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Abstract. We study a notion of tropical linear series on metric graphs that combines two essential

properties of tropicalizations of linear series on algebraic curves: the Baker–Norine rank and the

independence rank. Our main results relate the local and global geometry of these tropical linear
series to the combinatorial geometry of matroids and valuated matroids, respectively. As an

application, we characterize exactly when the tropicalization of the canonical linear series on a

single curve is equal to the locus of realizable tropical canonical divisors determined by Möller,
Ulirsch, and Werner. We also illustrate our results with a wealth of examples; in particular, we

show that the Bergman fan of every matroid appears as the local fan of a tropical linear series on

a metric graph. The paper concludes with a list of ten open questions for future investigation.
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1. Introduction

1.1. Baker–Norine rank and tropical independence. Nearly two decades ago, Baker and
Norine introduced the rank of a divisor on a graph, in close analogy with the rank of a divisor
on an algebraic curve, and proved the surprising and beautiful fact that it satisfies a precise ana-
log of the Riemann–Roch Theorem [BN07]. This breakthrough inspired several new directions of
research. Baker proved the Specialization Lemma [Bak08] relating ranks of divisors on curves to
those on graphs via semistable degenerations, and outlined a program for relating divisor theory
on graphs to the celebrated results of Brill-Noether theory on algebraic curves. All of these results
extend naturally to tropical curves, meaning metric graphs [GK08, MZ08], with specialization given
by retraction to the skeleton of the Berkovich analytifications of curves over valued fields. Subse-
quent progress in Baker’s program includes tropical proofs of the Brill–Noether and Gieseker–Petri
Theorems [CDPR12, JP14]. The latter introduced tropical independence as a technique to bound
the ranks of multiplication maps on algebraic linear series.

Further applications of tropical geometry to linear series on algebraic curves and the Kodaira
dimensions of moduli spaces [FJP24, FJP25] use not only the Baker–Norine rank and tropical
independence, but also more intricate combinatorial properties of tropicalizations of linear series
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rooted in linear incidence geometry. The ad hoc notion of an abstract tropical linear series given by
[FJP25, Definition 6.5] captures exactly the properties used for these specific applications, including
two properties from linear incidence geometry that make the definition recursive. The recursive part
of the definition is exceedingly difficult to verify for anything that does not arise as the tropicalization
of an algebraic linear series.

Here, we study a larger class of tropical linear series characterized only in terms of the Baker–
Norine rank and tropical independence; see Definition 1.4. We now refer to the subclass of tropical
linear series that satisfy the additional recursive properties in [FJP25, Definition 6.5] as strongly
recursive tropical linear series. The broader combinatorial theory of tropical linear series studied
here is rich with examples associated to valuated matroids. It also offers insights into the geometry of
tropicalizations of algebraic linear series. For instance, it had been an open problem whether strongly
recursive tropical linear series are equidimensional [JP22, Question 6.3(2)], until equidimensionality
was proved more generally for all tropical linear series in the Master’s thesis of the second author
[Dup24]. In Section 3.4, we present a brief and streamlined version of Dupraz’s original proof.

1.2. Tropical linear series. Let Γ be a metric graph. A divisor D on Γ is a finite formal sum

D = a1p1 + · · ·+ asps

with ai ∈ Z and p1, . . . , ps distinct points in Γ. The multiplicity of D at pi is ai and the degree of
D is deg(D) := a1 + · · · + as. The divisor D is effective, denoted D ≥ 0, if its multiplicity is non-
negative at every point, i.e., if ai ≥ 0 for all i. Let PL(Γ) denote the set of piecewise-linear functions
on Γ with integer slopes; it is an additive group with respect to addition and a tropical module with
respect to scalar addition and pointwise minimum. There is an additive group homomorphism from
PL(Γ) to the group of divisors on Γ taking a piecewise-linear function φ to the degree zero divisor
div(φ) whose multiplicity at a point p is the sum of the incoming slopes of φ at p. Then

R(D) := {φ ∈ PL(Γ) : D + div(φ) ≥ 0}
is a finitely generated tropical submodule by [HMY12, Corollary 9]. The rank r(D) is the largest
integer r such that, for every effective divisor D′ of degree r, there is some φ ∈ R(D) such that
D −D′ + div(φ) ≥ 0 [BN07]. This notion generalizes to tropical submodules of R(D) as follows.

Definition 1.1. Let Σ ⊆ R(D) be a tropical submodule. The Baker–Norine rank rBN(Σ) is the
largest integer r such that, for every effective divisor D′ of degree r on Γ, there is some φ ∈ Σ such
that D −D′ + div(φ) ≥ 0.

We also consider a second notion of rank for tropical submodules Σ ⊆ R(D), based on tropical
independence, as in [JP14, JP16]; we recall the definition of tropical independence in Section 2.7.

Definition 1.2. Let Σ ⊆ R(D) be a tropical submodule. The independence rank rind(Σ) is the size
of the largest tropically independent subset of Σ.

Definitions 1.1 and 1.2 are motivated by tropicalizations of linear series on algebraic curves.
Recall that a linear series on a projective algebraic curve X is a pair (DX , V ), where DX is a divisor
and V ⊆ H0(X,O(DX)) is a linear subspace. We follow the common convention that the dimension
of an algebraic linear series refers to the dimension of the associated projective space P(V ), i.e., if
(DX , V ) is a linear series of dimension r then V is a vector space of dimension r + 1. Note that
rBN is an analog of dimP(V ), whereas rind is an analog of dimV . More precisely, if (D,Σ) is the
tropicalization of a linear series (DX , V ) of dimension r then

(1) rBN(Σ) = r and rind(Σ) = r + 1.

Remark 1.3. To see why (1) holds, first note that rBN(Σ) ≥ r, by specialization [Bak08], and
rind(Σ) ≤ r + 1, because any lift of a tropically independent subset of Σ is linearly independent in

V . Next, observe that |Σ| := {D+div(φ) : φ ∈ Σ}, is a polyhedral subset of Symd(Γ) of dimension
at least rBN(Σ). Finally, for any tropical submodule Σ with polyehdral tropicalization, we have
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rind(Σ) = dim |Σ|+ 1 (Corollary 3.9). A similar argument shows that rind(Σ) ≥ rBN(Σ) + 1 for any
tropical submodule of R(D) with polyhedral projectivization.

Definition 1.4. A tropical linear series on a metric graph Γ is a pair (D,Σ) where D is a divisor
and Σ ⊆ R(D) is a finitely generated submodule such that rind(Σ) = rBN(Σ) + 1.

As explained in Section 3.2, the projectivization of a finitely generated tropical submodule Σ ⊆ R(D)
is naturally identified with

|Σ| := {D + div(φ) : φ ∈ Σ},
which is a polyhedral subset of Symd(Γ), for d = deg(D). The global dimension dim |Σ| is equal to
rind(Σ)− 1 (Proposition 3.6) and greater than or equal to rBN(Σ). Thus, Definition 1.4 says that Σ
is a tropical linear series if its dimension is no larger than necessary, given its Baker–Norine rank.

Note that the ranks rBN(Σ) and rind(Σ) are independent of the choice of divisor D such that
Σ ⊆ PL(Γ) is contained in R(D). When no confusion seems possible, we omit the divisor and refer
to Σ as a tropical linear series.

Theorem 1.5. Let Σ be a tropical linear series. Then |Σ| has pure dimension equal to rBN(Σ).

We give a streamlined proof following the original ideas from the Master’s thesis of Dupraz [Dup24].
An alternate approach was developed later in [AGG25]. Here, we also state and prove a much
stronger theorem relating the local structure of |Σ| to Bergman fans of matroids (Theorem 1.14).

Since |Σ| has pure dimension r = rBN(Σ), and we follow the convention that the dimension of
a linear series is its projective dimension, we say that Σ is a tropical linear series of dimension r.
Thus, the tropicalization of a linear series of dimension r is a tropical linear series of dimension r.

Remark 1.6. Any metric graph Γ of first Betti number g is the skeleton of a smooth projective
curve of genus g. See, e.g., [Bak08, Appendix B]. Therefore, the Brill–Noether theorem tells us that
there is a divisor D of degree d and a tropical linear series Σ ⊆ R(D) of dimension r whenever
(r + 1)(g − d+ r) ≥ g. This bound is sharp, by [CDPR12].

1.3. Matroidal linear series. This work focuses on the relations between tropical linear series
and matroids. If K is a valued field and V ⊆ AnK is a linear subvariety, then Trop(V ) ⊆ Rn

is a tropical submodule. Abstracting the combinatorial properties of such submodules gives the
cryptomorphic axiomatization of valuated matroids in terms of valuated covectors. Since we use
this axiomatization of valuated matroids throughout, we simply refer to a submodule of Rn satisfying
the valuated covector axioms as a valuated matroid. See Section 2.8 for details and references.

Theorem 1.7. If Σ is the tropicalization of a linear series of dimension r then there is a realizable
valuated matroid V of rank r + 1 and a surjective homomorphism of tropical modules V ↠ Σ.

Theorem 1.7 first appeared implicitly in the proof that the tropicalization of any linear series is
finitely generated as a tropical module [FJP25, Proposition 6.4]. For the reader’s convenience, we
give a self-contained proof in Appendix A.

A subset Σ ⊆ Rn is a valuated matroid if and only if it contains (∞, . . . ,∞) and the projec-
tivization

(
Σ ∖ (∞, . . . ,∞)

)
/R is a tropical linear space. In particular, tropical linear spaces are

another cryptomorphic incarnation of valuated matroids [Spe08, BEZ21]. Here, we focus on val-
uated matroids, because we rely heavily on the tropical module structure, which is lost through
projectivization.

Definition 1.8. We say that a tropical linear series (D,Σ) of dimension r is a matroidal linear
series if Σ is the image of a tropical module homomorphism from a valuated matroid of rank r+1.

Definition 1.9. A tropical linear series is realizable if it is the tropicalization of a linear series.

If Σ is the image of a valuated matroid of rank r + 1, then rind(Σ) ≤ r + 1. Thus, a tropical
submodule Σ ⊆ R(D) is a matroidal linear series of dimension r if and only it is the image of a
valuated matroid of rank r + 1 under a homomorphism of tropical modules and rBN(Σ) = r. By
Theorem 1.7, every realizable tropical linear series is matroidal.
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Remark 1.10. The surjection V ↠ Σ is not unique and is not part of the data of a matroidal linear
series. We refer to such a surjection as a parametrization. Theorem 1.7 says that the tropicalization
of any linear series has a parametrization by a realizable valuated matroid. In Sections 6 and 7,
we give examples of matroidal linear series that are not parametrized by any realizable valuated
matroid and hence are not tropicalizations of linear series on algebraic curves.

Remark 1.11. It is immediate from the definitions that the restriction of a tropical or matroidal
linear series to a subgraph is a tropical or matroidal linear series, respectively. We can therefore
study tropical linear series on a complicated graph by considering their restrictions to smaller and
simpler subgraphs, such as edges and loops. Such arguments are essential for applications, as in
[FJP24, FJP25], which involve studying tropicalizations of linear series on a chain of loops with
bridges by systematically considering the restrictions to each loop and bridge.

Question 1.12. Is every tropical linear series a matroidal linear series?

We do not know the answer to this basic question. However, we show that the structure of every
tropical linear series is closely related to a matroid locally near every point in an open dense subset
of nondegenerate divisors.

1.4. Nondegenerate divisors and local matroids. Let Σ ⊆ R(D) be a tropical linear series of
degree d. We use two semi-continuous integer-valued functions on |Σ| to characterize nondegenerate
divisors. Let supp(D) be the finite set of points in Γ that appear with nonzero multiplicity in D. The

first function we consider is #supp, which is lower semi-continuous on Symd(Γ). The second is the
valence 1 degree, which is upper semi-continuous and takes a divisor to the sum of its multiplicities
at the valence 1 points of Γ.

Definition 1.13. Let Σ be a tropical linear series. A divisor D ∈ |Σ| is nondegenerate if #supp
has a local maximum in |Σ| at D and the valence 1 degree has a local minimum in |Σ| at D.

A nondegenerate divisor D has an open neighborhood U in |Σ| such that the restriction of #supp to
U achieves its maximum at D, and the restriction of the valence 1 degree to U achieves its minimum
at D. The locus of nondegenerate divisors is open and dense in |Σ|.

