9]. Theorem 1.1 is a consequence of the following 
result.
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Theorem 1.2. Let Γ be a k-gonal chain of loops of genus g. If g ≥ |μ|, then W
μ(Γ) is 

equidimensional and

dimW
μ(Γ) = g − |μ|.

If g < |μ|, then W
μ(Γ) is empty.

1.1. Tropical splitting type loci

In her proof of Theorem 1.1, Larson uses the theory of limit linear series on a chain of 
elliptic curves. Remarkably, however, her proof does not require a description of splitting 
type loci on this degenerate curve. That is, it is not necessary for her to classify those 
limit linear series that are limits of line bundles with a given splitting type μ. In contrast, 
our proof of Theorem 1.2 follows from an explicit description of Wμ(Γ). This description 
is used to prove new results and formulate Conjectures 1.6 and 1.7.

Our description of Wμ(Γ) builds on the earlier work of [10,28,18,9] mentioned above. 
The main technical result of [10] is a classification of special divisor classes on chains 
of loops, when the lengths of the edges are sufficiently general. Specifically, if Γ is such 
a chain of loops, then W r

d (Γ) is union of tori T (t), where each torus corresponds to a 
standard Young tableau t on a certain rectangular partition. This result was generalized 
in [29,28] to chains of loops with arbitrary edge lengths. If Γ is the k-gonal chain of 
loops referred to in Theorem 1.2, then W r

d (Γ) is again a union of tori T (t) indexed 
by rectangular tableaux, but here the tableaux are non-standard. Instead, the tableaux 
are required to satisfy an arithmetic condition known as k-uniform displacement (see 
Definition 2.3).

Given a splitting type μ ∈ Zk, we define a partition λ(μ) in Definition 3.1. We call 
a partition of this type a k-staircase. Our description of Wμ(Γ) is analogous to that of 
W r

d (Γ) mentioned above.

Theorem 1.3. Let Γ be a k-gonal chain of loops of genus g. Then

W
μ(Γ) =

⋃
T (t),

where the union is over all k-uniform displacement tableau t on λ(μ) with alphabet [g].

We prove Theorem 1.3 in Section 3. The remainder of the paper uses this classification 
to establish various geometric properties of the tropical splitting type loci Wμ(Γ). For 
example, we compute the dimension of Wμ(Γ) in Section 5, proving Theorem 1.2. In 
Section 6, we study the connectedness of tropical splitting type loci.

Theorem 1.4. Let Γ be a k-gonal chain of loops of genus g. If g > |μ|, then W
μ(Γ) is 

connected in codimension 1.
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Unfortunately, the connectedness of Wμ(Γ) does not imply that of Wμ(C) for a 
general (C, π) ∈ Hg,k. Theorem 1.4 is nevertheless interesting for at least two reasons. 
First, by [23, Theorem 1.2], we know that the locally closed stratum Wμ(C) is smooth 
for a general (C, π) ∈ Hg,k, so it is irreducible if and only if it is connected. Theorem 1.4
therefore suggests that Wμ(C) is irreducible if it is positive dimensional, as predicted 
in [9, Conjecture 1.2]. Second, by [7, Theorem 1], the tropicalization of a variety is 
equidimensional and connected in codimension one, so Theorems 1.2 and 1.4 can be seen 
as evidence that Wμ(Γ) is the tropicalization of Wμ(C) (see Conjecture 1.7 below). In 
fact, by [25] the tropicalization of a variety satisfies stronger connectivity properties, but 
we do not investigate these here.

1.2. Numerical classes

These geometric results follow from a careful study of k-staircases and k-uniform 
displacement tableaux. These combinatorial objects are explored in Section 4. Staircases 
belong to a wider class of partitions, known as k-cores (Proposition 5.4), which have been 
studied extensively in other contexts. (See, for example, [19].) The set Pk of k-cores is a 
ranked poset (Corollary 4.18), with cover relations given by upward displacements in the 
sense of [27, Definition 6.1]. We write Pk(λ) for the interval below λ ∈ Pk. In Section 7, we 
use these observations to compute the cardinality of zero-dimensional tropical splitting 
type loci.

Theorem 1.5. Let Γ be a k-gonal chain of loops of genus g. If g = |μ|, then |Wμ(Γ)| is 
equal to the number of maximal chains in Pk(λ(μ)).

The number of maximal chains in Pk(λ(μ)) has received significant interest in the 
combinatorics and representation theory literature, and has connections to the affine 
symmetric group. More precisely, there is a bijection between such maximal chains and 
reduced words in the affine symmetric group [20]. For this reason, several of our results 
have equivalent formulations in terms of these groups (see Remarks 4.20 and 6.1). There 
is currently no known closed form expression for these numbers, but they satisfy a simple 
recurrence (Lemma 7.3) that allows one to compute a given number in polynomial time 
(Algorithm 7.2).

Theorem 1.5 has implications beyond the zero-dimensional case. In [23, Lemma 5.4], 
Larson shows that the numerical class of Wμ(C) in Pic(C) is of the form aμΘ|μ|, where 
the coefficient aμ is independent of the genus. To compute the coefficient aμ, therefore, 
it suffices to compute the cardinality of Wμ(C) in the case where g = |μ|. In this way, 
Theorem 1.5 suggests the following conjecture.

Conjecture 1.6. Let (C, π) ∈ Hg,k be general. The numerical class of Wμ(C) in 
Picd(μ)(C) is
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[
W

μ(C)
]

= 1
|μ|! · α(Pk(λ(μ))) · Θ|μ|,

where α(P) denotes the number of maximal chains in the poset P.

At the end of Section 7, we provide evidence for Conjecture 1.6, in the form of numer-
ous examples where it holds. We also compute the number of maximal chains in Pk(λ(μ))
for some infinite families of splitting types where the class of Wμ(C) is unknown. For 
such families, these numbers form well-known integer sequences, including binomial co-
efficients (Examples 7.7 and 7.13), geometric sequences (Example 7.8), Catalan numbers 
(Example 7.6), and Fibonacci numbers (Example 7.9). Conjecture 1.6 would be implied 
by the following.

Conjecture 1.7. Let Γ be a k-gonal chain of loops, and let C be a curve of genus g and 
gonality k over a nonarchimedean field K with skeleton Γ. Then the tropicalization map

Trop : Wμ(C) → W
μ(Γ)

is surjective. Moreover, if g = |μ|, then it is a bijection.

Conjecture 1.7 is known to hold in several important cases. It is the main result of 
[8] in the case where Γ has generic edge lengths (or equivalently, when k = � g+3

2 �). The 
main results of [9] and [18] combined show that the tropicalization map is surjective for 
the “maximal” splitting types μα of [9, Definition 2.5]. We do not, however, know that it 
is bijective in the zero-dimensional case. Conjecture 1.7 remains open in the remaining 
cases, including many cases where Conjecture 1.6 is known to hold.

Shortly after this paper was submitted, Conjecture 1.6 was proven by Larson, Larson, 
and Vogt in [21]. Their work shows further that, for a general curve C in the Hurwitz 
space, Wμ(C) is normal and Cohen-Macaulay, and it is irreducible when g > |μ|. Their 
proof relies on further analysis of the combinatorial structures discussed here, including 
k-staircases and the poset of k-cores.
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2. Preliminaries

2.1. Partitions and tableaux

Throughout, we use the convention that N denotes the positive integers. By a slight 
abuse of terminology, we use the term partition to refer to the Ferrers diagram of a 
partition.

Definition 2.1. A partition is a finite subset λ ⊂ N2 with the property that, if (x, y) ∈ λ, 
then

(1) either x = 1 or (x − 1, y) ∈ λ, and
(2) either y = 1 or (x, y − 1) ∈ λ.

It is standard to depict a partition as a set of boxes, with a box in position (x, y) if 
(x, y) ∈ λ. We follow the English convention, so that the box (1, 1) appears in the upper 
lefthand corner. Given a partition λ, we define its transpose to be

λT := {(x, y) ∈ N2 | (y, x) ∈ λ}.

The corners of a partition will play an important role in our discussion.

Definition 2.2. Let λ be a partition. A box (x, y) ∈ λ is called an inside corner if (x +
1, y) /∈ λ and (x, y + 1) /∈ λ. A box (x, y) /∈ λ is called an outside corner if

(1) either x = 1 or (x − 1, y) ∈ λ, and
(2) either y = 1 or (x, y − 1) ∈ λ.

In other words, a box (x, y) ∈ λ is an inside corner if λ � (x, y) is a partition, and a 
box (x, y) /∈ λ is an outside corner if λ ∪ (x, y) is a partition.

Given a positive integer g, we write [g] for the finite set {1, 2, . . . , g}, and let 
([g]
n

)
denote the set of size-n subsets of [g]. A tableau on a partition λ with alphabet [g] is a 
function t : λ → [g] satisfying:

t(x, y) > t(x, y − 1) for all (x, y) ∈ λ with y > 1, and

t(x, y) > t(x− 1, y) for all (x, y) ∈ λ with x > 1.

We depict a tableau by filling each box of λ with an element of [g]. The tableau condition 
is satisfied if the symbols in each row are increasing and the symbols in each column are 
increasing. We write Y T (λ) for the set of tableaux on the partition λ. Given a tableau 
t on λ, we define its transpose to be the tableau tT on λT given by

tT (x, y) = t(y, x) for all (x, y) ∈ λT .
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Fig. 1. A 3-uniform displacement tableau with alphabet [5].

We will be primarily concerned with the combinatorics of certain special kinds of 
tableaux, called k-uniform displacement tableaux.

Definition 2.3. [28, Definition 2.5] A tableau t on a partition λ is called a k-uniform 
displacement tableau if, whenever t(x, y) = t(x′, y′), we have y − x ≡ y′ − x′ (mod k).

We write Y Tk(λ) for the set of k-uniform displacement tableaux on the partition 
λ. The k-uniform displacement condition is satisfied if the lattice distance (or taxicab 
distance) between any two boxes containing the same symbol is a multiple of k. For 
example, Fig. 1 depicts a 3-uniform displacement tableau with alphabet [5]. Note that 
the two boxes containing the symbol 3 have lattice distance 3, and any two of the three 
boxes containing the symbol 5 have lattice distance a multiple of 3.

2.2. Splitting types

Let π : C → P 1 be a branched cover of degree k, where the domain has genus g. If 
L is a line bundle on C, then its pushforward π∗L is a vector bundle on P 1 of rank k. 
Every such vector bundle splits as a direct sum of line bundles:

π∗L = O(μ1) ⊕ · · · ⊕ O(μk).

Throughout, we order the integers μi from smallest to largest, i.e. μ1 ≤ · · · ≤ μk. We refer 
to the vector μ = (μ1, . . . , μk) ∈ Zk as the splitting type of L, and write π∗L ∼= O(μ). 
Many natural invariants of the line bundle L are determined by its splitting type. In 
particular, by the push-pull formula we have:

h0(C,L⊗ π∗O(m)) = xm(μ) :=
k∑

i=1
max{0, μi + m + 1} (1)

h1(C,L⊗ π∗O(m)) = ym(μ) :=
k∑

i=1
max{0,−μi −m− 1}

degL = d(μ) := g − 1 +
k∑

i=1
(μi + 1).

We define the splitting type loci

Wμ(C) = {L ∈ Pic(C) | π∗L ∼= O(μ)}
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�

W
μ(C) =

{
L ∈ Picd(μ)(C) | h0(C,L⊗ π∗O(m)) ≥ xm(μ) for all m

}
.