We study the local structure of |Σ| near a nondegenerate divisor D, as follows. Roughly speaking,
the star of a point x in a polyhedral space ∆, denoted Star(x), is the cone-shaped space that one sees
looking out into ∆ from x. More precisely, Star(x) is the space of germs of linear maps [0, ϵ] → ∆
that take 0 to x. A choice of triangulation of ∆ induces a simplicial fan structure on Star(x), but
the support of Star(x) is independent of such choices. Our next theorem identifies Star(D) with the
Bergman fan of a matroid, when D ∈ |Σ| is nondegenerate.

For φ ∈ Σ, we define φmin ⊆ Γ to be the minimizer of φ, i.e.,

φmin := {p ∈ Γ : φ(p) = min
x∈Γ

φ(x)}.

If Σ ⊆ R(D) and D ∈ |Σ| is nondegenerate, then φmin is a union of closures of connected components
of Γ∖ supp(D) (Proposition 4.3). Let E be the set of connected components of Γ∖ supp(D), and

Fφ := {S ∈ E : S ̸⊆ φmin}.
If D is nondegenerate, evaluation at one chosen point in each connected component of Γ∖ supp(D)
gives local coordinates in a neighborhood of D and induces an embedding Star(D) ⊆ RE/(1, ..., 1).

Theorem 1.14. Let Σ ⊆ R(D) be a tropical linear series of dimension r such that D is nondegen-
erate in |Σ|. Then {Fφ : φ ∈ Σ} ∪ {E} is the set of flats of a matroid MΣ of rank r + 1 on E, and
the image of the embedding Star(D) ⊆ RE/(1, ..., 1) is the support of the Bergman fan of MΣ.

We say that MΣ is the local matroid of Σ. It is an invariant of the submodule Σ ⊆ PL(Γ) or,
equivalently, an invariant of the pair (|Σ|, D). Theorem 1.14 identifies the local geometry of |Σ| at
a nondegenerate divisor D with the Bergman fan of MΣ. Theorem 1.5 is an immediate corollary,
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because the nondegenerate divisors are dense in |Σ|. Note that we do not choose a preferred fan
structure on the support of the Bergman fan. Throughout, whenever we refer to the Bergman fan
of a matroid, we are primarily interested in its support.

When one varies the nondegenerate divisor in |Σ|, the local matroid varies as well. If Σ ⊆ R(D)
and D′ = D + div(φ′) ∈ |Σ| then Σ′ := {φ′ : φ′ + φ ∈ Σ} is a submodule of R(D′) and the map

φ′ 7→ φ+φ′ induces the identity |Σ′| = |Σ| as subsets of Symd(Γ). The local matroids MΣ′ and MΣ

have the same rank, and they have a common restriction to the set of components of Γ∖ supp(D)
on which φ′ is minimized.

The local matroids associated to (|Σ|, D) for fixed Σ and varying D are closely analogous to

the initial matroids Vw of a fixed valuated matroid V ⊂ Rn with respect to a weight vector w ∈
Rn/(1, ..., 1). Indeed, if w ∈ |V| then Star(w) is the Bergman fan of Vw. Also, we define the
local matroid not only when D ∈ |Σ| is nondegenerate but, more generally, whenever Σ has big
minimizers, meaning that every minimizer φmin, for φ ∈ Σ, contains a connected component of
Γ∖ supp(D). Theorem 4.5 shows that the local matroid associated to (|Σ|, D) is loopless if and only
if D ∈ |Σ|, just as the initial matroid Vw is loopless if and only if w ∈ |V|.

1.5. Tropicalizations of canonical linear series. As an application, we use our theory of local
matroids to study tropicalizations of canonical linear series. For simplicity, suppose Γ is a trivalent
graph with first Betti number g and no bridges. Let KΓ be the sum of its vertices. Specialization
from the canonical linear series of a curve with skeleton Γ shows that R(KΓ) contains a tropical
linear series of dimension g − 1. If Σ is such a tropical linear series then |Σ| contains KΓ as a
nondegenerate divisor, and our Theorem 4.5 implies that the local matroid at KΓ is the cographic
matroid. See Example 4.6. This casts new light on an observation of Haase, Musiker, and Yu
[HMY12, Theorem 25].

Möller, Ulirsch, and Werner used the space of multiscale differentials [BCG+18] to determine the
realizable locus Real(|KΓ|) ⊂ |KΓ|, the space of divisors that can be realized as the tropicalization
of an effective canonical divisor on a curve over a valued field with skeleton Γ in equicharacteristic
zero [MUW21]. However, they left open the problem of understanding the possibilities for the
tropicalization of the canonical linear series on a single curve. This is nontrivial; we give an example
where Real(|KΓ|) has dimension greater than g − 1, and hence cannot be the tropicalization of any
single canonical linear series. We use our theory of local matroids to show that the dimension is the
only obstruction to realizing every divisor in Real(|KΓ|) on every curve with skeleton Γ.

Theorem 1.15. Let X be a curve over a nonarchimedean field of equicharacteristic zero with
skeleton Γ. Then Trop(|KX |) = Real(|KΓ|) if and only if Real(|KΓ|) has dimension g − 1.

1.6. Local matroids and realizability. For matroidal linear series, we prove a precise technical
result relating the local matroids at nondegenerate divisors to the initial matroids of the parametriz-
ing matroid Theorem 6.1. This makes the local matroids at nondegenerate divisors a key obstruction
to realizability.

Theorem 1.16. If Σ ⊆ R(D) is the tropicalization of a linear series and D ∈ |Σ| is nondegenerate
then the local matroid MΣ is realizable.

Remark 1.17. Since |Σ| is a polyhedral complex of pure dimension r, there is an open dense set
of points where |Σ| is locally isomorphic to Rr and hence locally looks like the Bergman fan of the
Boolean matroid of rank r + 1. Theorem 1.14 gives much stronger and more precise information.
The local matroids that are not Boolean are essential for our applications.

Theorem 1.18. Every loopless matroid is isomorphic to the local matroid of a tropical linear series
at a nondegenerate divisor.

More precisely, every loopless matroid is the local matroid of a matroidal linear series at a nonde-
generate divisors on an interval and also on a loop. See Section 6. Together with Theorem 1.16,
this provides a wealth of examples of non-realizable matroidal linear series.
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In Section 7, we revisit a class of rank 2 divisors studied by Cartwright. Let M be a simple rank
3 matroid, let ΓM be the bipartite incidence graph of its flats of rank 1 and 2, and DM the sum of
the vertices corresponding to rank 1 flats. Then rBN(DM ) = 2 and DM is the tropicalization of a
rank 2 divisor if and only if M is realizable [Car15]. We show that if Σ ⊆ R(DM ) is a tropical linear
series of dimension 2 then DM is contained in |Σ| and nondegenerate, and the local matroids MΣ

that occur in this way are exactly the adjoints of M (Theorems 7.1 and 7.3). As a consequence, we
obtain a new proof that DM is not the tropicalization of a rank 2 divisor when M is not realizable
(Corollary 7.2).

1.7. Linear incidence geometry and recursive structures. We conclude the introduction with
a brief discussion of how strongly recursive tropical linear series arise from properties of linear
incidence geometry. We also explain our choice to study the broader class of tropical linear series.

Let (DX , V ) be a linear series of dimension r. For k < r, any size k + 1 subset of V is contained
in a linear subseries V ′ ⊆ V of dimension k. Likewise, if V ′ and V ′′ are subseries of codimension
c1 and c2 in V , with c1 + c2 ≤ r, their intersection contains a subseries of codimension c1 + c2.
Thus, if (D,Σ) is the tropicalization of a linear series of dimension r, any subset of Σ of size k+1 is
contained in the tropicalization of a linear subseries of dimension k. Moreover, any two subsets of
size r are contained in tropicalizations of linear series of dimension r−1 whose intersection contains
the tropicalization of a linear series of dimension r − 2. The following is a restatement of [FJP25,
Definition 6.5] in the terminology of the present paper.

Definition 1.19. A strongly recursive tropical linear series Σ ⊆ R(D) of dimension r is a tropical
linear series of dimension r such that

(1) Any size r subset S ⊆ Σ is contained in a strongly recursive tropical linear subseries ΣS ⊆ Σ
of dimension r − 1, and

(2) Given any two size r subsets S and S′ of Σ, the dimension r− 1 strongly recursive tropical
linear subseries ΣS and ΣS′ containing them can be chosen so that ΣS ∩ ΣS′ contains a
strongly recursive tropical linear subseries of dimension r − 2.

This definition builds in exactly the basic properties from linear incidence geometry that were
needed for applications to the Kodaira dimensions of M22 and M23 in [FJP25]. A straightforward
specialization argument shows that any tropicalization of a linear series of dimension r is a strongly
recursive tropical linear series of dimension r. However, the recursive nature of these incidence
properties makes them exceedingly difficult to verify for any combinatorial examples that do not
arise as tropicalizations of algebraic linear series. Other basic properties of linear incidence geometry
were omitted from that definition, even though they hold in all vector spaces and hence in all
tropicalizations of linear series, simply because they were not needed for applications to the Kodaira
dimensions of M22 and M23. See [FP23] for a modern perspective on the complexities of linear
incidence geometry.

Recent work in valuated matroid theory shows that tropical analogs of such basic incidence
geometry statements can fail in tropical linear spaces. In particular, the rank 4 Vamós matroid does
not have the Levi intersection property and hence its associated tropical linear space contains 3
points that are not contained in any tropical linear subspace of codimension 1 [Wan24, Theorem E].
Using this, we give a tropical linear series of dimension 3 on the interval and a subset of size 3 that
is not contained in any tropical linear subseries of dimension 2. See Example 6.6.

Likewise, there is a relaxation of the Vámos matroid whose Bergman fan contains two tropical
linear spaces of codimension 1 whose intersection does not contain any tropical linear space of
codimension 2 [Wan24, Example 6.14]. Using this, we give an example of a tropical linear series
with two codimension 1 tropical linear subseries whose intersection does not contain any tropical
linear subseries of codimension 2. See Example 6.8.

Example 6.6 shows that non-realizable tropical linear series are not strongly recursive in general.
By relaxing our definition of tropical linear series to include such objects, we get a cleaner and
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simpler combinatorial theory, worthy of investigation in its own right. For applications to algebraic
geometry, nothing is lost in this way; using specialization, one can appeal to the properties that
follow from linear incidence geometry whenever one restricts attention to the realizable case.

Remark 1.20. This paper supersedes the preprint [JP22] and incorporates ideas and results from
Dupraz’s Master’s thesis [Dup24], which will not be published separately.
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work of SP was supported in part by NSF grant DMS–2542134 and a visit to the Institute for
Advanced study supported by the Charles Simonyi Endowment.

We are grateful to M. Baker, D. Cartwright, C. Haase, Y. Luo, D. Maclagan, M. Mayo Garćıa,
and J. Yu for helpful comments on an earlier version of this paper.

2. Preliminaries

2.1. Metric graphs. Roughly speaking, a metric graph is a finite graph G, possibly with loops and
multiple edges, with a positive real length ℓ(e) assigned to each edge e in G. Subdividing an edge
does not change the resulting metric space, and we consider the metric graphs associated to two
such data (G, ℓ) and (G′, ℓ′) to be isomorphic whenever the resulting metric spaces are isometric.

To make this more precise, let S(n, ϵ) denote the star-shaped set of valence n and radius ϵ > 0.
It is the pointed length metric space obtained from n copies of the interval [0, ϵ] by identifying all
n copies of the point 0, and labeling the resulting distinguished point ∗.

Figure 1. A star-shaped set of valence 5

Definition 2.1. A metric graph is a compact connected length metric space in which each point p
has a neighborhood Up with a pointed isometry to a star-shaped set S(np, ϵp).

By a pointed isometry, we mean an isometry Up
∼−→ S(np, ϵp) that takes p to ∗. Note that the

positive integer np is independent of the choice of star-shaped neighborhood; it is called the valence
of p. Since a metric graph is compact, it has only finitely many points p of valence np ̸= 2.

2.2. Models of metric graphs. Every metric graph can be constructed from a finite graph with
a length function on edges, as follows. Let G be a finite graph, possibly with loops and multiple
edges, and let ℓ : E(G) → R>0 be a function that assigns a positive real length to each edge. This
data gives rise to a metric graph Γ = Γ(G, ℓ), which is constructed from the disjoint union of the
vertex set V (G) and

⊔
e∈E(G)[0, ℓ(e)] by choosing an orientation of each edge and identifying the

endpoints of [0, ℓ(e)] with the vertices incident to e, accordingly. The data of (G, ℓ), plus an isometry
Γ(G, ℓ) → Γ, is a model of Γ. Note that every metric graph Γ has a model, but these models are
never unique, because any edge can be subdivided. In particular, the vertex set V (G) contains the
set of points p ∈ Γ(G, ℓ) of valence np ̸= 2, but it may be strictly larger.

Starting from an arbitrary model of Γ and subdividing at p if needed, we can construct a model
(G, ℓ) of Γ in which p is a vertex of G. Then np is the number of half-edges of G incident to p.

Every metric graph has a model (G, ℓ) in which the underlying graph G is simple, without loops or
multiple edges. One can construct such a model from an arbitrary model by subdividing every edge.
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Also, any two models (G, ℓ) and (G′, ℓ′) of Γ have a common refinement, obtained by subdividing
at all points of Γ that are vertices of G′ but not vertices of G, or vice versa.

2.3. Tangent directions in metric graphs. Following [BPR13, Section 1.4], we say that the
tangent directions of Γ at p are the germs of isometric embeddings α : [0, ϵ] → Γ with α(0) = p.
Note that the number of tangent directions at p is equal to the valence np.

2.4. Divisors on metric graphs. The divisor group Div(Γ) is the free abelian group on the points
of Γ. Its elements are divisors. The degree of a divisor D = a1p1 + · · · + arpr is the sum of its
coefficients deg(D) := a1 + · · ·+ ar. A divisor D is effective, denoted D ≥ 0, if ai ≥ 0 for all i.

Let PL(Γ) denote the group of continuous piecewise-linear functions with integer slopes on Γ. In
other words, a function φ : Γ → R is in PL(Γ) if it is continuous and there is some model (G, ℓ) of
Γ such that the restriction of φ to each edge is affine linear with integer slope.

Definition 2.2. Let ζ = [α] be a tangent direction at p. The outgoing slope of φ ∈ PL(Γ) along ζ,
denoted sζ(φ), is the derivative of φ ◦ α at 0. The incoming slope of φ at p is −sζ(φ).

Let Tp(Γ) denote the set of tangent directions of Γ at p. The order of φ ∈ PL(Γ) at p is the sum
of the incoming slopes

ordp(φ) := −
∑

ζ∈Tp(Γ)

sζ(φ).

Note that ordp(φ) = 0 for all but finitely many p and hence

div(φ) :=
∑
p

ordp(φ) · p

is a divisor. The divisors of the form div(φ) for some φ ∈ PL(Γ) are called principal, and

div(φ+ φ′) = div(φ) + div(φ′),

so the principal divisors are a subgroup of Div(Γ). Two divisors D and D′ in Div(Γ) are equivalent,
denoted D ∼ D′, if D−D′ is principal. Note that the degree of any principal divisor is 0, and hence
any two equivalent divisors have the same degree.

2.5. Complete linear systems. The complete linear system of D ∈ Div(Γ) is the set of effective
divisors equivalent to D

|D| := {D′ ∼ D : D′ ≥ 0}.
We recall, following [HMY12, Section 4], that |D| carries a canonical piecewise-linear structure, as
follows.

The space of effective divisors of degree D on Γ is naturally identified with

Symd(Γ) := Γd/Sd.

Here, Sd is the symmetric group acting by permuting the factors of Γd. The topology on Symd(Γ),
as a quotient of Γd, is compatible with a natural piecewise-linear structure, defined as follows.

Choose a model (G, ℓ) of Γ without loops or multiple edges, and choose an orientation of each

edge. The relative interior of a face of Symd(Γ) corresponds to the following data:

• For each vertex v, a nonnegative integer mv;
• For each edge e, a finite sequence of positive integers (me,1, . . . ,me,ke);

subject to the condition ∑
v

mv +
∑
e,i

me,i = d.

We allow the possibility that ke = 0, i.e., the sequence of positive integers associated to an edge e
may be empty. A divisor D is in the relative interior of the given face if and only if it contains each
vertex v with multiplicity mv and exactly ke distinct points in the interior of e with multiplicities
(me,1, . . . ,me,ke), respectively, where the points are ordered with respect to the chosen orientation
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on e. The relative interior of a face of Symd(Γ) is a combinatorial type of divisor of degree d, and
the subspace of divisors of fixed combinatorial type is the interior of a product of simplices.

For any divisor D of degree d, there is a natural polyhedral structure on |D| in which the relative
interior of a face is composed of divisors D′ = div(φ) + D of a fixed combinatorial type and such
that φ has fixed slopes at the starting point of each half-edge (see [HMY12, Section 4]).

Note that |D| ⊆ Symd(Γ) is a compact, connected Hausdorff space. Its topology has an alternate
metric description in terms of PL(Γ), as follows. Let ∥ · ∥∞ be the function on PL(Γ) given by

∥φ∥∞ = sup(φ)− inf(φ).

For any D1, D2 ∈ |D|, there is some φ ∈ PL(Γ), well-defined up to an additive scalar, such that
D1−D2 = div(φ). The function ∥ · ∥∞ is invariant under scalar addition, and we define a metric by

d∞(D1, D2) = ∥φ∥∞.

The metric topology agrees with the subspace topology on |D| ⊆ Symd(Γ) [Luo18, Proposition B.1].

2.6. Tropical modules. Let R := R ∪ {∞} be the tropical semifield, with addition and multipli-
cation given respectively by

a⊕ b := min{a, b} and a⊙ b := a+ b.

Note that ∞ is the zero element, i.e., the identity for addition and the absorbing element for
multiplication. A tropical module Σ is a semimodule over R. A tropical module is trivial if it is
equal to {∞}.

Let Σ be a tropical module. The tropical submodule generated by a subset S ⊆ Σ, denoted ⟨S⟩,
is the set of finite tropical linear combinations

a1 ⊙ φ1 ⊕ · · · ⊕ an ⊙ φn
with ai ∈ R and φi ∈ S. It is the smallest tropical submodule of Σ that contains S. A tropical
module Σ is finitely generated if it is equal to ⟨S⟩ for some finite subset S ⊆ Σ. For any divisor D,
the tropical module R(D) is finitely generated, and the minimal generating set is essentially unique
up to tropical scaling [HMY12, Corollary 9].

Example 2.3. For any set E, the real-valued functions RE , together with an additional zero element
denoted ∞, is a tropical module with operations defined pointwise:

(φ⊕ φ′)(x) = min{φ(x), φ′(x)} and (a⊙ φ)(x) = φ(x) + a

for x ∈ E and a ∈ R.
Note that PL(Γ) ⊆ RΓ is preserved by these operations, and hence PL(Γ) ∪ {∞} is a tropical

module. Similarly, for any divisor D ∈ Div(Γ), define

R(D) := {φ ∈ PL(Γ) : D + div(φ) ≥ 0}.

Then
(
R(D) ∪ {∞}

)
⊆

(
PL(Γ) ∪ {∞}

)
is a tropical submodule [HMY12, Lemma 4].

Notation 2.4. Throughout, we write the tropical module operations on PL(Γ) ∪ {∞} and its
tropical submodules classically rather than tropically, i.e., we write min{φ,φ′} for the tropical sum
and φ+ a for the product with a nonzero scalar a. When no confusion seems possible, we omit the
zero elements (denoted ∞), and refer to R(D) and PL(Γ) as tropical modules.

2.7. Tropical independence. A tropical linear combination of {φ0, . . . , φr} ⊆ PL(Γ) is an ex-
pression of the form

(2) θ = min{φ0 + a0, . . . , φr + ar},

where a0, . . . , ar are real numbers. Note that we consider the tuple (a0, . . . , ar) to be part of the data
of the tropical linear combination, even though different tuples may give rise to the same pointwise
minimum θ.
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Definition 2.5. The set {φ0, . . . , φr} ⊆ PL(Γ) is tropically dependent if there is a tropical linear
combination θ such that the minimum in (2) is achieved at least twice at every point in Γ.

Such a tropical linear combination is a tropical dependence. In other words, θ is a tropical
dependence if and only if

(3) θ = min
j ̸=i
{φj + aj} for each 0 ≤ i ≤ r.

If no such tropical dependence exists, then {φ0, . . . , φr} is tropically independent.

Example 2.6. Consider the three functions on the interval pictured in Figure 2. Suppose that φi
all have infinum 0, then min{φ1, φ2, φ3} is a tropical dependence. Note however that we cannot
write any of the three functions as a tropical linear combination of the other two.

φ1

φ2

φ3

Figure 2. Three tropically dependent functions on an interval.

Definition 2.7. A certificate of independence for a set of functions {φ0, . . . , φr} ⊆ PL(Γ) is a
tropical linear combination

θ = min{φ0 + a0, . . . , φr + ar}
such that for each i there is some point at which the minimum is attained uniquely by φi + ai.

We will repeatedly use the fact that a subset S ⊆ PL(Γ) is tropically independent if and only if
there is a certificate of independence for S [FJP25, Theorem 1.6].

2.8. Matroids and valuated matroids as tropical modules. Matroids are a combinatorial
abstraction and generalization of the properties of linear independence for finite subsets of a vector
space. The theory is vast; we recall only the minimal background needed for the purposes of this
paper and refer the reader to [Oxl06] for further details.

Some matroids come from vector spaces, as follows. Given a field K and a vector space V ⊆ Kn,
one obtains a matroid MV on the set {1, . . . , n} by saying that I ⊆ {1, . . . , n} is independent if
the corresponding set of coordinate linear functions {e∗i : i ∈ I} is linearly independent in the dual
vector space V ∗. In this situation, the elements {1, . . . , n} are tacitly identified with the coordinate
linear functions and are referred to as the vectors of MV . The independent sets of vectors satisfy
the following properties:

• The empty set is independent.
• Any subset of an independent set is independent.
• If I and J are independent sets and |I| < |J | then I ∪{j} is independent for some j ∈ J∖ I.

By definition, any collection of subsets of a finite set E that satisfy these three properties is the
collection of independent sets in a matroid on E. The maximal independent sets are called bases,
and all bases have the same size, which is the rank of the matroid. Matroids that come from a linear
subspace V ⊆ Kn as above are called realizable, and the rank of MV is dimK V .

Matroids have many cryptomorphic axiomatizations. For instance, a matroid M on E is char-
acterized equivalently by its independent sets, its bases, the rank function taking a subset of E to
the size of the largest independent set that it contains, or by the flats which are the subsets that
are maximal of a given rank. We give most of our attention to the characterization of matroids in
terms of covectors.
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Let us return to the case of the realizable matroid MV associated to a vector space V ⊆ Kn. We
now assume that the field K is infinite. The support of a point v = (v1, . . . , vn) in V is

supp(v) := {i ∈ {1, . . . , n} : vi ̸= 0}.

The set of covectors of MV is {supp(v) : v ∈ V }. It has the following properties.

• The empty set is a covector.
• Any union of covectors is a covector.
• If I and J are covectors with i ∈ I ∩ J , then there is a covector contained in I ∪ J ∖ {i}

that contains the symmetric difference I△J .
Conversely, any set of subsets that satisfies these three properties is the set of covectors of a matroid.

To each matroid M on a finite set E, one associates Trop(M) ⊆ RE . It is the tropical submodule
generated by the tropical indicator functions of the covectors and is a tropical linear space of
dimension equal to the rank of M . Here, the tropical indicator function of a subset I ⊆ E takes
the value 0 on elements of I and ∞ on elements of E ∖ I. Let us assume that Trop(M) ∩ RE is
nonempty, which is the case if and only if M is loopless, i.e., every single element subset of E is
independent. Then, Trop(M)∩RE is invariant under translation by (1, . . . , 1) and the image under
projection to RE/(1, . . . , 1) is the support of the Bergman fan B(M). (We do not choose a preferred
fan structure and refer to this space simply as the Bergman fan when no confusion seems possible.)
The preimage of the Bergman fan is dense in Trop(M) and the set of covectors of M is exactly the
subsets of E whose indicator functions are contained in Trop(M). Thus, M carries exactly the same

information as the Bergman fan B(M) ⊆ RE/(1, . . . , 1) and the tropical submodule Trop(M) ⊆ RE .

We are interested not only in matroids but also valuated matroids, which similarly abstract and
generalize the properties of linear independence for finite subsets of a vector space over a valued
field, where one records not only which subsets are linearly dependent, but the valuations of the
coefficients in each linear relation. We give particular attention to the tropical modules that arise in
this context, i.e., the valuated analogs of the Bergman fan B(M) ⊆ RE/(1, . . . , 1) and of Trop(M).
Our presentation of valuated matroids is very brief. See [MT01] for a more detailed foundational
treatment, and [BEZ21], and the references therein, for further details on their cryptomorphic
axiomatizations and relations to the geometry of tropical linear spaces.