Equation (1) above shows that Wμ(C) is contained in W
μ(C). The strata W

μ(C)
are closed, whereas the strata Wμ(C) are locally closed. It is not necessarily the case 
that Wμ(C) is the closure of Wμ(C). This is the case, however, when all splitting type 
loci have the expected dimension. (See [23, Lemma 2.1].)

The expected codimension of Wμ(C) in Picd(μ)(C) is given by the magnitude

|μ| := h1(P 1,End(O(μ))) =
∑
i<j

max{0, μj − μi − 1}.

A consequence of (1) is that the sum of the � largest entries of μ is an upper semicon-
tinuous invariant (see Lemma 2.4 below). This defines a natural partial order on splitting 
types. Specifically, given two splitting types μ and λ such that d(μ) = d(λ), we say that 
μ ≤ λ if

μ1 + · · · + μ� ≤ λ1 + · · · + λ� for all � ≤ k.

If one considers a splitting type to be a partition of d(μ) with possibly negative parts, 
then this partial order is the usual dominance order on partitions. This partial order has 
the following interpretation.

Lemma 2.4. If μ ≤ λ, then xm(μ) ≥ xm(λ) for all m, hence W
μ(C) ⊆ W

λ(C).

Proof. Let m be an integer and J the minimal index such that λJ + m + 1 ≥ 0. Since 
μ ≤ λ, we have

μ1 + · · · + μk = λ1 + · · · + λk

μ1 + · · · + μJ−1 ≤ λ1 + · · · + λJ−1,

which together imply that

μJ + · · · + μk ≥ λJ + · · · + λk.

Hence

k∑
i=1

max{0, λi + m + 1} = (λJ + m + 1) + · · · + (λk + m + 1)

≤ (μJ + m + 1) + · · · + (μk + m + 1) ≤
k∑

max{0, μi + m + 1}.

i=1



K. Cook-Powell, D. Jensen / Advances in Mathematics 398 (2022) 108199 9
�j

mj

Fig. 2. The chain of loops Γ.

2.3. Chains of loops

We briefly discuss the theory of special divisors on chains of loops from [10,28,29,18]. 
For a broader review of divisors on tropical curves, we refer the reader to [3,4]. For our 
purposes however, we will only require the material surveyed here.

Throughout, we let Γ be a chain of g loops with bridges, as pictured in Fig. 2. We 
number the loops from left to right, letting mj be the length of the bottom edge of the 
jth loop and �j the length of the top edge.

Definition 2.5. [29, Definition 1.9] If �j +mj is an irrational multiple of mj, then the jth 
torsion order τj of Γ is 0. Otherwise, we define τj to be the minimum positive integer 
such that τjmj is an integer multiple of �j + mj .

The k-gonal chain of loops of genus g referred to in the introduction is the graph Γ
with the following torsion orders:

τj :=
{

0 if j < k or j > g − k + 1
k otherwise.

It is shown in [28][Lemma 2.4] that a modification of Γ admits a harmonic morphism 
of degree k to a tree. This implies that Γ is the tropicalization of a curve with a degree 
k map to the projective line, in all characteristics other than 2,3, or 5.

Remark 2.6. Some of our arguments in Section 3 would be simplified if we assumed 
instead that τj = k for all j. Although this does not affect the Brill-Noether theory of 
Γ, we prefer the torsion orders above because the family of chains of loops with these 
torsion orders has the same dimension as the Hurwitz space Hg,k.

The Jacobian of Γ has two natural systems of coordinates. The first uses the theory 
of break divisors from [26,1]. On the jth loop, define 〈ξ〉j to be the point of distance 
ξmj from the righthand vertex in the counterclockwise direction. Every divisor class D
of degree d has a unique break divisor representative of the form
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(d− g)〈0〉g +
g∑

j=1
〈ξj(D)〉j .

Because this representative is unique, the functions ξj : Picd(Γ) → R/ 
(

mj+�j
mj

)
Z act as 

a system of coordinates on Picd(Γ).
Alternatively, define an orientation on Γ by orienting each of the loops counterclock-

wise, and let ωj be the harmonic 1-form supported on the jth loop with weight 1. Given 
a divisor class D on Γ, define

ξ̃j(D) := 1
mj

D∫
〈0〉g

ωj .

By the tropical Abel-Jacobi theorem [5], since the set of 1-forms ω1, . . . , ωg is a basis for 
Ω(Γ), the functions ξ̃j ∈ Ω(Γ)∗/H1(Γ, Z) form a system of coordinates on Jac(Γ). In our 
combinatorial arguments, we tend to use the functions ξj more often that ξ̃j , but the 
latter are useful due to their linearity. That is, ξ̃j(D1 + D2) = ξ̃j(D1) + ξ̃j(D2).

It is straightforward to translate between the two systems of coordinates. Specifically, 
we have ξ̃j(D) = ξj(D) − (j − 1). Since ξ̃j is linear, it follows that

ξj(D1 + D2) = ξj(D1) + ξ̃j(D2). (2)

In [29], Pflueger classifies the special divisor classes on Γ. This classification specializes 
to the “generic” case where k = � g+3

2 �, studied in [10].

Definition 2.7. [29, Definition 3.5] Let a and b be positive integers and let λ be the 
rectangular partition

λ = {(x, y) ∈ N2 | x ≤ a, y ≤ b}.

Given a k-uniform displacement tableau t on λ with alphabet [g], we define T (t) as 
follows.

T (t) := {D ∈ Picg+a−b−1(Γ) | ξt(x,y)(D) = y − x}.

In the system of coordinates ξj , T (t) is a coordinate subtorus, where the coordinate 
ξj is fixed if and only if the symbol j is in the image of t. The codimension of T (t)
is therefore equal to the number of distinct symbols in t. If the symbol j appears in 
multiple boxes of the tableau t, then the k-uniform displacement condition guarantees 
that the two boxes impose the same condition on ξj .

Theorem 2.8. [29, Theorem 1.4] For any positive integers r and d satisfying r > d − g, 
we have
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W r
d (Γ) =

⋃
T (t),

where the union is over k-uniform displacement tableaux on [r + 1] × [g − d + r] with 
alphabet [g].

A consequence of Theorem 2.8 is that Γ has a unique divisor class of degree k and 
rank 1, which we denote by g1

k. This justifies the terminology that Γ is a k-gonal chain 
of loops. Specifically, the unique k-uniform displacement tableau on [2] × [g−k+1] with 
alphabet [g] contains the symbols 1, 2, . . . , g− k + 1 in the first column and the symbols 
k, k + 1, . . . , g in the second column. In particular, we have

ξ̃j(g1
k) =

{
0 if j ≤ g − k + 1
k if j > g − k + 1.

(3)

Given a splitting type μ ∈ Zk, we define the tropical splitting type locus

W
μ(Γ) =

{
D ∈ Picd(μ)(Γ) | rk(D + mg1

k) ≥ xm(μ) − 1 for all m
}
.

Note that the tropical splitting type locus can be defined in this way for any tropical 
curve Γ with a distinguished g1

k. By Lemma 2.4, if μ ≤ λ, then W
μ(Γ) ⊆ W

λ(Γ). The 
following is a straightforward consequence of Baker’s Specialization Lemma.

Proposition 2.9. Let C be a curve of genus g and gonality k over a nonarchimedean field 
K with skeleton Γ. Then

Trop
(
W

μ(C)
)
⊆ W

μ(Γ).

Proof. Since the divisor of degree k and rank 1 on Γ is unique, it must be the tropicaliza-
tion of the g1

k on C by Baker’s Specialization Lemma. If D ∈ W
μ(C), then by definition 

we have

h0(C,D + mg1
k) ≥ xm(μ) for all m.

By Baker’s Specialization Lemma, we have

rk(Trop(D + mg1
k)) ≥ h0(C,D + mg1

k) − 1 ≥ xm(μ) − 1 for all m.

Thus, Trop(D) ∈ W
μ(Γ). �

3. Tropical splitting type loci

In this section, we prove Theorem 1.3, which gives an explicit description of splitting 
type loci on a k-gonal chain of loops. Before proving Theorem 1.3, we first define a 
partition λ(μ) associated to each splitting type μ.



12 K. Cook-Powell, D. Jensen / Advances in Mathematics 398 (2022) 108199
Fig. 3. The partitions λ−1(μ), λ0(μ), λ1(μ), and λ(μ), where μ = (−3,−1, 1).

3.1. Staircases

Recall the definitions of xm(μ) and ym(μ) from (1).

xm(μ) :=
k∑

i=1
max{0, μi + m + 1}

ym(μ) :=
k∑

i=1
max{0,−μi −m− 1}.

Definition 3.1. Given a splitting type μ ∈ Zk and an integer m, we define the rectangular 
partition

λm(μ) :=
{
(x, y) ∈ N2 | x ≤ xm(μ), y ≤ ym(μ)

}
.

We further define

λ(μ) =
⋃

m∈Z
λm(μ)

=
{
(x, y) ∈ N2 | ∃m ∈ Z s.t. x ≤ xm(μ), y ≤ ym(μ)

}
.

We call a partition of the form λ(μ) a k-staircase.

Example 3.2. Let μ = (−3, −1, 1). Fig. 3 depicts the rectangular partitions λ−1(μ), 
λ0(μ), and λ1(μ), together with λ(μ). Note that λm(μ) is empty for all m other than 
−1, 0, or 1.

Remark 3.3. If μ = (μ1, . . . , μk) and μ′ = (μ1 + m, . . . , μk + m) for some m ∈ Z, then 

there is an isomorphism between W
μ(C) and W

μ′

(C), given by twisting by π∗O(m). 
Correspondingly, we have λ(μ) = λ(μ′).

Remark 3.4. If μ ≤ μ′, then by Lemma 2.4, we have λ(μ′) ⊆ λ(μ).

If both xm(μ) and ym(μ) are positive, then the box (xm(μ), ym(μ)) is the unique 
inside corner of the rectangular partition λm(μ), and one of the inside corners of λ(μ). 
We define
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αm(μ) = xm(μ) − xm−1(μ).

Note that αm(μ) ≤ αm+1(μ) for all m, and ym−1(μ) −ym(μ) = k−αm(μ). We say that 
an integer α is a rank jump in λ(μ) if α = αm(μ) for some integer m. We say that α is a 
strict rank jump in λ(μ) if α = αm(μ) for some integer m such that both xm−1(μ) and 
ym(μ) are positive. Note that xm−1(μ) > 0 if and only if m > −μk, and ym(μ) > 0 if and 
only if m < −1 −μ1. Thus, the strict rank jumps are α1−μk

(μ), α2−μk
(μ), . . . , α−2−μ1(μ).

3.2. Tropical splitting type loci

We now define the analogue of the coordinate tori from [29].

Definition 3.5. Let μ ∈ Zk be a splitting type. Given an integer m and a k-uniform 
displacement tableau t on λ(μ) with alphabet [g], let tm denote the restriction of t to 
the rectangular subpartition λm(μ). We define the coordinate subtorus T (t) as follows.

T (t) =
{
D ∈ Picd(μ)(Γ) | D + mg1

k ∈ T (tm) for all m
}
.

From the definition it appears that, if one wants to determine whether a divisor class 
D is contained in T (t), one has to compute ξj(D +mg1

k) for all integers m. Recall from 
(3), however, that ξ̃j(g1

k) = 0 for all j ≤ g − k + 1. Using (2) and (3), we can simplify 
Definition 3.5 as follows.