We return to the situation where V ⊆ Kn is a linear subspace, and now we suppose that K
carries a nontrivial valuation val : K → R. To each v = (v1, . . . , vn) in V we associate

trop(v) = (val(v1), . . . , val(vn))

in Rn. The set of valuated covectors of the associated valuated matroid V is the tropical submodule
of Rn generated by {trop(v) : v ∈ V }. Assuming the residue field of K is infinite, the valuated
covectors satisfy the valuated exchange axiom:

• If w = (w1, . . . , wn) and (w′
1, . . . , w

′
n) are valuated covectors with wi = w′

i then there is a
valuated covector w′′ = (w′′

1 , . . . , w
′′
n) such that w′′

i = ∞ and w′′
j ≥ min{wj , w′

j} for j ̸= i,
with equality when wj ̸= w′

j .

The valuated matroids that come from subspaces of Kn in this way are called realizable.
Valuated matroids have many different cryptomorphic axiomatizations. Most importantly for

our purposes, a valuated matroid is determined by its tropical module of valuated covectors, and
any tropical submodule of Rn that satisfies the valuated exchange axiom occurs in this way. When
no confusion seems possible, we identify a valuated matroid V with its tropical module of valuated
covectors. Hence, we say that a matroidal linear series Σ (Definition 1.8) is the image of a valuated
matroid under a homomorphism of tropical modules V ↠ Σ. We note that every valuated matroid
is finitely generated as a tropical module, with one generator for each covector of minimal support.
Here, the support of w ∈ V is supp(w) := {i : wi ̸=∞}.
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If V ⊆ Rn is a valuated matroid, and v is contained in V ∩ Rn, then the image of Star(v) in
Rn/(1, . . . , 1) is the Bergman fan of a matroid, called the initial matroid of V at v. If a valuated
matroid V is realizable, then all of its initial matroids are realizable. Also, the support sets of
elements of V are the covectors of a matroid M , called the underlying matroid of V. The underlying
matroid and initial matroids all have the same rank, and this is the rank of V.

Finally, let us note that if M is an ordinary matroid, then Trop(M) is the set of covectors of a
valuated matroid VM . The underlying matroid of VM is M , as is the initial matroid of VM at 0.
Moreover, M is realizable as a matroid if and only if VM is realizable as a valuated matroid.

3. Projectivization and dimension for tropical modules

In this section, we discuss the relationship between independence rank and dimension for finitely
generated tropical modules.

3.1. Independence rank and generating sets. Let E be a possibly infinite set. We are equally
interested in the cases where E is finite and where E is a metric graph Γ. The notions of tropical
dependence and independence discussed in Section 2.7 for subsets of PL(Γ) generalize essentially

without change to subsets of tropical submodules of RE .

Definition 3.1. The independence rank of a tropical submodule Σ ⊆ RE , denoted rind(Σ), is the
supremum of the sizes of its tropically independent finite subsets.

We start with a lemma relating independence rank to independent subsets of a generating set.

Lemma 3.2. Let S ⊆ RE. Then the independence rank of the tropical submodule ⟨S⟩ is the
supremum of the sizes of the tropically independent subsets of S.

Proof. Let {y1, . . . , yn} ⊆ ⟨S⟩. Write each yi as a finite tropical linear combination

yi = min
x∈S
{x+ ai(x)},

where ai(x) =∞ for all but finitely many x ∈ S.
Suppose {y1, . . . , yn} is tropically independent. We will show that there is a tropically indepen-

dent subset of S of size n. By [FJP25, Theorem 1.6] there is a certificate of independence

(4) θ = min{y1 + b1, . . . , yn + bn}.
For each i ∈ {1, . . . , n}, there is a point pi where yi+bi achieves the minimum uniquely in (4). Choose
xi ∈ S so that xi + ai(xi) achieves the minimum at pi in the expression yi = minx∈S{x + ai(x)}.
We now show that the elements x1, . . . , xn are distinct and {x1, . . . , xn} is tropically independent.

Since yi + bi achieves the minimum uniquely at pi in (4), we have

ai(xi) + bi < aj(xi) + bj for all j ̸= i.

It follows that xi ̸= xj for i ̸= j, and

min{x1 + a1(x1) + b1, . . . , xn + an(xn) + bn}
is a certificate of independence for {x1, . . . , xn} ⊆ S. □

By Lemma 3.2, the independence rank of any finitely generated tropical submodule Σ ⊆ RE is finite
and bounded above by the size of any generating set.

Lemma 3.3. Let S ⊆ RE. For any x ∈ ⟨S⟩, there is a tropically independent finite subset S′ ⊆ S
such that x is contained in ⟨S′⟩.
Proof. Let x ∈ ⟨S⟩, and let S′ ⊆ S be minimal such that x ∈ ⟨S′⟩. Write

(5) x = min
y∈S′
{y + a(y)}.

Since S′ is minimal, for each y ∈ S′ there is some e ∈ E such that y + a(y) achieves the minimum
uniquely in (5) at e. Hence (5) is a certificate of independence for S′. □
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3.2. Projectivizations of tropical modules. If Σ ⊆ Rn is a finitely generated tropical sub-
module, then its projectivization |Σ| is the tropical convex hull of the images of its generators in
Rn/(1, . . . , 1). In particular, it is a polyhedral set. We now discuss the analogous statements for
finitely generated submodules of PL(Γ). Note that any such submodule is contained in R(D) for
some divisor D on Γ.

For any two functions φ, φ′ ∈ PL(Γ), we have div(φ) = div(φ′) if and only if φ′ = φ+a for some
real number a. Hence the tropical complete linear series |D| is the projectivization of R(D), i.e.

|D| = R(D)/R.
We likewise denote the projectivization of any tropical submodule Σ ⊆ R(D) by

|Σ| := Σ/R.
Note that |Σ| is a subspace of |D|. If D ∼ D′, then D′ = D + div(φ) for some φ ∈ PL(Γ) and the

map φ′ 7→ φ′ + φ induces an isomorphism of tropical modules R(D)
∼−→ R(D′). This descends to a

bijection |D| ∼= |D′| preserving the relevant polyhedral structures.

Proposition 3.4. If Σ ⊆ R(D) is finitely generated, then |Σ| is a polyhedral subset of Symd Γ.

Proof. Let {φ0, . . . , φr} ⊆ Σ be a generating set. For a = (a0, . . . , ar) in Rr+1, consider

(6) φa = min{φ0 + a0, . . . , φr + ar}
Consider the map Φ: Rr+1 → |Σ| given by a 7→ D + div(φa). Let (G, ℓ) be a model of Γ such that
each generator φi is affine on every edge. Let I = (Ie)e∈E(G) be a collection of subsets of {0, . . . , r}
indexed by the edges of G. Consider the subset QI ⊆ Rr+1 defined by the condition that φi + ai
achieves the minimum in (6) on a nonempty open subset of e if and only if i ∈ Ie.

The set QI is cut out by a finite set of linear inequalities, so it is a polyhedron in Rr+1, and the
nonempty sets QI form a polyhedral subdivision of Rr+1. From the description of the polyhedral
structure on Symd(Γ), it follows that Φ(QI) is contained in a face σ of Symd(Γ). The restriction of

Φ maps QI affine linearly into σ, and it follows that |Σ| is a polyhedral subset of Symd(Γ). □

3.3. Independence rank and dimension. We now explain how the independence rank controls
the dimension of projectivizations of tropical submodules of Rn and R(D). We use relations to the
tropical rank of matrices, as presented, e.g., in [MS15, Chapter 5]. A square matrix with entries from
R is tropically nonsingular if the minimum in the tropical determinant is achieved only once. The
tropical rank of a matrix with entries from R is the size of the largest nonsingular square submatrix.

Proposition 3.5. Let Σ ⊆ Rm be a tropical submodule generated by {v0, ..., vn}. Let A be the
tropical matrix with row vectors v0, ..., vn. Then the following are equivalent.

(1) The independence rank rind(Σ) is r + 1;
(2) The tropical rank of A is r + 1;
(3) The dimension of |Σ| = Σ/R is r.

Proof. The equivalence of (2) and (3) is [MS15, Theorem 5.3.23]. We prove the equivalence of (1)
and (2). Assume rind(Σ) = r + 1. By Lemma 3.2, we may assume that v0, ..., vr are tropically
independent. Then there is a certificate of independence, i.e., there are constants a0, ..., ar and
indices i0, ..., ir, such that

min{v0 + a0, ..., vr + ar}
is uniquely achieved by vj + aj in the coordinate labeled by ij . The permutation j 7→ ij then
corresponds to the unique leading term in the tropical determinant of this (r+1)×(r+1) submatrix,
and hence the tropical rank of A is at least r + 1.

Conversely, suppose A has a nonvanishing minor A′ of size r + 1. Then by (3), the tropical row

span Σ′ of A′ is full-dimensional in Rr+1
. By translation, we may assume that Σ′ contains an open

ball centered at the origin. In particular, it contains the points

(0, ϵ, ϵ, ..., ϵ), (ϵ, 0, ϵ, ..., ϵ), ..., (ϵ, ϵ, ..., ϵ, 0)
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for sufficiently small ϵ > 0. This set is tropically independent, since the coordinatewise minimum is
a certificate of independence, and hence rind(Σ

′) = r + 1. Projection to a subset of the coordinates
does not increase the independence rank of a tropical module, so it follows that rind(Σ) ≥ r+1. □

For finitely generated tropical submodules in PL(Γ), we have a similar statement.

Proposition 3.6. Let Σ ⊆ PL(Γ) be the tropical submodule generated by {φ0, ..., φn}. For each
finite subset S = {v1, . . . , vs} of Γ, let AS be the matrix with (AS)ij = φi(vj). Then the following
are equivalent.

(1) The independence rank rind(Σ) is r + 1;
(2) The maximum of the tropical rank of AS, over all finite subsets S ⊆ Γ, is r + 1;
(3) The dimension of |Σ| = Σ/R is r.

Proof. The proof that (1) is equivalent to (2) is essentially identical to the proof of Proposition 3.5.
We now show that (1) is equivalent to (3).

Suppose rind(Σ) = r + 1. By Lemma 3.2, after renumbering, we may assume {φ0, . . . , φr} is
tropically independent. By [FJP25, Theorem 1.6], there is a certificate of independence

θ = min{φ0 + a0, . . . , φr + ar}.
The map (b0, . . . , br) 7→ min{φ0 + b0, . . . , φr + br} embeds an open neighborhood of (a0, . . . , ar)
into Σ and projects to an r-dimensional subset of |Σ|. Thus, dim |Σ| ≥ r. It remains to show that
dim |Σ| ≤ r. By Lemma 3.3, |Σ| is the union of the subsets |⟨S⟩|, where S ranges over subsets of
{φ0, . . . , φn} of size r + 1. Each such subset |⟨S⟩| has dimension at most r, as required. □

In Sections 4 and 5, we work with a broader class of tropical submodules of PL(Γ), those whose
projectivization is polyhedral.

Definition 3.7. A submodule Σ ⊆ R(D) is polyhedral if |Σ| is a closed polyhedral subset of |D|.
Lemma 3.8. Let Σ ⊆ R(D) be a polyhedral submodule. Then the dimension of |Σ| is the maximum
of the dimensions of its finitely generated submodules.

Proof. It is enough to find one finite subset S ⊆ Σ such that dim |⟨S⟩| = dim |Σ|. Let τ be a face of
maximal dimension in |Σ|. By re-centering, we may assume that D is in the relative interior of τ .
The combinatorial type of divisors is constant in the relative interior of τ , so D is nondegenerate.
Let E = {C1, ..., Cs} be the connected components of Γ∖ supp(D). We claim that

L := {Fφ : φ ∈ Σ} ∪ {E}
is the lattice of flats of the Boolean matroid on some partition of E. First, note that L is closed
under intersection. Indeed, for F1 and F2 in L there are functions φ1 and φ2 in Σ with Fφi

= Fi and
minφi = 0. Then Fmin{φ1,φ2} = F1∩F2. Next, we assert that L is closed under taking complements.
To see this, start with any φ in Σ. For simplicity, assume minφ = 0. Then

Dϵ := div(min{φ, ϵ}
is contained in τ for sufficiently small ϵ > 0. This divisor may be thought of as a minor variant of
“chip-firing along φmin for time ϵ” in the sense of [GST22, Remark 2.9]; the variation is that we
allow slope equal to D(x), rather than 1, along a tangent direction at a point x in the boundary of
φmin. Since D is in the relative interior of a maximal face τ , the opposite of any such chip-firing
move is well-defined in Σ, for sufficiently small ϵ, i.e., we can fire Γ∖ φmin, with the opposite slopes,
for a sufficiently small time ϵ′. In particular, L ∪E is closed under complements, as claimed. Since
L ∪ E is closed under complements and intersections, it is a Boolean lattice.