Lemma 3.6. Let μ ∈ Zk be a splitting type, and let t be a k-uniform displacement tableau 
on λ(μ) with alphabet [g]. Define the function

Z(x, y) =
{

y − x if t(x, y) ≤ g − k + 1
y − x + mk if t(x, y) > g − k + 1 and xm−1(μ) < x ≤ xm(μ).

Then

T (t) := {D ∈ Picd(μ)(Γ) | ξt(x,y)(D) = Z(x, y)}.

Proof. Let m be an integer and let tm(x, y) = j. If j ≤ g − k + 1, then ξ̃j(g1
k) = 0, and 

by (2) we see that for any divisor class D we have

ξj(D) = ξj(D + mg1
k).

It follows that ξj(D) = y − x if and only if ξj(D + mg1
k) = y − x.

On the other hand, if j > g−k+1, then we must first show that xm−1(μ) < x ≤ xm(μ). 
The second inequality follows from the fact that (x, y) ∈ λm(μ). If x ≤ xm−1(μ), then 
the k + 1 boxes in the hook
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1 3 4 5

2 5

3

5

Fig. 4. A 3-uniform displacement tableau on λ(−3,−1, 1) and the corresponding divisor class.

Hm = {(x, y) ∈ λ(μ) | x ≥ xm−1(μ), y ≥ ym(μ)}

are all below and to the right of (x, y). The two inside corners (xm−1(μ), ym−1(μ)) and 
(xm(μ), ym(μ)) have lattice distance k, so they are the only two boxes of Hm that can 
contain the same symbol. It follows that Hm contains at least k distinct symbols greater 
than or equal to j. Since j > g − k + 1, this is impossible, hence x > xm−1(μ). Now, 
since ξ̃j(g1

k) = k, by (2) we see that for any divisor class D we have

ξj(D) = ξj(D + mg1
k) −mk.

It follows that ξj(D) = y − x + mk if and only if ξj(D + mg1
k) = y − x. �

As in Definition 2.7, the k-uniform displacement condition guarantees that, if the 
symbol j appears in more than one box, then the boxes impose the same condition on 
ξj . In particular, if j > g − k + 1 and tm(x, y) = tm′(x′, y′) = j, then the k-uniform 
displacement condition guarantees that

(y′ − x′) − (y − x) = (m−m′)k,

so Z(x, y) = Z(x′, y′). As a consequence, we see that the codimension of T (t) is equal 
to the number of distinct symbols in t.

Example 3.7. Fig. 4 depicts a 3-uniform displacement tableau t on λ(μ), where μ =
(−3, −1, 1). In this example, only the middle loop has nonzero torsion. The top edge of 
the middle loop is exactly twice as long as the bottom edge, giving this loop torsion order 
3. Since the tableau contains g = 5 distinct symbols, T (t) is a zero-dimensional torus. In 
other words, it consists of a single divisor class D, also depicted in Fig. 4. In this picture, 
the chips on loops 2 and 4 are located at the points 〈1〉2 and 〈1〉4. By Theorem 1.3, the 
divisor class D is in W

μ(Γ). That is, D − g1
3 has rank 0, D has rank 1, and D + g1

3 has 
rank 3.

Lemma 3.6 allows us to formulate the following analogue of [9, Lemma 3.6].
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Lemma 3.8. Let μ ∈ Zk be a splitting type, and let t, t′ be k-uniform displacement 
tableaux on λ(μ). Then T (t) ⊆ T (t′) if and only if

(1) every symbol in t′ is a symbol in t, and
(2) if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

We now prove Theorem 1.3.

Proof of Theorem 1.3. We first show that

W
μ(Γ) ⊇

⋃
T (t).

Let t be a k-uniform displacement tableau on λ(μ), and let D ∈ T (t). By definition, 
D + mg1

k ∈ T (tm) for all m. It follows from Theorem 2.8 that D + mg1
k has degree 

d(μ) +mk and rank at least xm(μ) −1 for all m. By definition, we see that D ∈ W
μ(Γ).

We now show that

W
μ(Γ) ⊆

⋃
T (t).

Let D ∈ W
μ(Γ). By definition, D + mg1

k has degree d(μ) + mk and rank at least 
xm(μ) − 1 for all m. By Theorem 2.8, there exists a k-uniform displacement tableau tm
on the rectangular partition λm(μ) such that D+mg1

k ∈ T (tm). We construct a tableau 
t on λ(μ) as follows. For each box (x, y) in λ(μ), define

t(x, y) = min
m∈Z s.t.

(x,y)∈λm(μ)

tm(x, y).

We first show that t is a tableau on λ(μ). To see that t is strictly increasing across 
rows, suppose that x > 1 and t(x, y) = tm(x, y). Since (x, y) ∈ λm(μ), we see that 
(x − 1, y) ∈ λm(μ) as well. It follows that

t(x− 1, y) ≤ tm(x− 1, y) < tm(x, y) = t(x, y).

The same argument shows that t is strictly increasing down the columns.
We now show that the tableau t satisfies the k-uniform displacement condition. 

Suppose that t(x, y) = t(x′, y′). By construction, there exist integers m and m′ such 
that t(x, y) = tm(x, y) and t(x′, y′) = tm′(x′, y′). Since D + mg1

k ∈ T (tm) and 
D + m′g1

k ∈ T (tm′), we see that

ξt(x,y)(D + mg1
k) ≡ y − x (mod k)

ξt(x,y)(D + m′g1
k) ≡ y′ − x′ (mod k).

It therefore suffices to show that
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ξj(D + mg1
k) ≡ ξj(D + m′g1

k) for all j.

This follows from (2) and the fact that ξ̃j(g1
k) ≡ 0 (mod k) for all j.

Finally, we show that D ∈ T (t). For every box (x, y) ∈ λ(μ), there is an integer m
such that ξt(x,y)(D + mg1

k) = y − x. By Lemma 3.6, we have ξt(x,y)(D) = Z(x, y). Since 
this holds for all (x, y) ∈ λ(μ), we see that D ∈ T (t) by Lemma 3.6. �
3.3. Operations on splitting types

Several operations on splitting types have simple interpretations in terms of the cor-
responding partitions. The first of these corresponds to Serre duality.

Lemma 3.9. Let μ = (μ1, . . . , μk) be a splitting type, and let μT = (−μk, . . . , −μ1). Then 
λ(μT ) = λ(μ)T .

Proof. Since both operations are involutions, it suffices to show that λ(μ)T ⊆ λ(μT ). 
Let (x, y) ∈ λ(μ). Then there exists an integer m ∈ Z such that

x ≤
k∑

i=1
max{0, μi + m + 1},

y ≤
k∑

i=1
max{0,−μi −m− 1}.

Setting m′ = −2 −m, we see that

y ≤
k∑

i=1
max{0,−μi −m− 1} =

k∑
i=1

max{0,−μi + m′ + 1}

x ≤
k∑

i=1
max{0, μi + m + 1} =

k∑
i=1

max{0, μi −m′ − 1}.

Thus, (y, x) ∈ λ(μT ). �
As a consequence, we see that the set of partitions of the form λ(μ) is closed under 

transpose. We now show that it is also closed under the operations of deleting the top 
row or the leftmost column.

Lemma 3.10. Let μ ∈ Zk be a splitting type, let s be the minimal index such that μs <

μs+1, and let

μ+ = (μ1, . . . , μs−1, μs + 1, μs+1, . . . , μk).
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Then λ(μ+) is the partition obtained from λ(μ) by deleting the first row. Moreover, 
|μ| − |μ+| is equal to the largest strict rank jump in λ(μ).

Similarly, let s′ be the maximal index such that μs′ > μs′−1, and let

μ− = (μ1, . . . , μs′−1, μs′ − 1, μs′+1, . . . , μk).

Then λ(μ−) is the partition obtained from λ(μ) by deleting the leftmost column. More-
over, |μ| − |μ+| is equal to k − α, where α is the smallest strict rank jump in λ(μ).

Proof. We prove the statements about μ+. The statements about μ− follow from 
Lemma 3.9, together with the observation that μ− = (μT+)T . Let (x, y) ∈ λ(μ+). Then 
there exists an integer m such that

x ≤
k∑

i=1
max{0, μ+

i + m + 1} and

y ≤
k∑

i=1
max{0,−μ+

i −m− 1}.

Since y is positive and μs is minimal, we see that m ≤ −2 −μs. It follows that μ+
s +m +1 ≤

0, so

x ≤
k∑

i=1
max{0, μ+

i + m + 1} =
k∑

i=1
max{0, μi + m + 1}

y + 1 ≤ 1 +
k∑

i=1
max{0,−μ+

i −m− 1} =
k∑

i=1
max{0,−μi −m− 1}.

So (x, y + 1) ∈ λ(μ). An analogous argument shows that, if (x, y) ∈ λ(μ), then either 
y = 1 or (x, y − 1) ∈ λ(μ+).

We now compute |μ| − |μ+|. If i, j �= s, then μ+
j − μ+

i = μj − μi. If i < s, then 
μ+
s − μ+

i − 1 = 0. Finally, if j > s, then μ+
j − μ+

s = μj − μs − 1. Thus,

|μ| − |μ+| =
∑
i<j

(
max{0, μj − μi} − max{0, μ+

j − μ+
i − 1}

)

=
k∑

j=1

(
max{0, μj − μs − 1} − max{0, μj − μs − 2}

)
.

On the other hand, the largest rank jump in λ(μ) is

α−μs−2(μ) =
k∑(

max{0, μj − μs − 1} − max{0, μj − μs − 2}
)
. �
j=1
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4. Cores and displacement

This section contains the main combinatorial arguments that will be used in our 
examination of tropical splitting type loci. We study an operation on partitions known 
as displacement, and a certain class of partitions known in the combinatorics literature 
as k-cores. We will see in Proposition 5.4 that this class of partitions includes the k-
staircases. Because of Theorem 1.3, we are interested in k-uniform displacement tableaux 
on partitions of this type. A tableau t on a partition λ can be thought of as a chain of 
partitions

∅ = λ0 ⊆ λ1 ⊆ · · · ⊆ λn = λ,

where λj = {(x, y) ∈ λ|t(x, y) ≤ j}. This observation naturally leads us to study posets 
of partitions, where the cover relations guarantee that the resulting tableaux satisfy 
k-uniform displacement.

4.1. Diagonals and displacement

Following [13], given a ∈ Z/kZ, we define the corresponding diagonal (mod k) to be

Da := {(x, y) ∈ N2 | y − x ≡ a (mod k)}.

Definition 4.1. [27, Definition 6.1] Let λ be a partition. The upward displacement1 of λ
with respect to a ∈ Z/kZ is the partition λ+

a obtained from λ by adding all outside 
corners in Da.

Similarly, the downward displacement of λ with respect to a ∈ Z/kZ is the partition 
λ−
a obtained from λ by deleting all inside corners in Da.

Example 4.2. The operations of upward displacement and downward displacement are 
not inverses. For example, consider the partition λ on the left in Fig. 5, where each box 
has been decorated with its diagonal (mod 4). The second partition in the figure is λ+

2 , 
the upward displacement with respect to 2 (mod 4), and the third partition is (λ+

2 )−2 , 
the downward displacement of the second partition, again with respect to 2 (mod 4). 
Note that the first partition and the third partition do not agree.

Definition 4.3. A partition λ is called a k-core if it can be obtained from the empty 
partition by a sequence of upward displacements with respect to congruence classes in 
Z/kZ.