Let A0, ..., Ar be the minimal nonempty elements of L. Choose ψ0, ..., ψr ∈ Σ such that Fψi = Ai
and minψi = 0 for all i. Let Di = D+div(ψi) and let ηi be the tangent vector at D in the direction
of the tropical line segment connecting D′ and D. Then η0, ..., ηr positively span the tangent space of
τ at D, so dim |Σ| ≤ r. On the other hand, min{ψ0, ..., ψr} is a certificate of tropical independence.
By Proposition 3.6, dim |⟨ψ0, ..., ψr⟩| = r, and dim |Σ| = dim |⟨ψ0, ..., ψr⟩|, as required. □
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Corollary 3.9. Let Σ ⊆ R(D) be a polyhedral submodule. For S = {φ0, . . . , φs} a finite subset
of Σ and {v1, . . . , vn} a finite subset of Γ, let AST be the matrix with (AST )ij = φi(vj). Then the
following are equivalent.

(1) The independence rank rind(Σ) is r + 1;
(2) The maximum of the tropical rank of the matrices AST , over all choices of finite subsets

S ⊂ Σ and T ⊂ Γ, is r + 1;
(3) The dimension of |Σ| = Σ/R is r.

3.4. Pure dimensionality of tropical linear series. Proposition 3.6 shows that the indepen-
dence rank determines the global dimension of a finitely generated submodule of PL(Γ) and, more
genearlly, any polyhedral submodule of R(D) ⊂ PL(Γ). We now show that the Baker–Norine rank
gives a lower bound for its local dimension. This completes the proof of Theorem 1.5, showing that
if Σ is a tropical linear series of Baker-Norine rank r then |Σ| has pure dimension r. This theorem
first appeared in the Master’s thesis of the second named author [Dup24]. Similar statements with
somewhat different proofs appeared later in [AGG25]. Dupraz’s Master’s thesis will not be published
otherwise, and we include a brief but complete presentation based on his original proof.

Definition 3.10. Given an an effective divisor D′, we define

Σ(−D′) := {φ ∈ Σ : D −D′ + div(φ) ≥ 0}.

Note that Σ(−D′) is a tropical submodule of Σ.

Proposition 3.11. Let τ ⊆ |Σ| be a maximal face. For any effective divisor D′, |Σ(−D′)|∩relint(τ)
is the intersection of relint(τ) with a finite disjoint union of affine subspaces. In particular, Σ(−D) ⊆
R(D −D′) is a polyhedral tropical submodule.

Proof. All divisors in the relative interior of τ have the same combinatorial type, and hence can be
determined by the positions of the points of their support in the interiors of edges of Γ. Fixing an
order on these points induces an inclusion relint(τ) into some Rk. Fixing any given point in the
support then corresponds to fixing that coordinate. It follows that the set of divisors in τ whose
support contains a given point is a finite union of affine subspaces of τ , and these subspaces do not
intersect in the relative interior of τ . This implies that |Σ(−D′)| ∩ relint(τ) is a finite disjoint union
of affine subspaces of relint(τ), and the proposition follows. □

Figure 3 illustrates Proposition 3.11 in the case where D is a divisor of degree 2 on an interval
Γ, x is a point in Γ, and Σ = R(D). The dashed lines indicate the set Σ(−x).

Figure 3. |Σ(−x)| ∩ relint(τ) is a union of affine subspaces.

Finitely generated submodules of R(D) are polyhedral by Proposition 3.4. If Σ ⊆ R(D) is
finitely generated, we do not know in general whether Σ(−D′) is finitely generated. However,
Proposition 3.11 shows that if Σ is polyhedral then so is Σ(−D′). Thus, the class of polyhedral
submodules of R(D) is well-suited for inductive arguments, as in the proof of the following theorem.

Theorem 3.12. If Σ ⊆ R(D) is a polyhedral tropical submodule then every maximal face of |Σ| has
dimension at least rBN(Σ).

Theorem 1.5 is an immediate consequence of Proposition 3.6 and Theorem 3.12.
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Proof. We proceed by induction on r = rBN(Σ). The case r = 0 is trivial. Suppose r ≥ 1, let
τ ⊆ |Σ| be a maximal face, and let D be a divisor in the relative interior of τ . Since |Σ| is
connected, there is a divisor D′ ̸= D in τ . Since every divisor in τ is of the same combinatorial
type, there is a point x ∈ supp(D) that is not supp(D′). It is immediate from Definition 1.1
that rBN

(
Σ(−x)

)
≥ r − 1. Also, |Σ(−x)| ∩ relint(τ) is a disjoint union of affine subspaces, by

Proposition 3.11. Therefore, D is in the relative interior of a maximal face τ ′ ⊆ |Σ(−x)| whose
affine span does not contain D′. In particular, dim(τ) ≥ dim(τ ′)+ 1. The theorem follows since, by
induction, we have dim(τ ′) ≥ r − 1. □

4. Big minimizers and local matroids

In this section, we prove Proposition 4.3 and Theorem 1.14, showing that a tropical linear series
of dimension r locally looks like the Bergman fan of a matroid of rank r + 1 in a neighborhood of
any nondegenerate divisor. We also state and prove Theorem 4.5, which constructs a local matroid
MΣ associated to a more general class of pairs (D,Σ) such that Σ ⊆ R(D).

Let D be an effective divisor on Γ, and let φ ∈ R(D).

Lemma 4.1. The set φmin := {x ∈ Γ : φ(x) = minφ} is a union of points in supp(D) and closures
of connected components of Γ∖ supp(D).

Proof. Let x be a point in the boundary of φmin. Then all of the slopes of φ along tangent directions
at x are nonnegative, and those along tangent directions that leave φmin are strictly positive. Then
x ∈ supp(D), because D + div(φ) is effective, and the lemma follows. □

Let E = {C1, . . . , Cs} be the set of connected components of Γ∖ supp(D). For φ ∈ R(D), define

Fφ := {Ci ∈ E : Ci ̸⊆ φmin}.
The following basic properties are immediate from the definition.

• The set Fφ is empty if and only if φ is constant.
• If minφ1 = minφ2 then Fmin{φ1,φ2} = Fφ1 ∩ Fφ2 .
• If supp(D + div(φ)) ∩ Ci ̸= ∅ then Ci ∈ Fφ.

Let Σ ⊆ R(D) be a tropical submodule, and let r = rBN(Σ).

Lemma 4.2. Any size r subset S ⊆ E is contained in Fφ for some φ ∈ Σ.

Proof. After renumbering, we may assume S = {C1, . . . , Cr}. Choose xi ∈ Ci. Since rBN(Σ) = r,
there is some φ ∈ Σ such that {x1, . . . , xr} ⊆ supp(D + div(φ)). Then S ⊆ Fφ. □

Recall from Definition 1.13 that D ∈ |Σ| is nondegenerate if it is locally maximal for #supp
and locally minimal for the valence 1 degree. The following proposition captures a key technical
property of nondegenerate divisors.

Proposition 4.3. Suppose Σ ⊆ R(D) is a tropical linear series and D ∈ |Σ| is nondegenerate.
Then, for all φ ∈ Σ, φmin contains no isolated points.

In particular, if D is nondegenerate and φ ∈ Σ, then φmin is the closure of some union of connected
components of Γ∖ supp(D).

Proof. Since D ∈ |Σ|, the constant functions are in Σ. Suppose there is some φ ∈ Σ such that φmin

contains an isolated point x ∈ supp(D). Without loss of generality, assume that minφ = 0. Choose
a small ϵ > 0, and let φϵ := min{φ, ϵ}. For each tangent direction ζ at x, let sζ > 0 denote the slope
of φ along ζ. Then supp(D+div(φϵ)) contains sζ points at distance ϵ/sζ from x along each tangent
direction ζ. If there is only one tangent direction, then the valence one degree of D is not locally
minimal. And if there is more than one tangent direction, then #supp(D) is not locally maximal.
Either way, D is not nondegenerate. □
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If Σ ⊆ R(D) and D ∈ |Σ| is nondegenerate, then for every φ ∈ Σ, φmin is a nonempty union of
components Ci ∈ E. Our construction of a local matroid MΣ works more generally, whenever the
following condition is satisfied:

Definition 4.4. A tropical submodule Σ ⊆ R(D) has big minimizers if for every φ ∈ Σ, the set
φmin contains some Ci ∈ E.

In other words, we say that a tropical submodule Σ ⊆ R(D) has big minimizers if it contains no
φ with φmin ⊆ supp(D). In particular, if D ∈ |Σ| is nondegenerate, then Σ has big minimizers.
However, we also consider cases where Σ ⊆ R(D) has big minimizers but D ∈ |Σ| is degenerate
(Example 4.7), and cases where Σ ⊆ R(D) but D ̸∈ |Σ| (Examples 4.6 and 6.8). See Remark 6.9.

Theorem 4.5. Let Σ ⊆ R(D) be a tropical linear series of dimension r with big minimizers. Then

{Fφ : φ ∈ Σ} ∪ {E}

is the lattice of flats of a matroid MΣ of rank r + 1 on E, and MΣ is loopless if and only D ∈ |Σ|.

Before proving Theorem 4.5, we illustrate its conclusion with two examples and three corollaries.

Example 4.6. Let Γ be a metric graph of genus g ≥ 2 without vertices of valence 1, and let G be
the model of Γ, whose vertex set consists of points of Γ of valence at least 3. Let KΓ be the canonical
divisor on Γ. Haase, Musiker, and Yu observed that a subdivision of |KΓ| contains the Bergman
fan of the cographic matroid of Γ as a subfan [HMY12, Theorem 25]. We refine their observation
as follows. Recall that the support of KΓ is the set of vertices, and the multiplicity of a vertex v in
KΓ is nv − 2. The set E of connected components of Γ∖ supp(KΓ) is the set of edges of G.

Let Σ ⊆ R(KΓ) be a tropical linear series of dimension g − 1. We will show that Σ has big
minimizers and the local matroid MΣ is the cographic matroid of G. Note that KΓ may or may not
be contained in |Σ|. For instance, if Γ is the complete graph K4, then KΓ is contained in a realizable
tropical linear series of dimension 2, by [Dup24, Proposition 3.27], cf. [HMY12, Example 26] and
[MUW21, Example 6.5]. On the other hand, when Γ is a barbell graph, there is a unique linear
series Σ ⊆ R(KΓ) of dimension 1, and |Σ| does not contain KΓ. See Example 8.1.

Let φ ∈ R(KΓ). By [JP16, Lemma 3.2], φmin is a nonempty union of edges in G and has no
points of valence 1. Since φmin is a union of edges, Σ has big minimizers. Furthermore, since the
union of edges has no points of valence 1, φmin is a union of circuits in G. Thus, each Fφ is a flat of
the cographic matroid. Conversely, by [JP16, Proposition 3.3], every corank 1 flat of the cographic
matroid is of the form Fφ for some φ ∈ Σ. Since every flat of a matroid is an intersection of corank
1 flats, it follows that every flat of the cographic matroid is a flat of MΣ, and hence MΣ is the
cographic matroid, as claimed.

Example 4.7. When KΓ is in |Σ|, KΓ may be degenerate or nondegenerate. Let Γ1 be a chain
of two loops with no bridge, and let Γ2 be a metric graph modeled on the graph consisting of two
vertices connected by three edges, as pictured in Figure 4. Then both R(KΓ1) and R(KΓ2) are
tropical linear series of dimension one by Riemann-Roch and Proposition 3.9. It is easy to check
that KΓ1

is degenerate, while KΓ2
is nondegenerate.

2
1 1

Figure 4. The graphs Γ1 and Γ2 of Example 4.7, with their canonical divisors.