1 This terminology is consistent with [27]. In that paper, partitions are depicted according to the French 
convention, whereas ours are in the English style. Because of this, the upward displacement adds boxes 
below the partition.
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0 3

1 0

2

⇒ 0 3 2

1 0

2

⇒ 0 3

1 0

Fig. 5. Upward displacement followed by downward displacement does not necessarily yield the original 
partition.

Fig. 6. A principal order ideal in P3.

Fig. 7. The partition λ(μ′) is not in the principal order ideal of Fig. 6.

We write Pk for the poset of k-cores, where λ′ ≤ λ if λ can be obtained from λ′ by a 
sequence of upward displacements with respect to congruence classes in Z/kZ. If λ ∈ Pk, 
we write Pk(λ) for the interval (or principal order ideal) below λ in Pk.

Example 4.4. Fig. 6 depicts a Hasse diagram for P3(λ(μ)), where μ = (−3, −1, 1). The 
diagram is drawn from left to right, rather than bottom to top, to preserve space on the 
page. Note that λ(μ) is a 3-core, and that every maximal chain in the interval below 
λ(μ) has the same length. As we shall see, the fact that the length of a maximal chain is 
5 corresponds to the fact that any 3-uniform displacement tableau on λ(μ) has at least 
5 symbols. The fact that there are 2 maximal chains corresponds to the fact that there 
are 2 such tableaux with alphabet [5].

Remark 4.5. Recall that, if μ ≤ μ′, then λ(μ′) ⊆ λ(μ). It is not necessarily true, however, 
that λ(μ′) ≤ λ(μ) in the poset Pk. For example, if μ = (−3, −1, 1) and μ′ = (−3, 0, 0), 
then μ ≤ μ′ but the partition λ(μ′), pictured in Fig. 7, is not contained in P3(λ(μ)), 
pictured in Fig. 6.

We note the following simple observation.
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1 0

0

0

Fig. 8. The partition λ(−3, −1, 1), with each column labeled by the diagonal (mod 3) containing its last box.

Lemma 4.6. The transpose of a k-core is a k-core.

Proof. This follows directly from the fact that (λ+
a )T = (λT )+−a. �

We now define some invariants of partitions. Let λ be a partition and a ∈ Z/kZ a 
congruence class. We define

Ca(λ) := max {y | ∃(x, y) ∈ λ ∩Da with (x, y + 1) /∈ λ} .

In other words, Ca(λ) is the height of the tallest column whose last box is in Da. If no 
such column exists, we define Ca(λ) to be zero. We write

C(λ) = (C0(λ), C1(λ), . . . , Ck−1(λ)),

and further define

ρk(λ) :=
∑

a∈Z/kZ

Ca(λ).

Example 4.7. Fig. 8 again depicts the partition λ(μ), where μ = (−3, −1, 1). Each column 
is labeled by the diagonal (mod 3) containing its last box. The tallest column whose last 
box is in D0 has height 4, the tallest column whose last box is in D1 has height 1, and 
there is no column whose last box is in D2. Therefore, C(λ(μ)) = (4, 1, 0), and

ρ3(λ(μ)) = 4 + 1 + 0 = 5 = |μ|.

4.2. Descent

We now provide an alternate characterization of k-cores. Most of the material in this 
and the next subsection has appeared previously in the literature on k-cores. (See, for 
example, [20,19].) We nevertheless include these arguments here, as they are fairly short 
and we wish to advertise these ideas.

Definition 4.8. We say that a partition λ satisfies k-descent if the following condition 
holds for every congruence class a ∈ Z/kZ. Whenever (x, y) ∈ λ ∩Da and (x +1, y) /∈ λ, 
then Ca−1(λ) < y.
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Example 4.9. The partition λ pictured on the left in Fig. 5 does not satisfy 4-descent, 
because the last box in the first row is in D3, and there exists a column whose last box 
is in D2. In other words, (2, 1) ∈ λ ∩D3 and (3, 1) /∈ λ, but C2(λ) = 3 ≥ 1.

On the other hand, the partition λ(μ) pictured in Fig. 8 does satisfy 3-descent. There 
is no row whose last box is in D1. The last box in the first row is in D0, and there 
is no column whose last box is in D2. The last box in the third row is in D2, and 
C1(λ(μ)) = 1 < 3.

Remark 4.10. If λ satisfies k-descent, then there is a congruence class a ∈ Z/kZ such 
that Ca(λ) = 0. Specifically, if (x, 1) is the last box in the first row, then by definition 
C−x(λ) = 0.

Our goal for this subsection is to prove the following.

Proposition 4.11. A partition λ is a k-core if and only if both λ and λT satisfy k-descent.

To prove Proposition 4.11, we will need a few preliminary results. First, we examine 
the behavior of inside corners in partitions that satisfy k-descent.

Lemma 4.12. Let λ be a partition that satisfies k-descent, and let a ∈ Z/kZ be a congru-
ence class. If λ has an inside corner in Da, then the tallest column whose last box is in 
Da contains an inside corner.

Proof. Let (x, y) ∈ λ ∩ Da be an inside corner, and consider the tallest column whose 
last box is in Da. If it doesn’t contain an inside corner, then the column immediately to 
the right has the same height, and its last box is in Da−1. But the height of this column 
is greater than y, contradicting the definition of k-descent. �
Lemma 4.13. Let λ be a partition that satisfies k-descent. Then λ has an inside corner 
in Da if and only if Ca−1(λ) < Ca(λ).

Proof. First, suppose that λ has an inside corner in Da. By Lemma 4.12, the tallest 
column of λ whose last box is in Da ends in an inside corner. In other words, there is 
an x such that (x, Ca(λ)) ∈ λ ∩ Da and (x + 1, Ca(λ)) /∈ λ. Thus, by the definition of 
k-descent, we see that Ca−1(λ) < Ca(λ).

Conversely, suppose that Ca−1(λ) < Ca(λ), and consider the tallest column of λ
whose last box is in Da. Let (x, Ca(λ)) be the last box in this column, and note that 
(x, Ca(λ) + 1) /∈ λ. Since Ca−1(λ) < Ca(λ) and (x + 1, Ca(λ)) ∈ Da−1, we see that 
(x + 1, Ca(λ)) /∈ λ. Thus, (x, Ca(λ)) ∈ Da is an inside corner. �
Lemma 4.14. Let λ be a partition, and suppose that both λ and λT satisfy k-descent. For 
any congruence class a ∈ Z/kZ, λ cannot have both an inside corner and an outside 
corner in Da.
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Proof. Suppose that (x, y) ∈ Da is an inside corner and (x′, y′) ∈ Da is an outside 
corner. By definition, either y′ = 1 or (x′, y′ − 1) ∈ λ ∩Da−1, hence Ca−1(λ) ≥ y′ − 1. 
Since λ satisfies k-descent, we see that y′ − 1 < y. Similarly, since λT satisfies k-descent, 
we see that x′ − 1 < x. Together, these inequalities imply that (x′, y′) ∈ λ, contradicting 
our assumption that (x′, y′) is an outside corner. �

Lemma 4.14 implies that, when restricted to partitions satisfying k-descent, the op-
erations of upward and downward displacement are inverses.

Lemma 4.15. Let λ be a partition, and suppose that both λ and λT satisfy k-descent. If 
λ has an inside corner in Da, then λ = (λ−

a )+a . Similarly, if λ has an outside corner in 
Da, then λ = (λ+

a )−a .

Proof. We show the first equality above. The second equality follows from an analogous 
argument. Note that λ ⊆ (λ−

a )+a . To see the reverse containment, let (x, y) ∈ (λ−
a )+a . If 

(x, y) /∈ Da or (x, y) is not an inside corner of (λ−
a )+a , then (x, y) ∈ λ−

a ⊂ λ. On the other 
hand, if (x, y) ∈ Da is an inside corner of (λ−

a )+a , then neither (x −1, y) nor (x, y−1) are 
in Da, so either x = 1 or (x − 1, y) ∈ λ, and either y = 1 or (x, y− 1) ∈ λ. It follows that 
either (x, y) ∈ λ or (x, y) is an outside corner of λ. By Lemma 4.14, however, λ cannot 
have an outside corner in Da. Thus, (x, y) ∈ λ, and (λ−

a )+a ⊆ λ. �
Crucially, the k-descent property is preserved by upward and downward displacements.

Lemma 4.16. Let λ be a partition that satisfies k-descent. Then, for any a ∈ Z/kZ, λ+
a

and λ−
a also satisfy k-descent.

Proof. We prove the statement about λ+
a . The statement about λ−

a holds by an analogous 
argument. Suppose that (x, y) ∈ λ+

a and (x + 1, y) /∈ λ+
a . By the definition of k-descent, 

either (x, y) /∈ λ, or (x, y) ∈ λ and Cy−x−1(λ) < y. We first consider the case where 
(x, y) /∈ λ. Since (x, y) ∈ λ+

a , this implies that (x, y) ∈ Da. Note that (x −1, y) ∈ λ ∩Da+1
and (x, y) /∈ λ. By the definition of k-descent, we see that Ca(λ) < y. It follows that, if 
(x′, y′) ∈ λ ∩Da−1 with y′ ≥ y and (x′, y′ + 1) /∈ λ, then (x′, y′ + 1) is an outside corner, 
and thus in λ+

a . From this we obtain Ca−1(λ+
a ) < y.

On the other hand, if (x, y) ∈ λ, then Cy−x−1(λ) < y. We may assume that (x, y) ∈
Da+1, because otherwise we have Cy−x−1(λ+

a ) ≤ Cy−x−1(λ). Then, since (x +1, y) /∈ λ+
a , 

we must have (x +1, y−1) /∈ λ. Since λ satisfies k-descent and (x, y−1) ∈ λ ∩Da, we see 
that Ca−1(λ) < y−1. Since Ca(λ) < y and Ca−1(λ) < y−1, we see that Ca(λ+

a ) < y. �
We now prove Proposition 4.11, which gives an alternate characterization of k-cores.

Proof of Proposition 4.11. First, let λ be a k-core. By Lemma 4.6, λT is a k-core. It 
therefore suffices to prove that λ satisfies k-descent. By definition, λ is obtained from 
the empty partition by a sequence of upward displacements with respect to congruence 
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classes in Z/kZ. We prove that λ satisfies k-descent by induction on the number of 
upward displacements in this sequence. The base case is the empty partition, which 
satisfies k-descent trivially. The inductive step follows from Lemma 4.16, which says 
that the upward displacement of a partition satisfying k-descent also satisfies k-descent.

Now, let λ be a partition such that both λ and λT satisfy k-descent. We prove that 
λ is a k-core by induction on the number of boxes in λ. The base case is the empty 
partition, which is a k-core. If λ is non-empty, then there is an inside corner (x, y) ∈ λ. 
By Lemma 4.16, the downward displacements λ−

y−x and (λ−
y−x)T = (λT )−x−y satisfy k-

descent. By induction, λ−
y−x is therefore a k-core, hence by definition, (λ−

y−x)+y−x is a 
k-core as well. By Lemma 4.15, however, λ = (λ−

y−x)+y−x, so λ is a k-core. �
4.3. Behavior of invariants under displacement

A consequence of the preceding subsection is that Pk is a graded poset. To see this, 
given a vector C = (C0, C1, . . . , Ck−1) and a congruence class a ∈ Z/kZ, define the 
vector C−

a = (C−
0a, C

−
1a, . . . , C

−
k−1a) by

C−
ba =

⎧⎪⎨⎪⎩
Ca − 1 if b = a− 1
Ca−1 if b = a

Cb otherwise.