18 C.-W. CHANG, M. DUPRAZ, H. IRIARTE, D. JENSEN, D. KARP, S. PAYNE, AND J. WANG

The existence of a tropical linear series Σ ⊆ R(KΓ) of dimension g − 1 follows from specialization,
by tropicalizing the canonical linear series on any curve with skeleton Γ. However, we do not have
any direct combinatorial existence proof, let alone a classification of the tropical linear series of
dimension g − 1 that are contained in R(KΓ).

If M and M ′ are matroids on a set E, then M is a matroid quotient of M ′ if every flat of M is
a flat of M ′. The following is an immediate consequence of Theorem 4.5.

Corollary 4.8. If Σ ⊆ Σ′ ⊆ R(D) are tropical linear series that have big minimizers, then MΣ is
a matroid quotient of MΣ′ .

Proof. If Σ ⊆ Σ′ ⊆ R(D), then every flat of MΣ is a flat of MΣ′ . □

Corollary 4.9. If Σ ⊆ Σ′ ⊆ R(D) are tropical linear series of the same dimension then Σ = Σ′.

Proof. Up to replacing D, Σ, and Σ′ with D + div(φ), Σ − φ and Σ′ − φ, respectively, we may
assume that D is non-degenerate in |Σ′|. Then Σ′ has big minimizers, and hence so does Σ. By
Corollary 4.8, MΣ is a matroid quotient of MΣ′ . Since these matroids have the same rank, they
are equal. This implies in particular that MΣ is loopless, so D ∈ |Σ|. Since this is true for every
nondegenerate D ∈ |Σ′| and the nondegenerate divisors are dense, it follows that |Σ| = |Σ′|. □

Corollary 4.10. Let Σ ⊆ R(D) be a tropical linear series of dimension r. If Σ′ ⊆ R(D) is a
tropical submodule such that Σ ⊆ Σ′ and rind(Σ

′) = r + 1, then Σ = Σ′.

Proof. Suppose f ∈ Σ′. Then Σ′′ := ⟨Σ, f⟩ is finitely generated and rBN(Σ
′′) ≥ rBN(Σ) = r. Also,

rind(Σ
′′) ≤ rind(Σ′). Hence, if rind(Σ

′) = r+1 then Σ′′ is a tropical linear series of dimension r and,
by Corollary 4.9, it follows that f ∈ Σ. □

We now proceed with a lemma and a proposition leading to the proof of Theorem 4.5. For any
set F of subsets of a finite set E, let ℓ(F) denote the length of the longest chain of proper inclusions
in F , i.e., if F0 ⊊ F1 ⊊ · · · ⊊ Fk is a chain of maximal length in F , then ℓ(F) = k.

Lemma 4.11. Let Σ ⊆ R(D) be a tropical submodule, and let F = {Fφ : φ ∈ Σ}. Then

ℓ(F) ≤ rind(Σ)− 1.

Proof. Let Fφ0 ⊊ · · · ⊊ Fφk
be a chain in F . We may assume that minφi = 0 for all i. For each i,

pick xi ∈ φi,min ∖ φi+1,min. Consider the tropical matrix[
φi(xj)

]
i,j=0,...,k

.

We have φi(xj) = 0 if i ≤ j and φi(xj) > 0 if i > j. This matrix is tropically nonsingular, because
the identity permutation contributes the unique minimal term in the tropical determinant. Thus,
rind(Σ) is at least k + 1, by Corollary 3.9. □

We will use the following cryptomorphic characterization of the lattice of flats of a matroid.

Proposition 4.12. Let F be a set of proper subsets of a finite set E that is closed under intersection
and has length 0 < ℓ(F) ≤ r. Suppose that every size r subset S ⊆ E is contained in some F ∈ F .
Then F ∪ {E} is the lattice of flats of a matroid of rank r + 1 on E.

Proof. We show that the collection F has the partition property: for any F ∈ F , the collection

{Gi ∖ F : Gi is a minimal subset in F ∪ {E} strictly containing F}
partitions E ∖F . Let G1, G2 be distinct minimal subsets in F ∪ {E} that strictly contain F . Since
F is closed under intersection, by minimality we have G1 ∩G2 = F . Hence, it suffices to show that
for any b ∈ E ∖ F , there is some G ∈ F that contains F ∪ {b} and covers F .

Given a subset S ⊆ E, we say that the element F ∈ F is generated by S if it is the intersection
of all elements of F containing S. Let S be a minimal generating set for F , and let k = |S|. Choose
a sequence S1 ⊆ S2 ⊆ · · · ⊆ Sk = S such that |Si| = i for each i, and let Fi be the element in
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F generated by Si. We must have F0 ⊊ F1 ⊊ · · · ⊊ Fk = F , where F0 is the unique minimal
element in F . Otherwise, if Fi = Fi+1 for any i, then any subset in F containing Fi also contains
{ai+1} = Si+1 ∖ Si, meaning S ∖ {ai+1} is a smaller generating set for F .

In particular, we have k ≤ r. If k = r, then F ̸= E and F is a maximal element in F . The
only element of F ∪ {E} covering F is E, and the result follows, so assume that k < r. Let
b ∈ E ∖ F , and let G be the set generated by S ∪ {b}. Then because |S ∪ {b}| ≤ r, it follows from
the assumptions that G ̸= E. By repeating this argument we may choose b = b1, . . . , br−k, such
that if we denote by Gi be the set generated by S ∪{b1, . . . , bi}, then bi+1 /∈ Gi. As a result, we get
a chain F0 ⊊ F1 ⊊ · · · ⊊ Fk = F ⊊ G1 ⊊ · · · ⊊ Gr−k. Since ℓ(F) ≤ r, this chain must be maximal
and so G = G1 contains F ∪ {b} and covers F as required. □

Proof of Theorem 4.5. Let Σ ⊆ R(D) be a tropical linear series of dimension r that has big
minimizers, and let F = {Fφ : φ ∈ Σ}. Then F is closed under intersection. By Lemma 4.11, it
has length at most r, and by Lemma 4.2, any size r subset of D is contained in some element of
F . Since Σ has big minimizers, the set E is not an element of F , i.e., F is a collection of proper
subsets of E. Hence Proposition 4.12 says that F ∪ {E} is the lattice of flats of a matroid. Finally,
a matroid is loopless if and only if the empty set is a flat. Now Fφ is empty if and only if φ is
constant, and Σ contains a constant function if and only if D ∈ |Σ|. □

Next, we prove Theorem 1.14. The first part of this theorem is a special case of Theorem 4.5.
The second part, which is to be proved, says that when Σ ⊆ R(D) is a tropical linear series and
D ∈ |Σ| is nondegenerate, evaluation of functions at one point in each connected component of
Γ∖ supp(D) embeds a neighborhood of D ∈ |Σ| in RE/(1, . . . , 1), and extending linearly induces an
identification of Star(D) with the Bergman fan of the local matroid MΣ.

Proof of Theorem 1.14. Suppose Σ ⊆ R(D) is a tropical linear series of dimension r such that
D ∈ |Σ| is nondegenerate, and let E = {C1, . . . , Cs} be the set of connected components of Γ ∖
supp(D). By Theorem 4.5, {Fφ : φ ∈ Σ} ∪ {E} is the lattice of flats of a matroid M := MΣ on E.
Let {φ1, . . . , φn} ⊆ Σ be a generating set. Then every corank-1 flat F of M is Fφi

for some i.

Choose pi ∈ Ci. The evaluation map Φ̃: Σ→ RE given by φ 7→ (φ(p1), . . . , φ(pn)) is a homomor-
phism of tropical modules and descends to a well-defined map Φ: |Σ| → RE/(1, . . . , 1). By tropical
rescaling, we may assume minφi = 0, for all i. We claim that Φ maps a small neighborhood of
D ∈ |Σ| homeomorphically onto a neighborhood of 0 ∈ B(M), and the restriction to the preimage
of each cone is affine. Extending linearly then gives a homeomorphism Star(D) ∼= B(M). It remains
to prove the claim. Choose ϵ > 0 sufficiently small, and let φ′

i := min{φi, ϵ}. Note that

φ′
i(pj) =

{
ϵ if Cj ∈ Fφi

0 if Cj /∈ Fφi .

Let B̃(M) ⊆ RE denote the preimage of B(M). It is a tropical submodule in which a neighborhood
of 0 is generated by the indicator vectors 1F of the corank-1 flats F ⊆ E. Choose φ′

i such that

F = Fφi
. Then Φ̃(φ′

i) = ϵ1F , and the image of ⟨0, φ′
1, . . . , φ

′
n⟩ is a neighborhood U of 0 ∈ B(M).

Next, we show that the restriction of Φ to a small neighborhood of D ∈ |Σ| is an injection onto
U . Choose φ within ϵ of 0, assume minφ = 0, and let x ∈ supp(D). Since D has locally maximal
support, the slope of φ on any tangent vector ζ at x is either 0 or the multiplicity D(x) of D.
Moreover, there is at most one tangent vector ζ ∈ Tx(Γ) such that sζ(φ) is nonzero. Because D is
a local minimum for the valence 1 degree, there exists at least one tangent vector ζ ∈ Tx(Γ) such
that sζ(φ) = 0. Suppose ζ ∈ Ci. If sζ(φ) = 0, then φ(pi) = φ(x). Otherwise, φ(pi)− φ(x) is D(x)
times the length of the segment along which φ has slope D(x). In other words, as Ci ranges over all
components whose boundary contains x, there are at most two values of φ(pi). The value φ(x) is
equal to the minimum of these two values φ(pi), and the length of the segment along which φ has
slope D(x) is determined by the maximum of these two values φ(pi). In this way, φ is determined

by its image under Φ̃.
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Descending to projectivizations, we see that Φ maps a small neighborhood of D ∈ |Σ| homeo-
morphically onto the neighborhood U of 0 ∈ B(M) and, by construction, this map is affine on the
preimage of each cone. This proves the claim and the theorem. □

5. Tropicalizations of canonical linear series

Here we apply the results of Section 4 to study tropicalizations of canonical linear series, building
on the work of Möller–Ulirsch–Werner [MUW21].

Let Γ be a metric graph of first Betti number g, and let X be a genus g curve over a nonar-
chimedean field with skeleton Γ. Then the canonical linear series |KX | has dimension g− 1, and its
tropicalization is contained in |KΓ|. A divisor D ∈ |KΓ| is realizable if it is the tropicalization of a
divisor in |KX | for some X with skeleton Γ. Little is known about the locus of realizable divisors if
one considers curves over nonarchimedean fields with residue characteristic p. See Problem 9.5.

A divisor D ∈ |KΓ| is realizable in equicharacteristic 0 if it is the tropicalization of a divisor in
|KX | for some curve X with skeleton Γ over a nonarchimedean field of residue characteristic 0. Let

Real(|KΓ|) := {D ∈ |KΓ| : D is realizable in equicharacteristic 0}.

Note that Real(|KΓ|) is a union over all curves with skeleton Γ in equicharacteristic zero. Building on
the breakthrough work of Bainbridge–Chen–Gendron–Grushevsky–Möller on moduli spaces of mul-
tiscale holomorphic differentials [BCG+18], Möller, Ulirsch, and Werner determined Real(|KΓ|) for
all tropical curves [MUW21]. However, they left open the problem of understanding how Real(|KΓ|)
relates to Trop(|KX |) for any single curve X with skeleton Γ.

For the remainder of this section, we focus on the case of equicharacteristic zero and say that a
divisor in |KΓ| is realizable if it is realizable in equicharacteristic zero.

The space PΩM trop
g of realizable canonical divisors constructed in [MUW21] is a generalized cone

complex, in the sense of [ACP15], of pure dimension 4g − 4 with a forgetful map to M trop
g , the

moduli space of stable tropical curves of genus g. The forgetful map is surjective and the fiber over
a tropical curve Γ is Real(|KΓ|). By Theorem 3.12, the local dimension of Real(|KΓ|) at any point
is at least g − 1 at every point. Since M trop

g has pure dimension 3g − 3, it follows that there is an

open dense subset of M trop
g over which the fibers have pure dimension g − 1. However, there are

fibers of dimension strictly greater than g − 1. See Example 5.4 for a tropical curve Γ of genus 3
such that Real(|KΓ|) has dimension 3.

The Möller–Ulirsch–Werner classification of realizable canonical divisors involves the following
notion of inconvenient points.

Definition 5.1. A point v ∈ Γ is inconvenient for φ ∈ R(KΓ) if sζ(φ) ̸= 0 for all ζ ∈ Tv(Γ), and

max
ζ∈Tv(Γ)

{sζ(φ)} > −
∑

ζ∈Tv(Γ)
sζ(φ)<0

sζ(φ).