The notation is justified by the following proposition.

Proposition 4.17. If λ ∈ Pk has an inside corner in Da, then C(λ−
a ) = C(λ)−a .

Proof. It is straightforward to see that, if b �= a, a − 1, then Cb(λ−
a ) = Cb(λ). By 

Lemma 4.12, the tallest column of λ whose last box is in Da contains an inside cor-
ner, and by Lemma 4.13, Ca−1(λ) < Ca(λ). It follows that Ca−1(λ−

a ) = Ca(λ) − 1.
Now, suppose that (x, y) ∈ λ ∩Da is the last box of a column. If y > Ca−1(λ), then 

(x, y) is an inside corner of λ, because (x + 1, y) ∈ Da−1 cannot be in λ by definition. It 
follows that (x, y) /∈ λ−

a , and thus that Ca(λ−
a ) ≤ Ca−1(λ). We now show that equality 

holds. If Ca−1(λ) = 0, then there is nothing to show. Otherwise, suppose that column x
is the tallest column whose last box is in Da−1. By Lemma 4.14, (x, Ca−1(λ) +1) cannot 
be an outside corner of λ, hence x > 1 and (x − 1, Ca−1(λ) + 1) /∈ λ. It follows that 
(x − 1, Ca−1(λ)) ∈ Da is the last box in its column. Since (x − 1, Ca−1(λ)) is not an 
inside corner, it is contained in λ−

a , so Ca(λ−
a ) ≥ Ca−1(λ). �

Corollary 4.18. The set Pk is a graded poset with rank function ρk.

Proof. Let λ ∈ Pk, and suppose that λ has an inside corner in Da. It suffices to show 
that

ρk(λ) = ρk(λ−
a ) + 1.
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This follows from Proposition 4.17 by summing over all b ∈ Z/kZ. �
4.4. Saturated tableaux

Corollary 4.18 provides a natural interpretation for the function ρk. As we shall see in 
Corollary 4.22, if λ ∈ Pk, then ρk(λ) is the minimal number of symbols in a k-uniform 
displacement tableau on λ. Let C (P) denote the set of maximal chains in a poset P. 
Given a partition λ ∈ Pk, we define a map

Φλ :
(

[g]
ρk(λ)

)
× C (Pk(λ)) → Y Tk(λ)

as follows. Let

s1 < s2 < · · · < sρk(λ)

be the elements of S ⊆ [g], and let

∅ = λ0 < λ1 < · · · < λρk(λ) = λ

be a maximal chain in Pk(λ). Define the tableau t = Φλ(S, 
λ) by setting

t(x, y) = sj if (x, y) ∈ λj � λj−1.

For each j, every symbol in λj−1 is smaller than sj , so t is a tableau. Moreover, every 
box containing the symbol sj is in the same diagonal (mod k), so t satisfies k-uniform 
displacement. We say that a tableau t on λ is k-saturated if it is in the image of Φλ. 
Note that every k-saturated tableau contains exactly ρk(λ) distinct symbols.

Theorem 4.19. Let λ be a k-core, and let t be a k-uniform displacement tableau on λ. 
Then there exists a k-saturated tableau t′ on λ such that:

(1) every symbol in t′ is a symbol in t, and
(2) if t(x, y) = t′(x′, y′), then y − x ≡ y′ − x′ (mod k).

Proof. We prove this by induction on ρk(λ). The base case is when ρk(λ) = 0, in which 
case λ is the empty partition, and the result is trivial.

For the inductive step, suppose that h is the largest symbol in t. Note that any box 
containing h must be an inside corner of λ, and every such box is contained in the same 
diagonal Da. In particular, the symbol h does not appear in the restriction t|λ−

a
. By 

induction, there exists a k-saturated tableau t′′ on λ−
a such that every symbol in t′′ is a 

symbol in t|λ−
a
, and if t(x, y) = t′′(x′, y′), then y − x ≡ y′ − x′ (mod k).

By Corollary 4.18, ρk(λ−
a ) = ρk(λ) −1, so the set S of symbols in t′′ has size ρk(λ) −1. 

By definition, there is a maximal chain
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1 2 4 5

3 7

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

3 8

6

8

⇒ 1 2 4 8

4 8

6

8

Fig. 9. Starting with the tableau on the left, we produce a 3-uniform displacement tableau with only 5 
symbols.

∅ = λ0 < λ1 < · · · < λρk(λ)−1 = λ−
a

such that t′′ = Φλ−
a
(S, 
λ). Let S′ = S ∪ {h}, let 
λ′ be the chain obtained by appending 

λ to the end of 
λ, and let t′ = Φλ(S′, 
λ′). In other words,

t′(x, y) =
{

t′′(x, y) if (x, y) ∈ λ−
a

h if (x, y) /∈ λ−
a .

Clearly, every symbol in t′ is a symbol in t. Since h is larger than every symbol 
appearing in t|λ−

a
, we see that t′ is a tableau. Finally, since every box containing h is in 

Da, we see that if t(x, y) = h, then y − x ≡ a (mod k). �
Remark 4.20. Under the bijection between k-uniform displacement tableaux on k-cores 
and words in the affine symmetric group, Theorem 4.19 is equivalent to the statement 
that every word is equivalent to a reduced word.

Example 4.21. Given a k-uniform displacement tableau t on λ, the proof of Theorem 4.19
provides an explicit algorithm for producing the k-saturated tableau t′. At each step, find 
the diagonal Da containing the largest symbol in t. Replace every inside corner in Da

with this symbol, then downward displace with respect to a, and iterate the procedure.
Fig. 9 illustrates this procedure for a 3-uniform displacement tableau on λ(μ), where 

μ = (−3, −1, 1). The tableau on the left uses 8 symbols. At each step, we highlight 
in gray the downward displacement of the previous partition in the sequence, replacing 
symbols as we go until we arrive at a tableau with ρ3(λ(μ)) = 5 symbols.

Corollary 4.22. Let λ be a k-core. The minimum number of symbols in a k-uniform 
displacement tableau on λ is ρk(λ).

Proof. Let t be a k-uniform displacement tableau on λ. By Theorem 4.19, there exists 
a k-uniform displacement tableau t′ on λ such that every symbol in t′ is a symbol in t, 
and t′ has exactly ρk(λ) symbols. It follows that t has at least ρk(λ) symbols. �
5. Dimensions of tropical splitting type loci

In this section, we compute the dimension of Wμ(Γ), proving Theorem 1.2. In order 
to do this, we first apply the results of Section 4 to k-staircases.
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Lemma 5.1. Let μ ∈ Zk be a splitting type, and let c(μ) = − 
∑k

i=1 μi. Then every inside 
corner of λ(μ) is in Dc(μ).

Proof. Recall that the inside corners of λ(μ) are the boxes (xm(μ), ym(μ)). By (1), we 
have

ym(μ) − xm(μ) =
k∑

i=1

(
max{0,−μi −m− 1} − max{0, μi + m + 1}

)

=
k∑

i=1

(
max{0,−μi −m− 1} + min{0,−μi −m− 1}

)

=
k∑

i=1
(−μi −m− 1)

≡ −
k∑

i=1
μi (mod k). �

If λ is a k-staircase, then there is a simple expression for the invariants Ca(λ).

Lemma 5.2. Let μ ∈ Zk be a splitting type. Then

Cc(μ)+i(λ(μ)) = y−μk−i
(μ) =

k−1−i∑
j=1

max{0, μk−i − μj − 1} for all 0 ≤ i ≤ k − 1.

Proof. We first identify the congruence classes a ∈ Z/kZ such that Ca(λ(μ)) = 0. Let 
(x, y) be the last box in a column of λ(μ). Then there exists an integer m such that 
y = ym(μ) and xm−1(μ) < x ≤ xm(μ). Since (xm(μ), ym(μ)) ∈ Dc(μ), we see that 
(x, y) ∈ Dc(μ)+i for some i in the range 0 ≤ i < αm(μ). Since αm(μ) ≤ αm+1(μ)
for all m, we may reduce to the case where m = −2 − μ1 is maximal. We see that 
Cc(μ)+i(λ(μ)) is nonzero for i in the range 0 ≤ i < α−2−μ1(μ) and zero for i in the 
range α−2−μ1(μ) ≤ i ≤ k − 1. Note that α−2−μ1(μ) is the minimal index j such that 
μj+1 ≥ μ1 + 2.

To establish the formula when Ca(λ(μ)) is nonzero, we proceed by induction on the 
number of rows of λ(μ). The base case is when μj − μi ≤ 1 for all i < j, in which case 
λ(μ) is the empty partition. In this case, Ci(λ(μ)) = y−μk−i

(μ) = 0 for all 0 ≤ i ≤ k−1.
For the inductive step, recall from Lemma 3.10 that λ(μ+) is the partition obtained 

by deleting the first row of λ(μ). It follows that

Ca+1(λ(μ+)) =
{

Ca(λ(μ)) − 1 if Ca(λ(μ)) �= 0
0 if Ca(λ(μ)) = 0.

Note that c(μ+) = c(μ) + 1. If μk−i ≤ μ1 + 1, then Cc(μ+)+i(λ(μ+)) = y−μ+
k−i

(μ+) = 0. 
By induction, if μk−i ≥ μ1 + 2, then
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Cc(μ+)+i(λ(μ+)) =
k−1−i∑
j=1

max{0, μk−i − μ+
j − 1} =

k−1−i∑
j=1

max{0, μk−i − μj − 1} − 1,

and the result follows. �
Corollary 5.3. Let μ ∈ Zk be a splitting type. Then ρk(λ(μ)) = |μ|.

Proof. By Lemma 5.2, we have

ρk(λ(μ)) =
k−1∑
i=0

Cc(μ)+i(λ(μ))

=
k−1∑
i=0

k−1−i∑
j=1

max{0, μk−i − μj − 1}

=
∑
j<i

max{0, μi − μj − 1} = |μ|. �

In order to use the results of Section 4, we must show that k-staircases are in Pk.

Proposition 5.4. Every k-staircase is a k-core.

Proof. Let μ ∈ Zk be a splitting type. By Proposition 4.11, we must show that λ(μ)
and λ(μ)T satisfy k-descent. By Lemma 3.9, it suffices to show that λ(μ) satisfies k-
descent. Let (x, y) ∈ λ(μ) ∩ Da and suppose that (x + 1, y) /∈ λ(μ). We will show 
that Ca−1(λ(μ)) < y. By assumption, there is an integer m such that x = xm(μ) and 
ym+1(μ) < y ≤ ym(μ). Since (xm+1(μ), ym+1(μ)) ∈ Dc(μ), we see that (x, y) ∈ Dc(μ)+i

for some i in the range αm+1(μ) < i ≤ k. By Lemma 5.2, we have

Cc(μ)−i−1(λ(μ)) = y−μk−i+1(μ).

If m + 1 ≥ −μk−i+1(μ), then αm+1(μ) ≥ i, a contradiction. It follows that

y−μk−i+1(μ) < ym+1(μ) < y. �
We now prove the main theorem.