Note that an inconvenient point v necessarily has valence nv ≥ 3.

Theorem. [MUW21, Theorem 1] A divisor D = KΓ + div(φ) in |KΓ| is realizable if and only if

(i) any v ∈ Γ that is inconvenient for φ is contained in a simple cycle γ ⊆ Γ with φ(x) ≤ φ(v)
for all x ∈ γ, and

(ii) any tangent vector ζ ∈ Tv(Γ) such that sζ(φ) = 0 is contained in a simple cycle γ ⊆ Γ with
φ(x) ≤ φ(v) for all x ∈ γ.

To prove Theorem 1.15, we will use the following proposition, which first appeared in Dupraz’s
Master’s thesis [Dup24, Section 3.4].

Proposition 5.2. The subset {φ ∈ R(KΓ) : KΓ + div(φ) ∈ Real(|KΓ|)} is a polyhedral submodule.
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Proof. First, we claim that Real(|KΓ|) is polyhedral. We give a short proof using Berkovich theory
and elimination of quantifiers. For a combinatorial (but longer) proof, see [Dup24, Section 3.4]. We
begin by noting that the locus of curves with skeleton Γ is a definable semialgebraic subset of the
moduli space of curvesMg. Therefore, the locus SΓ of pairs (X,DX) such that X has skeleton Γ and
DX ∈ |KX | is a definable semialgebraic subset of PΩMg. By elimination of quantifiers in the first
order theory of algebraically closed valued fields [Rob56], the image Real(|KΓ|) of this definable set
under the definable tropicalization map to Sym2g−2(Γ) is definable, i.e., a finite Boolean combination
of polyhedra. Finally, we note that the Berkovich analytifcation San

Γ is compact, because it is the
preimage of a compact set (the space of curves with skeleton Γ) under a proper morphism. Thus
its image Real(|KΓ|) is compact and hence closed, i.e. Real(|KΓ|) is a closed polyhedral subset of
Sym2g−2(Γ), as required.

It remains to show that R = {φ ∈ R(KΓ) : KΓ + div(φ) ∈ Real(|KΓ|)} is a tropical submodule.
It is clearly closed under scalar addition. We must show that if φ1 and φ2 are in R, then φ :=
min{φ1, φ2} is in R. In other words, we assume that φ1 and φ2 satisfy conditions (i) and (ii) and
show that φ satisfies these conditions as well.

First, suppose v ∈ Γ is inconvenient for φ. Without loss of generality we may assume that
φ1(v) ≤ φ2(v). Note that sζ(φ) ≤ sζ(φ1) for all ζ ∈ Tv(Γ), hence

max
ζ∈Tv(Γ)

{sζ(φ1)} ≥ max
ζ∈Tv(Γ)

{sζ(φ)} > −
∑

ζ∈Tv(Γ)
sζ(φ)<0

sζ(φ) ≥ −
∑

ζ∈Tv(Γ)
sζ(φ1)<0

sζ(φ1).

It follows that either there is a tangent vector η ∈ Tv(Γ) such that sη(φ1) = 0, or v is inconvenient for
φ1. In each case, there is a simple cycle γ ⊆ Γ containing v such that φ(x) ≤ φ1(x) ≤ φ1(v) = φ(v)
for all x ∈ γ. Thus φ satsifies condition (i).

Second, suppose sζ(φ) = 0 for some tangent vector ζ ∈ Tv(Γ). Without loss of generality, we
may assume that φ1(v) ≤ φ2(v) and sζ(φ1) = 0. Then there is a simple cycle γ ⊆ Γ containing ζ
such that

φ(x) ≤ φ1(x) ≤ φ1(v) = φ(v),

for all x ∈ γ. Thus φ satisfies condition (ii), as required. □

Next, we prove Theorem 1.15, which says that if X is a curve of genus g with skeleton Γ in
equicharacteristic zero, then Trop(|KX |) = Real(|KΓ|) if and only if Real(|KΓ|) has dimension g−1.

Remark 5.3. By Theorem 1.15, if Real(|KΓ|) has dimension g − 1, then it is finitely generated as
a tropical module. However, we do not know whether Real(|KΓ|) is finitely generated in general.

Proof of Theorem 1.15. If Real(|KΓ|) = Trop(|KX |) for some curve X then it has dimension
g− 1, because Trop(|KX |) is a tropical linear series of dimension g− 1. We now prove the converse.

Suppose the polyhedral submodule Real(|KΓ|) ⊆ R(KΓ) has dimension g − 1, and let X be any
curve with skeleton Γ over a nonarchimedean field of equicharacteristic zero. Then Real(|KΓ|) has
independence rank g, by Corollary 3.9, and Trop(|KX |) ⊆ Real(|KΓ|) is a tropical linear series of
dimension g − 1. By Corollary 4.10, Trop(|KX |) = Real(|KΓ|), as required. □

We now give an example showing that Real(|KΓ|) can have dimension strictly greater than g−1.

Example 5.4. Let Γ be a hyperelliptic chain of 3 loops, as pictured in Figure 5. The condition
for Γ to be hyperelliptic is that the top and bottom edge of the middle loop have equal length.
We show that |Real(KΓ)| has dimension at least 3. Let σ be the face of |KΓ| consisting of those
divisors that are supported on the third loop γ3. Note that this face is of dimension 3 by [HMY12,
Proposition 13]. We claim that all the divisors in σ are realizable.

Let D = KΓ+div(φ) ∈ σ. All such φ have the same restriction to the first two loops and bridges,
as shown in Figure 6. Since no point of valence 2 is inconvenient, we see that the only inconvenient
point is v2. But the restriction of φ to the simple cycle γ2 achieves its maximum at v2, so D satisfies
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(i). The function φ is constant on the first loop γ1. If ζ is a tangent vector outside of γ1 with
sζ(φ) = 0, then ζ is contained in γ3. In this case φ achieves it maximum at ζ, so D satisfies (ii).

v1 w2 v2 w3

Figure 5. A chain of 3 loops, such that the top and bottom edges of the middle
loop have the same length.

1 3

1

1

0

Figure 6. Slopes of the function φ, for any D = KΓ +div(φ) ∈ σ, oriented left to
right, on the first two loops and bridges.

6. Local matroids of matroidal linear series

In this section, we relate the local matroids of matroidal linear series to the initial matroids of
a parametrizing valuated matroid, up to simplification and passage to submatroids. Recall that
the simplification of a matroid is the matroid obtained by deleting loops and identifying parallel
elements. Let Σ be a matroidal linear series with a parametrization V ↠ Σ. We will show that the
simplification of each local matroid of Σ is isomorphic to a submatroid of an initial matroid of V.
This gives a local parametrization of |Σ| near a nondegenerate divisor D by the Bergman fan of an
initial matroid of V. It follows, in particular, that if one of the local matroids of a tropical linear
series at a nondegenerate divisor is not realizable, then the tropical linear series is not realizable.

In addition, we show that every matroid occurs as the local matroid of a matroidal linear series
at a nondegenerate divisor, and we use recent results in tropical linear incidence geometry, from
[Wan24], to produce examples of matroidal linear series that are not strongly recursive.

6.1. Local matroids and initial matroids. Let V be a valuated matroid of rank r on a finite set
E. For w ∈ V ∩RE , the initial matroid of V at w, denoted Vw, is a loopless matroid on E with flats

{supp(w′ − w) : w′ ∈ V and (w′ − w) ∈ RE≥0}.

Here, supp means the set of coordinates that are nonzero. Let w be the image of w in the projec-
tivization |V|. Then Star(w) is isomorphic to the Bergman fan B(Vw). See [MS15, Definition 4.2.7].

To state our main result about local matroids and initial matroids, we also need the notion of
a submatroid. Let M be a matroid on E. For each subset E′ ⊆ E that contains a basis, the
corresponding submatroid M ′ is the matroid on E′ defined in any of the following equivalent ways.

• The independent sets of M ′ are the independent sets of M contained in E′.
• The flats of M ′ are the intersections of E′ with flats of M .
• The covectors of M ′ are the covectors of M with the coordinates labeled by E∖E′ deleted.

See [Whi86, Proposition 7.3.1] for further details on submatroids. By the characterization of sub-

matroids in terms of covectors, the projection RE → RE′
induces a surjection B(M) ↠ B(M ′).
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Let M denote the simplification of a matroid M , obtained by deleting loops and identifying
parallel elements. Bergman fans are defined for any loopless matroid. A loopless matroid M and its
simplification have isomorphic lattices of flats, so their Bergman fans are isomorphic B(M) ∼= B(M).

Theorem 6.1. Let Σ ⊆ R(D) be a matroidal linear series with parametrization π : V → Σ.

(1) There is a unique continuous section σ of π over {φ : D + div(φ) is nondegenerate}.
(2) Setting Σφ := {φ′ : φ + φ′ ∈ Σ}, the simplified local matroid MΣφ

is isomorphic to a

submatroid of Vσ(φ).

In particular, if D ∈ |Σ| is nondegenerate, then there is a natural surjective coordinate projection
B(Vσ(0)) ↠ B(MΣ) inducing a local parametrization Star(σ(0)) ↠ Star(D).

Before proving Theorem 6.1, we give an application, showing that the local matroids of realizable
tropical linear series are realizable.

Proof of Theorem 1.16. Suppose Σ is the tropicalization of a linear series. By Theorem 1.7, there
is a parametrization by a realizable matroid V ↠ Σ. Then every initial matroid Vw is realizable.
Moreover, any submatroid of a realizable matroid is realizable. Thus, by Theorem 6.1, for each
nondegenerate D ∈ |Σ| the simplified local matroid MΣ is realizable. The theorem follows, since a
matroid is realizable if and only if its simplification is realizable. □

To prove the existence part of Theorem 6.1, we use the following lemma about lattices of flats.
Given two flats F and G of a matroid M , their join F ∨G is the smallest flat L(M) containing F
and G, and their meet F ∧G is the intersection F ∩G. A join-subsemilattice of L(M) is a subset
L′ ⊆ L(M) such that if F,G ∈ L′, then F ∨G ∈ L′.

Lemma 6.2. Suppose M1 and M2 are matroids of the same rank. If τ : L(M1)→ L(M2) is meet-
preserving and surjective, then M2 is isomorphic to a submatroid of M1.

Proof. Given a meet-preserving map τ : L(M1)→ L(M2), the map

τ∗ : L(M2)→ L(M1), x 7→ ∧{y ∈ L(M1) : τ(y) ≥ x}

is join-preserving, and it is injective if τ is surjective. See, e.g., the introduction to [Hig68]. Since
M1 and M2 have the same rank, τ∗ sends a maximal chain in L(M2) to a maximal chain in L(M1).
In particular, rank 1 flats ofM2 are sent to rank 1 flats ofM1. This means L(M2) embeds in L(M1)
as a join-subsemilattice. The conclusion follows from [Whi86, Proposition 7.3.1]. □

Proof of Theorem 6.1. Suppose φ ∈ Σ. Then Σφ := {φ′ : φ′+φ ∈ Σ} is a matroidal linear series

contained in R(D + div(φ)). We claim that there is some w ∈ V such that MΣφ
is isomorphic to a

submatroid of the initial matroid Vw. It suffices to consider the case where φ = 0 and Σφ = Σ.
Let H1, . . . ,Hk be the corank 1 flats of MΣ. For each Hi, choose φi ∈ Σ such that Hi = Fφi

and minφi = 0. Choose wi ∈ V such that π(wi) = φi. Recall that V is the space of covectors

of a valuated matroid and hence is a tropical submodule of RN for some N . Therefore, applying
coordinatewise minimum (the addition operation on the tropical submodule), V contains

(7) w := min{w1, . . . , wk}.

Note that π(w) = min{π(w1), . . . , π(wk)} = min{φ1, . . . , φk} = 0. The last equality holds because
MΣ is loopless, and the intersection of all corank 1 flats of a loopless matroid is empty. We will now
show that MΣ is isomorphic to a submatroid of the initial matroid Vw. By Lemma 6.2, it suffices
to produce a meet-preserving surjective map of lattices L(Vw)→ L(MΣ).