Theorem 5.5. Let Γ be a k-gonal chain of loops of genus g, and let μ ∈ Zk be a splitting 
type. Then

W
μ(Γ) =

⋃
T (t),

where the union is over all k-saturated tableaux on λ(μ) with alphabet [g].
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Proof. Let t be a k-uniform displacement tableau on λ(μ). By Theorem 1.3, it suffices 
to show that there is a k-saturated tableau t′ on λ(μ) such that T (t) ⊆ T (t′). By 
Proposition 5.4, λ(μ) is a k-core. Thus, by Theorem 4.19, there is a k-saturated tableau 
t′ such that every symbol in t′ is a symbol in t and, if t(x, y) = t(x′, y′), then y−x ≡ y′−x′

(mod k). By Lemma 3.8, we have T (t) ⊆ T (t′). �
Proof of Theorem 1.2. Recall that the codimension of T (t) is equal to the number of 
symbols in t. The result then follows from Theorem 5.5 because every k-saturated tableau 
on λ contains exactly ρk(λ) symbols, and by Corollary 5.3, ρk(λ(μ)) = |μ|. �

We now explain the connection between the tropical geometry and classical algebraic 
geometry. The following has become a standard argument in tropical geometry, for in-
stance in [10,28,18,9]. Recall that, if Wμ(C) is nonempty, then dimW

μ(C) ≥ g − |μ|. 
We show the reverse inequality.

Proof of Theorem 1.1. By [28, Lemma 2.4], there exists a curve C of genus g and gonality 
k over a nonarchimedean field K with skeleton Γ. By Proposition 2.9, we have

Trop
(
W

μ(C)
)
⊆ W

μ(Γ).

By [16, Theorem 6.9], we have

dimW
μ(C) = dim Trop

(
W

μ(C)
)
≤ dimW

μ(Γ) = g − |μ|,

where the last equality comes from Theorem 1.2. �
6. Connectedness of tropical splitting type loci

In this section, we prove Theorem 1.4, which says that Wμ(Γ) is connected in codi-
mension one. We borrow the ideas and terminology from [13, Section 4.2].

Let t be a k-uniform displacement tableau, let a be a symbol that is not in t, and 
let b be either the smallest symbol in t that is greater than a or the largest symbol in t
that is smaller than a. If we take a proper subset of the boxes containing b and replace 
them with a, then we obtain a k-uniform displacement tableau t′, with T (t′) ⊂ T (t) and 
dimT (t′) = dimT (t) −1. If we instead replace every instance of the symbol b in t with the 
symbol a, then we obtain a k-uniform displacement tableau t′, with dimT (t′) = dimT (t), 
such that T (t) and T (t′) intersect in codimension one. This procedure is called swapping
in a for b.

Given a symbol b in t, we obtain a k-uniform displacement tableau t′ without the 
symbol b, by iterating the procedure above. If there is a symbol a < b that is not in t, 
then the resulting tableau can be described explicitly:
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t′(x, y) =
{

t(x, y) − 1 if a < t(x, y) ≤ b

t(x, y) otherwise.

If there is a symbol a > b that is not in t, then t′ is obtained instead by increasing by 
1 every symbol in t between b and a. Because t′ is obtained by a sequence of swaps, we 
see that there is a chain of tori from T (t) to T (t′), such that each consecutive pair of 
tori in the chain intersect in codimension one. This procedure is called cycling out b.

Proof of Theorem 1.4. Let t, t′ be k-saturated tableaux on λ(μ). By Theorem 5.5, it 
suffices to construct a sequence

t = t0, t1, . . . , tm = t′

of k-saturated tableaux, where T (ti) and T (ti+1) intersect in codimension one for all i. 
Both t and t′ contain precisely |μ| symbols. By cycling out all symbols greater than |μ|, 
we may assume that the symbols in t and t′ are precisely those in [|μ|]. In other words, 
there exist maximal chains

∅ = λ0 < λ1 < · · · < λ|μ| = λ(μ),

∅ = λ′
0 < λ′

1 < · · · < λ′
|μ| = λ(μ)

such that t = Φ([|μ|], 
λ) and t′ = Φ([|μ|], 
λ′). If 
λ and 
λ′ coincide, then t = t′, and we 
are done.

We prove the remaining cases by induction, having just completed the base case. Let 
j be the largest symbol such that λj−1 �= λ′

j−1. Equivalently, the symbols j + 1, . . . , |μ|
appear in the same set of boxes of t and t′. We will construct a sequence

t = t′0, t
′
1, . . . , t

′
n = t′′

of k-saturated tableaux, where T (t′i) and T (t′i+1) intersect in codimension one for all i, 
and where each of the symbols j, . . . , |μ| appears in the same set of boxes of t′ and t′′.

Since g > |μ|, either g = j + 1 or there exists a symbol in [g] that is greater than 
j + 1. We let t̂ be the tableau obtained by cycling j + 1 out of t. In other words,

t̂(x, y) =
{

t(x, y) if t(x, y) ≤ j

t(x, y) + 1 if t(x, y) > j.

We define

t̃(x, y) =
{

j + 1 if (x, y) ∈ λ′
j � λ′

j−1
t̂(x, y) otherwise.

To see that t̃ is a tableau, note that
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1 2 3 5

3 5

4

5

⇒ 1 2 3 6

3 6

4

6

⇒ 1 2 5 6

3 6

4

6

⇒ 1 4 5 6

3 6

4

6

⇒ 1 3 4 5

2 5

3

5

Fig. 10. If g ≥ 6, then W
(−3,−1,1)(Γ) is connected in codimension 1.

λj = λ′
j = {(x, y) ∈ λ(μ) | t̂(x, y) ≤ j},

and t̂ does not contain the symbol j + 1, so every box in λ(μ) � λ′
j contains a symbol 

that is greater than j + 1, and every box in λ′
j−1 contains a symbol that is smaller than 

j + 1. Note that t̃ contains one more symbol than t̂, so T (t̃) ⊂ T (t̂) has codimension 
1. Applying the procedure of Example 4.21, we obtain a k-saturated tableau t̃′ such 
that T (t̃) ⊂ T (t̃′). Since i + 1 is the largest symbol in λ′

i for all i ≥ j, we see that 
t̃′(x, y) = t̃(x, y) for all (x, y) ∈ λ(μ) � λ′

j−1. Finally, we let t′′ be the tableau obtained 
by cycling out all symbols greater than |μ| from t̃′. By construction, each of the symbols 
j, . . . , |μ| appears in the same set of boxes of t′ and t′′. �
Remark 6.1. Under the bijection with words in the affine symmetric group, Theorem 1.4
is equivalent to the statement that any two reduced expressions for the same word can 
be connected via a sequence of “braid moves” (see [6, Theorem 3.3.1]).

Example 6.2. Fig. 10 illustrates the procedure in the proof of Theorem 1.4. The two 
tableaux t, t′ on the ends correspond to two maximal-dimension tori in W

μ(Γ), where 
μ = (−3, −1, 1). If g ≥ 6, we construct a chain of tori from T (t) to T (t′) in this tropical 
splitting type locus, where each torus intersects the preceding torus in codimension one. 
The largest symbol where t and t′ disagree is 4. We therefore begin by cycling out 5, 
to obtain the second tableau in the chain. We then place a 5 in each box where a 4 
appears in t′, to obtain the third tableau in the chain, using all 6 symbols. Applying the 
procedure of Example 4.21, we obtain the fourth tableau. Finally, by cycling out 6, we 
arrive at t′.

7. Cardinality of tropical splitting type loci

We begin this section by proving Theorem 1.5.

Proof of Theorem 1.5. By Theorem 5.5,

W
μ(Γ) =

⋃
T (t),

where the union is over all k-saturated tableaux on λ(μ) with alphabet [g]. Since g = |μ|, 
each torus T (t) in this union is 0-dimensional, and therefore consists of a single divisor 
class. Consider the composition of Φλ(μ) with the map sending a tableau t to the unique 
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divisor class in T (t). By the above, this composition surjects onto W
μ(Γ), and it suffices 

to show that it is injective. Let

∅ = λ0 < λ1 < · · · < λg = λ(μ)

∅ = λ′
0 < λ′

1 < · · · < λ′
g = λ(μ)

be distinct maximal chains in Pk(λ(μ)), and let j be the minimal index such that λ′
j �= λj . 

By definition, λj = λ+
j−1,a and λ′

j = λ+
j−1,b for some a �≡ b (mod k). It follows that, if 

T (t) = {D}, then ξj(D) ≡ a �≡ b (mod k), so D /∈ T (t′). Therefore, every maximal chain 
in Pk corresponds to a distinct divisor class in W

μ(Γ). �
7.1. Algorithm for computing maximal chains

The number of maximal chains in Pk(λ) is an important invariant of a partition 
λ ∈ Pk, not only because of Theorem 1.5, but also because of its connection to the affine 
symmetric group [20]. We would therefore like to compute this invariant in examples. 
In order to simplify our arguments, we first show that a partition λ ∈ Pk is uniquely 
determined by the vector C(λ).

Lemma 7.1. Let λ, λ′ ∈ Pk. If there exists a permutation σ ∈ Sk such that Ca(λ) =
Cσ(a)(λ′) for all a ∈ Z/kZ, then λ = λ′.

Proof. We prove this by induction on ρk(λ) = ρk(λ′). The base case is when ρk(λ) = 0, 
in which case λ = λ′ is the empty partition. For the inductive step, let

y = max
a∈Z/kZ

Ca(λ) = max
a∈Z/kZ

Ca(λ′),

and let x be the number of congruence classes a ∈ Z/kZ such that Ca(λ) = y. By 
definition, the first x columns of both λ and λ′ must all have height y. If λ is nonempty 
then it has an inside corner. This implies that x ≤ k − 1 by Lemma 4.13. It follows 
that column x + 1 of both λ and λ′ has height less than y, so (x, y) is an inside corner 
of both partitions, and y = Cy−x(λ) = Cy−x(λ′). By Proposition 4.17, there exists a 
permutation π ∈ Sk such that

Ca(λ−
y−x) = Cπ(a)(λ′ −

y−x) for all a ∈ Z/kZ.

By Lemma 4.16, λ−
y−x, λ

′ −
y−x ∈ Pk, hence by induction, λ−

y−x = λ′ −
y−x. Finally, by 

Lemma 4.15, we have

λ = (λ−
y−x)+y−x = (λ′ −

y−x)+y−x = λ′. �
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Fig. 11. A principal order ideal in P6. The circled values indicate the number of maximal chains below each 
vector.

Lemma 7.1 allows us to simplify arguments by focusing on the vectors C(λ), rather 
than the partitions λ. For example, Fig. 11 depicts the Hasse diagram of a principal 
order ideal in P6, where each partition λ is represented by the vector C(λ).

Given a partition λ ∈ Pk, we provide an algorithm for producing the Hasse diagram 
Pk(λ), as in Fig. 11.

Algorithm 7.2. Step 1: Initialize with the vector C(λ).
Step 2: For each vector C, write below it the vectors C−

a , for all a such that Ca−1 < Ca.
Step 3: Iterate Step 2 for each vector that is written down, until exhaustion.

By Lemma 7.1, the number of partitions in Pk of rank ρ is less than or equal to the 
number of partitions of ρ with at most k−1 parts. (In fact, these numbers are equal, see 
[19, Proposition 1.3].) Together with the fact that each partition covers at most k − 1
others, this implies that the algorithm terminates in polynomial time for fixed k.
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We introduce notation that will simplify our examples. Given λ ∈ Pk, we define 
α(C(λ)) to be the number of maximal chains in Pk(λ). By Lemma 7.1, this is well-
defined. We further define α up to cyclic permutation; that is,

α
(
Ci(λ), Ci+1(λ), . . . , Ci−1(λ)

)
= α

(
C0(λ), C1(λ), . . . , Ck−1(λ)

)
.

Again, by Lemma 7.1, α is well-defined. Indeed, by Lemma 7.1, α could be defined up 
to arbitrary permutation, but in practice it is important to keep track of which values 
Ca are consecutive. This is because α satisfies the following recurrence.

Lemma 7.3. For any λ ∈ Pk, we have

α(C(λ)) =
∑

a∈Z/kZ s.t.
Ca−1(λ)<Ca(λ)

α(C(λ)−a ).

Proof. The number of maximal chains in Pk(λ) is equal to the sum, over λ′ ∈ Pk covered 
by λ, of the number of maximal chains in Pk(λ′). By definition, λ′ ∈ Pk is covered by 
λ if and only if λ′ = λ−

a and λ has an inside corner in Da. By Lemma 4.13, λ has 
an inside corner in Da if and only if Ca−1(λ) < Ca(λ). The result then follows from 
Proposition 4.17. �

Using Algorithm 7.2 and Lemma 7.3, one can compute α(C(λ)) recursively. Start 
at the bottom of the Hasse diagram, note that α(
0) = 1, and then proceed upwards, 
summing the numbers that appear directly below each vector. These numbers appear in 
the circles in Fig. 11.

7.2. Examples

The remainder of the paper consists of examples, using Lemma 7.3 to compute the 
number of maximal chains in Pk(λ(μ)) for various splitting types μ. In many cases, we 
will see that this number agrees with the cardinality of Wμ(C) for general (C, π) ∈ Hg,k. 
In each case, we assume that g = |μ|. By Theorem 1.1, this implies that Wμ(C) =
W

μ(C).

Example 7.4. If −2 ≤ μj ≤ 0 for all j, then λ(μ) = λ0(μ) is a rectangle, and every 
k-uniform displacement tableau on λ(μ) is a standard Young tableau. The number of 
such tableaux is counted by the standard hook-length formula:

|Wμ(Γ)| = |μ|!
x0(μ)−1∏

j=0

j!
(y0(μ) + j)! .

It is a classical result, due to Castelnuovo, that this formula also yields the number of 
grd’s on a general curve of genus |μ|, where r = x0(μ) − 1, and d = d(μ) [2, p.211].
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Fig. 12. The partition λ(μ) of Example 7.6.

Example 7.5. If μj is equal to either μ1 or μ1 + 1 for each j < k, then d(μ) = kμk and 
up to cyclic permutation we have C(λ(μ)) = (|μ|, 0, 0, . . . , 0). For ease of notation, we 
write this as C(λ(μ)) = (|μ|, 0(k−1)). We show that α(z, 0(k−1)) = 1. This is easy to see 
by induction on z. It is clear that α(1, 0(k−1)) = 1, and by Lemma 7.3, we have

α(z, 0(k−1)) = α(0(k−1), z − 1) = α(z − 1, 0(k−1)).

Now, if D ∈ W
μ(C), then by definition, degD = kμk and D − μkg

1
k is effective. It 

follows that Wμ(C) = {μkg
1
k}. This splitting type locus therefore has cardinality 1, equal 

to that of Wμ(Γ).

We note that Serre duality induces a bijection between W
μ(C) and W

μT

(C). Tropi-
cally, this corresponds to the fact that the number of maximal chains in Pk(λ) is equal 
to the number of maximal chains in Pk(λT ). If we apply this observation to Example 7.5, 
we see that if μj is equal to either μk or μk − 1 for each j > 1, then

|Wμ(C)| = |Wμ(Γ)| = 1.

A similar remark applies to each of the examples below.

Example 7.6. Let μ = (−3, −2, . . . , −2, 0, 0). Then g = 2k− 2, and λ(μ) is the partition 
depicted in Fig. 12.

If t is a k-uniform displacement tableau on λ(μ), then the restriction of t to the first 
two columns is a standard Young tableau. If t has precisely 2k − 2 symbols, then we 
must have t(3, 1) = t(1, k − 1) and t(4, 1) = t(2, k − 1). (These are the boxes labeled 
with a square and a triangle, respectively, in Fig. 12.) It follows that t(2, 1) < t(1, k−1). 
Since the number of standard Young tableaux on the first two columns is the (k − 1)st 
Catalan number Ck−1, and since there is a unique such standard Young tableau t with 
t(2, 1) > t(1, k−1), we see that the number of k-uniform displacement tableaux on λ(μ)
with precisely 2k − 2 symbols is Ck−1 − 1.

A general curve C of genus 2k− 2 has gonality k, and by Example 7.4, the number of 
gonality pencils is precisely Ck−1. Such a pencil is in W

μ(C) if and only if it is not equal 
to the distinguished g1

k. It follows that |Wμ(C)| = Ck−1 − 1, confirming Conjecture 1.6
in this case.
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Example 7.7. If k = 2, then every splitting type μ satisfies the hypotheses of Example 7.5. 
The first interesting examples, therefore, occur when k is equal to 3. Let k = 3, and 
suppose that μ is not of the type considered in Example 7.5. In other words, μ3 > μ2 +1, 
and μ2 > μ1 + 1. Then g = 2(μ3 −μ1) − 3 is odd, and up to cyclic permutation, we have

C(λ(μ)) = (2μ3 − μ2 − μ1 − 2, μ2 − μ1 − 1, 0).

We show that

α(2μ3 − μ2 − μ1 − 2, μ2 − μ1 − 1, 0) =
(
μ3 − μ1 − 2
μ2 − μ1 − 1

)
.

One way to see that this formula is invariant under transposition is to note that 
μ2 − μ1 − 1 is equal to the number of strict rank jumps of size 2, whereas μ3 − μ2 − 1
is equal to the number of strict rank jumps of size 1. As in Example 7.5, we prove 
this by induction. When μ2 − μ1 − 1 = 0, the result follows from Example 7.5, and 
when μ3 − μ2 − 1 = 0, the result follows from the same example applied to λ(μ)T . If 
z1 − 1 > z2 > 0, then by Lemma 7.3, we have

α(z1, z2, 0) = α(0, z2, z1 − 1)

= α(z2 − 1, 0, z1 − 1) + α(0, z1 − 2, z2).

This expression has the following interpretation. If C(λ(μ)) = (z1, z2, 0), then 
C(λ(μ+)) = (z2 − 1, 0, z1 − 1) and C(λ(μ−)) = (0, z1 − 2, z2). In other words, the 
number of k-saturated tableaux on λ(μ) is the sum of the number on a partition with 
one fewer row and the number on a partition with one fewer column. Evaluating this 
expression and applying induction, we see that

α(2μ3−μ2−μ1−2, μ2−μ1−1, 0) =
(
μ3 − μ1 − 3
μ2 − μ1 − 2

)
+
(
μ3 − μ1 − 3
μ2 − μ1 − 1

)
=

(
μ3 − μ1 − 2
μ2 − μ1 − 1

)
.

In [22, Theorem 1.1], Larson computes the cardinality of Wμ(C) for a general trigonal 
curve C of Maroni invariant n. Since g is odd, if (C, π) ∈ Hg,3 is general, it has Ma-
roni invariant 1. Larson’s formula then yields the binomial coefficient above, confirming 
Conjecture 1.6 for k = 3.

Example 7.7 can be generalized to the case where k is arbitrary and

μ2 = μ3 = · · · = μk−1.

This is done in Example 7.13 below.

We now consider examples where k is equal to 4, 5, or 6. We do not consider every 
splitting type in these cases, considering only the “maximal” splitting types in which 
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every strict rank jump has the same size α. If all strict rank jumps of μ have size α, 
then all strict rank jumps of μT have size k−α, so it suffices to consider the case where 
α ≤ k

2 . Since Example 7.5 is the case where α = 1, the first interesting case occurs when 
k is equal to 4. We do not know if Conjecture 1.6 holds for these splitting types, proving 
it in only a small number of cases.

Example 7.8. Let k = 4, and suppose that α = 2. In other words, μ2 is equal to either 
μ1 or μ1 + 1, and μ3 is equal to either μ4 or μ4 − 1. In this case we see that, up to cyclic 
permutation, C(λ(μ)) is either of the form (z, z, 0, 0) or (z + 1, z − 1, 0, 0). We show, by 
induction on z, that

α(z, z, 0, 0) = α(z + 1, z − 1, 0, 0) = 2z−1.

The base case, when z is equal to 1, is covered by Example 7.5. For the inductive step, 
by Lemma 7.3, we see that

α(z, z, 0, 0) = α(0, z, 0, z − 1) = α(z − 1, 0, 0, z − 1) + α(0, z, z − 2, 0)

= 2z−2 + 2z−2 = 2z−1

α(z + 1, z − 1, 0, 0) = α(0, z − 1, 0, z) = α(z − 2, 0, 0, z) + α(0, z − 1, z − 1, 0)

= 2z−2 + 2z−2 = 2z−1.

As in Example 7.7, the expressions on the right are equal to α(C(λ(μ+))) +α(C(λ(μ−))).
In general, we do not know if Conjecture 1.6 holds in this case. It holds for z ≤ 2 by 

Example 7.4, and for z = 3 by Example 7.6. We will see in Example 7.12 below that it 
also holds for the splitting type μ = (−3, −3, 0, 0), in which case z = 4.

Example 7.9. Let k = 5, and suppose that α = 2. In other words, μ2 and μ3 are equal 
to either μ1 or μ1 + 1, and μ4 is equal to either μ5 or μ5 − 1. Up to cyclic permutation, 
C(λ(μ)) is either of the form (z, z, 0, 0, 0) or (z +2, z− 1, 0, 0, 0). We show, by induction 
on z, that

α(z, z, 0, 0, 0) = F2z−2

α(z + 2, z − 1, 0, 0, 0) = F2z−1,

where Fn denotes the nth Fibonacci number. The base case, where z = 1, follows from 
Example 7.5. For the inductive step, by Lemma 7.3, we have

α(z, z, 0, 0, 0) = α(0, z, 0, 0, z − 1) and

α(z + 2, z − 1, 0, 0, 0) = α(0, z − 1, 0, 0, z + 1),
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so we will also show by induction that α(0, z, 0, 0, z− 1) = F2z−2 and α(0, z− 1, 0, 0, z +
1) = F2z−1. Again, the base cases follow from Example 7.5. Together with the inductive 
hypothesis, by Lemma 7.3, we have

α(0, z, 0, 0, z − 1) = α(z − 1, 0, 0, 0, z − 1) + α(0, z, 0, z − 2, 0)

= F2z−4 + F2z−3 = F2z−2

α(0, z − 1, 0, 0, z + 1) = α(z − 2, 0, 0, 0, z + 1) + α(0, z − 1, 0, z, 0)

= F2z−3 + F2z−2 = F2z−1.

Conjecture 1.6 holds when −2 ≤ μj ≤ 0 for all j by Example 7.4, and when μ =
(−3, −2, −2, 0, 0) by Example 7.6. We will see in Example 7.12 below that it also holds 
when μ = (−3, −3, −2, 0, 0). We now show that it holds when μ = (−3, −3, −2, −1, 0).

In this case, g = 7, C(λ(μ)) = (5, 2, 0, 0, 0), and α(5, 2, 0, 0, 0) = F5 = 8. For (C, π) ∈
H7,5, we see that D ∈ W

μ(C) if and only if D is effective of degree 2 and KC − g1
5 −D

has rank at least 1. By Riemann-Roch, the divisor class KC − g1
5 has degree 7 and rank 

2. The image of C under the complete linear series |KC − g1
5 | is a plane curve of degree 

7, with 
(7−1

2
)
− 7 = 8 nodes. An effective divisor D satisfies rk(KC − g1

5 −D) ≥ 1 if and 
only if the image of D under this map is a single point. It follows that the divisor classes 
in W

μ(C) are precisely the preimages of the nodes, and thus that |Wμ(C)| = 8.

Example 7.10. Let k = 6, and suppose that α = 2. Up to cyclic permutation, C(λ(μ)) is 
either of the form (z, z, 0, 0, 0, 0) or (z + 2, z − 2, 0, 0, 0, 0). We show, by induction on z, 
the following formulas:

α(z, z, 0, 0, 0, 0) = α(0, z, 0, 0, 0, z − 1) = 3z−1 + 1
2

α(z + 2, z − 2, 0, 0, 0, 0) = α(0, z − 2, 0, 0, 0, z + 1) = 3z−1 − 1
2

α(z + 1, 0, 0, z − 1, 0, 0) = 3z−1.

The base cases, when z = 1 on the first and third line, or when z = 2 on the second 
line, follow from Example 7.5. The first equality on each of the first two lines above 
follows directly from Lemma 7.3. For the inductive step, by induction together with 
Lemma 7.3, we have

α(0, z, 0, 0, 0, z − 1) = α(z − 1, 0, 0, 0, 0, z − 1) + α(0, z, 0, 0, z − 2, 0)

= 3z−2 + 1
2 + 3z−2 = 3z−1 + 1

2
α(0, z − 2, 0, 0, 0, z + 1) = α(z − 3, 0, 0, 0, 0, z + 1) + α(0, z − 2, 0, 0, z, 0)

= 3z−2 − 1 + 3z−2 = 3z−1 − 1

2 2
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α(z + 1, 0, 0, z − 1, 0, 0) = α(0, 0, 0, z − 1, 0, z) + α(z + 1, 0, z − 2, 0, 0, 0)

= 3z−1 + 1
2 + 3z−1 − 1

2 = 3z−1.

Conjecture 1.6 holds when z ≤ 3, and for the splitting type μ = (−2, −2, −2, −2, 0, 0)
by Example 7.4. It also holds for the splitting type μ = (−3, −2, −2, −2, 0, 0) by Exam-
ple 7.6. The splitting types μ = (−3, −3, −2, −2, 0, 0) and μT = (−3, −3, −1, −1, 0, 0)
will make an appearance in Example 7.12 below.

Example 7.11. Let k = 6, and suppose that α = 3. Up to cyclic permutation, C(λ(μ)) is 
of the form (z, z, z, 0, 0, 0), (z + 1, z + 1, z − 2, 0, 0, 0), or (z + 2, z − 1, z − 1, 0, 0, 0). To 
formulate expressions in these cases, we first introduce the function

β(z) :=
{

2 if z ≡ 0 (mod 3)
−1 otherwise.

Note that β(z − 1) + β(z) = −β(z + 1). By a similar argument to Examples 7.8, 7.9, 
and 7.10, we obtain the following formulas.

α(z, z, z, 0, 0, 0) = α(0, z, z, 0, 0, z − 1) = 23z−2 + (−1)zβ(z)
3

α(z + 1, z + 1, z − 2, 0, 0, 0) = α(0, z + 1, z − 2, 0, 0, z) = 23z−2 + (−1)zβ(z − 1)
3

α(z + 2, z − 1, z − 1, 0, 0, 0) = α(0, z − 1, z − 1, 0, 0, z + 1) = 23z−2 + (−1)zβ(z + 1)
3

α(z − 1, 0, z, 0, z + 1, 0) = 23z−2.

We will consider the splitting type μ = (−3, −3, −2, −1, 0, 0) in Example 7.12 below. 
The Hasse diagram pictured in Fig. 11 is that of P6(λ(μ)).

Example 7.12. Let (C, π) ∈ H2k,k be general, and let L = KC − g1
k. By Riemann-Roch, 

h0(C, L) = k+ 1, and we consider the image of C in Pk under the complete linear series 
|L|. We have

expdimH0(Pk, IC(2)) = dim Sym2 H0(C,L) − dimH0(C, 2L)

=
(
k + 2

2

)
− (4k − 3).

The variety X4 parameterizing quadrics of rank at most 4 in Pk has dimension 4k − 2, 
so one expects the curve C to be contained in a finite number of rank 4 quadrics. The 
expected number of rank 4 quadrics in H0(Pk, IC(2)) is



K. Cook-Powell, D. Jensen / Advances in Mathematics 398 (2022) 108199 39
degX4 =
(
k+1
k−3

)(
k+2
k−4

)
· · ·

(2k−3
1

)(1
0
)(3

1
)(5

2
)
· · ·

(2k−7
k−4

) .

(See [17].) Each rank 4 quadric is a cone over P 1 × P 1, and the pullback of O(1) from 
each of the two factors yields a pair of line bundles on C, each of rank 1, whose tensor 
product is L.

Conversely, given a pair of divisor classes D, D′, each of rank 1, such that D+D′ = L, 
we obtain a rank 4 quadric in Pk containing C. To see this, let s0, s1 be a basis for 
H0(C, D) and t0, t1 be a basis for H0(C, D′). Then the entries of the 2 × 2 matrix 
Mij = (si ⊗ tj) are linear forms in Pk, and the determinant of this matrix is a rank 4 
quadric that vanishes on C. In other words, each rank 4 quadric corresponds to a pair 
of divisors in the set

{
D ∈ Pic(C) | h0(C,D) = h0(C,L−D) = 2

}
=

( k−4⋃
i=0

W (−3(2),−2(i),−1(k−4−i),0(2))(C)
)
∪ {g1

k} ∪ {L− g1
k}.

Since (C, π) is general, the splitting type loci in the union above are all smooth of 
dimension zero, and we see that

2 +
k−4∑
i=0

∣∣∣W (−3(2),−2(i),−1(k−4−i),0(2))(C)
∣∣∣ = 2

(
k+1
k−3

)(
k+2
k−4

)
· · ·

(2k−3
1

)(1
0
)(3

1
)(5

2
)
· · ·

(2k−7
k−4

) .

We now show that this expression holds for Γ when k ≤ 6. By Example 7.8, when k = 4, 
we have

2 +
∣∣∣W (−3,−3,0,0)(Γ)

∣∣∣ = 2 + 23 = 10 = 2
(

5
1

)
.

By Example 7.9, when k = 5, we have

2 +
∣∣∣W (−3,−3,−2,0,0)(Γ)

∣∣∣ +
∣∣∣W (−3,−3,−1,0,0)(Γ)

∣∣∣
= 2 + F8 + F8 = 2 + 34 + 34 = 70 = 2

(6
2
)(7

1
)(1

0
)(3

1
) .

By Examples 7.10 and 7.11, when k = 6, we have

2 +
∣∣∣W (−3,−3,−2,−2,0,0)(Γ)

∣∣∣ +
∣∣∣W (−3,−3,−2,−1,0,0)(Γ)

∣∣∣ +
∣∣∣W (−3,−3,−1,−1,0,0)(Γ)

∣∣∣
= 2 + 35 + 1

2 + 210 + 2
3 + 35 + 1

2 = 2 + 122 + 342 + 122 = 588 = 2
(7
3
)(8

2
)(9

1
)(1)(3)(5) .
0 1 3



40 K. Cook-Powell, D. Jensen / Advances in Mathematics 398 (2022) 108199
Example 7.13. We now consider the case where k is arbitrary and

μ2 = μ3 = · · · = μk−1.

The cases where μk ≤ μk−1 +1 or μ1 ≥ μ2 −1 are covered in Example 7.5, so we assume 
otherwise. For ease of notation, we write z1 = (k − 1)(μk − 1) − (k − 2)μ2 − μ1 and 
z2 = μ2−μ1−1. Then C(λ(μ)) = (z1, z

(k−2)
2 , 0), and we will show in Lemma 7.14 below 

that

α(z1, z
(k−2)
2 , 0) =

(
(k − 2)(μk − μ1 − 2)
(k − 2)(μ2 − μ1 − 1)

)
.

This expression matches the cardinality of Wμ(C) for general (C, π) ∈ Hg,k. To see 
this, following [22, Lemma 2.2], we see that

Wμ(C) =
{
D ∈ Picd(μ)(C) | h0(D − μkg

1
k) = h0(KC −D + (μ1 + 2)g1

k) = 1
}
.

In other words, D ∈ Wμ(C) if and only if D = μkg
1
k +E, where E is an effective divisor 

of degree (k− 2)(μ2 −μ1 − 1), such that KC − (μk −μ1 − 2)g1
k −E is also effective. Note 

that

deg
(
KC − (μk − μ1 − 2)g1

k

)
= (k − 2)(μk − μ1 − 2).

Since C is general, KC − (μk − μ1 − 2)g1
k is equivalent to a unique effective divisor. If 

this divisor is a sum of distinct points, then the set of divisor classes E satisfying the 
conditions above is simply the set of subsets of these points of size (k− 2)(μ2 − μ1 − 1). 
We therefore see that |Wμ(C)| is equal to the binomial coefficient above.

Lemma 7.14. Let z1 ≥ z2 ≥ 0 be integers, let 
zi(z2) = (z(k−2−i)
2 , (z2 − 1)(i), 0), and let 


zij(z1, z2) be the vector obtained from 
zi(z2) by inserting z1 between entries j and j + 1. 
Then

α(
zij(z1, z2)) =
(⌊k−2

k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

Proof. Note that the expression (z1 +(k−2)z2) is divisible by k−1 if and only if z1 ≡ z2
(mod k− 1). If C(λ) = 
zij(z1, z2), then this congruence holds if and only if the partition 
λ′, obtained by deleting all columns of λ that are taller than z2, has an outside corner 
in Dz1 . Since C(λ′) = 
zij(z2, z2), this holds if and only if j = k − 2.

We establish the above formula by induction. The base cases, where z1 = z2, or 
z2 = i = 0, both follow from Example 7.5. If j = k − 1, then by Lemma 7.3, we have

α(
zi(k−1)(z1, z2)) = α(
zi(k−2)(z1 − 1, z2)).
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By induction, the expression on the right is equal to

(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)
.

Since j = k − 1, by the above we see that z1 ≡ z2 + 1 (mod k − 1), so the term 
(z1 + (k − 2)z2 − 1) is divisible by k − 1. The expression above is therefore equal to

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
.

Otherwise, if j < k − 1, then by Lemma 7.3, we have

α(
zij(z1, z2)) = α(
zi(j−1)(z1 − 1, z2)) + α(
z(i−1)j(z1, z2)).

By induction, the expression on the right is equal to

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i + 1)

(k − 2)z2 − (i + 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2 − 1

)⌋
− i

(k − 2)z2 − i

)

=
(⌊k−2

k−1

(
z1 + (k − 2)z2

)⌋
− (i + 1)

(k − 2)z2 − (i + 1)

)
+

(⌊k−2
k−1

(
z1 + (k − 2)z2

)⌋
− (i + 1)

(k − 2)z2 − i

)

=
(⌊k−2

k−1

(
z1 + (k − 2)z2

)⌋
− i

(k − 2)z2 − i

)
,

where the second line holds because (z1 + (k − 2)z2 − 1) is not divisible by k − 1. �
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