By translating V, we may assume that w = 0. Note that {w1, . . . , wk} ⊆ RN≥0, by (7), and

supp(wi) is a flat of Vw. We construct a map f̃ : L(Vw)→ L(MΣ) as follows. Pick ϵ > 0 sufficiently
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small. Then, for each flat G ∈ L(Vw), we have ϵ1G in V. Let φG := π(ϵ1G). Because π(0) = 0 and
π is a homomorphism of tropical modules, we have φG ≥ 0. We define

π̃(G) :=

{
FφG

if minφG = 0,
E otherwise.

By construction, π̃ is meet-preserving and π̃(supp(wi)) = Hi. Since the corank 1 flats generate
L(MΣ) with respect to meet, it follows that π̃ is surjective. This proves the claim.

By the claim proved above, there is a set-theoretic section σ of π over the open set

U := {φ : D + div(φ) is nondegenerate}

such that the local matroid associated to Σφ is isomorphic to a submatroid of Vσ(φ) for all φ ∈ U .
To prove the theorem, it remains to show that this section is unique and continuous.

Note that there is an open dense subset U ′ ⊆ U over which π is a homeomorphism. This is because
π is a piecewise linear map between polyhedral spaces of the same dimension with connected fibers.
The section σ necessarily agrees with π−1 on U ′. Hence, if σ is continuous then it is unique.

It remains to show that σ is continuous. Let w = σ(φ). By construction, π maps a small
neighborhoodW of w onto a small neighborhood U ′′ of φ. Since U ′ is dense, the intersection U ′∩U ′′

is nonempty. Thus, σ(U ′) ∩W is nonempty. Since this holds for arbitrarily small neighborhoods
W , it follows that w is in the closure of σ(U ′) and is the limit of σ(φi) for any sequence {φi} in U ′

converging to φ. This shows that σ is continuous, as required. □

6.2. Every matroid is a local matroid. Here, we study the local matroids of tropical and ma-
troidal linear series on an interval. In particular, we prove Theorem 1.18, showing that every loopless
matroid appears as the local matroid of a tropical linear series at a nondegenerate divisor on an
interval and also on a loop. Moreover, these tropical linear series can be chosen to be matroidal.

Let [v, w] be a metric graph consisting of a single edge with endpoints v and w. Let D = dv, let
x denote the linear function with slope 1 that takes the value 0 at v, and let

Φ: Rd+1 → R(D)

be the surjective tropical linear map given by (a0, . . . , ad)
Φ7→ min{a0, x+ a1, 2x+ a2, . . . , dx+ ad}.

Since Rd+1
is a valuated matroid of rank d + 1 and R(D) has Baker–Norine rank d, R(D) is a

matroidal linear series of dimension d.

Theorem 6.3. Let V ⊆ Rd+1
be a valuated matroid of rank r+1. Then Φ(V) ⊆ R(D) is a matroidal

linear series of dimension r.

Proof. It suffices to show that Φ(V) has Baker-Norine rank at least r. The set |Φ(V)| is compact
and hence the set

{D′ ∈ Symr[v, w] : D −D′ + div(φ) ≥ 0 for some φ ∈ Φ(V)}

is closed. Therefore, it suffices to check the Baker–Norine rank condition for effective divisors of the
form D′ = p1 + · · · + pr where pi are mutually distinct and pi ∈ (v, w) for each i. Let xi be the

distance from v to pi and let a = (a0, . . . , ad) be a point in Rd+1
. Then D + div(Φ(a)) − pi ≥ 0

if and only if min{a0, xi + a1, 2xi + a2, . . . , dxi + ad} is attained at least twice. We rephrase this

geometrically as follows. Let Hi ⊆ Rd+1
be the tropical hyperplane given as the bend locus of the

tropical linear form

min{b0, xi + b1, 2xi + b2, ..., dxi + bd}.
Then D + div(Φ(a))− pi ≥ 0 if and only if a ∈ Hi.

Since V has rank r + 1, the stable intersection V ∩st H1 ∩st · · · ∩st Hr is nonempty. A point a in
this stable intersection has D + div(Φ(a)) − p1 − · · · − pr ≥ 0. It follows that rBN(Φ(V)) ≥ r, and
hence Φ(V) is a matroidal linear series of dimension r. □
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Figure 7. The parametrizing map Φ: R3 → R(2v).

|𝐷|Trop(𝑈!,#) Trop(𝑈!,$)

Φ!

(∞, 0,0,0)

(0,∞, 0,0)

(0,0,∞, 0)

(0,0,0,∞)

& = (0,0,0,0)

(∞, 0,0)

(0,0,∞)

(0,∞, 0)
& = (0,0,0)𝑓

Φ′(∞, 0,0)

Φ′(0,0,∞)

Φ′(0,0,∞)

Φ′(0,0,0)

Figure 8. Matroidal linear series of degree 2 on an interval.

The map Φ: V → Φ(V) is a parametrization. Note that |D| is a d-simplex whose interior

parametrizes nondegenerate divisors. Figure 7 illustrates the parametrizing map Φ: Rd+1 → R(D)
when d = 2. In this case, the complete linear series |D| is a 2-simplex with vertices 2v, v + w and
2w. The domain is partitioned into seven regions. The regions R1, R2, and R3 map to the vertices
of |D|, and the regions R12, R13, and R23 map to the edges. The projectivization of R0 maps
isomorphically to the interior of |D|. See [Dup25] for an applet visualizing tropical linear series of
degree 2 on an interval.

Example 6.4. Figure 8 illustrates two parametrizations of a matroidal linear series of dimension 1.
The first parametrization Φ′ surjects the uniform matroid U2,3 onto Σ. The point (0, 0, 0) is sent
to the interior of |D|, and the local matroid of Σ at f(0, 0, 0) is U2,3, which agrees with the initial
matroid of U2,3 at (0, 0, 0). Now consider the map f which surjects the uniform matroid U2,4

onto U2,3 by forgetting the first coordinate. Precomposing Φ′ with the map f , we get another
parametrization by the matroid U2,4, where the local matroid at Φ′(f(0, 0, 0, 0)) is a submatroid of
the initial matroid of U2,4 at (0, 0, 0, 0).

We now proceed to show Theorem 1.18, which states that every loopless matroid is isomorphic
to the local matroid of a tropical linear series at a non-degenerate divisor.

Proof of Theorem 1.18. LetM be a loopless matroid on d+1 elements, and let Φ′ be a translation
of Φ such that D′ = D + div(Φ′(0)) is nondegenerate. It suffices to show that the local matroid
of Φ′(Trop(M)

)
at D′ is M . A small neighborhood of 0 in Trop(M) is mapped isomorphically

to a small neighborhood of Φ′(0). By Theorem 1.14, M is the local matroid of Φ′(Trop(M)
)
at

Φ′(0). □

The arguments above also apply to the case where the graph is a loop. Let Γ be a loop. Any
divisor of degree d on Γ is equivalent to dv for some v ∈ Γ. Let D := dv. Then the extremals of |D|
are of the form dv′ where d times the distance from v to v′ is an integer multiple of the length of

the loop. This gives rise to a surjection Φ: Rd ↠ R(D).
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Figure 9. The affine diagram depicting the non-spanning circuits of the Vámos
matroid V8.

Theorem 6.5. Let Γ be a loop and let D be an divisor of degree d ≥ 0 on Γ. Let Φ: Rd → R(D)
be the tropical linear map induced by the minimal generating set of R(D). Then for any valuated

matroid V ⊆ Rd of rank r + 1, Φ(V) is a matroidal linear series of dimension r.

Proof. The proof is almost identical to that of Theorem 6.3. In this case, rBN(R(D)) = d − 1.
Moreover, for any point p such that d times the distance from p to v is not an integer multiple of

the length of the loop, the set of points a ∈ Rd such that D− p+div(Φ(a)) ≥ 0 is a hyperplane Hp.
Then, a stable intersection argument shows that rBN(Φ(V)) = r, and the theorem follows. □

6.3. Incidence geometry in tropical linear series. Here, we illustrate surprising phenomena
for incidence geometry of tropical linear subseries of a tropical linear series, drawing upon recent
results in tropical linear incidence geometry from [Wan24]. Recall that the tropical linear subspaces
of RE/(1, . . . , 1) are the projectivizations of valuated matroids V on E. In particular, the tropical
linear spaces that are fans are the Bergman fans of matroids.

• If a matroidM of rank r+1 does not have the Levi intersection property, then there is a set
of r points in the tropical linear space Trop(M) that is not contained in any codimension 1
tropical linear subspace. The Vámos matroid V8 is of this type. See Figure 9.

• There are matroids M such that Trop(M) contains two codimension 1 tropical linear sub-
spaces H1 and H2 such that H1 ∩ H2 does not contain any codimension 2 tropical linear
subspace. The matroid V −

8 , a relaxation of V8, is of this type. See Figure 10.

Our first example is a tropical linear series that is not strongly recursive. We follow the common
practice of specifying a matroid of rank r on E by listing its non-spanning circuits, i.e., the minimal
dependent sets that are contained in a proper flat F ⊊ E. The remaining circuits are the sets of
size r + 1 that do not contain a non-spanning circuit.

Example 6.6. The Vámos matroid V8, whose affine diagram is given in Figure 9, is the matroid
on E = {0, . . . , 7} whose non-spanning circuits are:

{0, 1, 2, 3}, {0, 3, 4, 5}, {1, 2, 4, 5}, {0, 3, 6, 7}, {1, 2, 6, 7}.

Choose 7 distinct points p1 < p2 < · · · < p7 in (v, w). Let D = p1 + p2 + · · · + p7. Then D is
nondegenerate. Suppose D = 7v + divφ where φ = min{a0, x + a1, . . . , 7x + a7} ∈ R(7v). Define

the tropical linear map Φ′ : RE → R(7v) by

Φ′(b0, . . . , b7) = min{a0 + b0, x+ a1 + b1, . . . , 7x+ a7 + b7}.

In other words, Φ′ is a translation of Φ by (a0, . . . , a7). By Theorem 6.3, Φ′(Trop(V8)) is a matroidal
linear series of dimension three, and the local matroid MΦ′(Trop(V8)) = V8.
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Equivalently, using the isomorphismR(7v) ∼= R(D), we regard Φ′ as a map RE → R(D), sending 0
to the constant function 0. For the three flats F1 = {0, 1, 2, 3}, F2 = {1, 2, 4, 5}, and F3 = {0, 3, 4, 5}
of V8, let fi = δFi where

δFi
(j) =

{
∞, j ∈ Fi
0, else.

Put Di = 7v + Φ′(fi) for 1 ≤ i ≤ 3. We show that there cannot be a tropical linear series
Σ ⊆ Φ′(Trop(V8)) of dimension 2 such that D1, D2, D3 ∈ |Σ|. Let Σ by any tropical submodule
containing f1, f2 and f3. We have min{f1, f2, f3} = 0 ∈ Σ, so D ∈ |Σ|. Note that FΦ′(fi) = Fi,
meaning that F1, F2 and F3 are all flats of MΣ. By [Wan24, Theorem 6.4], the matroid V8 does
not have a quotient of rank 3 that contains these three flats. We conclude by Corollary 4.8, that Σ
cannot be a tropical linear series of dimension 2.

Our second example is a tropical linear series with two codimension 1 tropical linear subseries
whose intersection does not contain any tropical linear series of codimension 2. We use the following
criterion for a tropical submodule Σ ⊆ R(D) to have big minimizers.

Lemma 6.7. If D is multiplicity free and supp(D) does not contain any vertex of valence 1, then
any tropical submodule Σ ⊆ R(D) has big minimizers.

Proof. Let φ ∈ R(D). We will show that φmin contains no isolated points. By Lemma 4.1, φmin is
a union of points in supp(D) and closures of connected components of Γ ∖ supp(D). If x ∈ φmin,
then all the outgoing slopes of φ at x are nonnegative. Since D is multiplicity-free and supp(D)
does not have vertex of valence 1, this means φmin does not contain isolated points, and the lemma
follows. □

Example 6.8. Consider the interval [v, w], with D = p1 + · · · + p7 and Φ′ : R8 → R(D), as
in Example 6.6. Let V −

8 be the relaxation of V8 obtained by omitting the non-spanning circuit
{1, 2, 6, 7}. Let Q1 and Q2 be the two elementary quotients of V −

8 whose affine diagrams are given
in Figure 10. Let Σ = Φ(Trop(V −

8 )) and Σi = Φ′(Trop(Qi)) for i = 1, 2. Then Σ1 and Σ2 are
tropical linear subseries of codimension 1 in Σ. We claim that Σ1∩Σ2 does not contain any tropical
linear subseries of codimension 2.

The divisor D is multiplicity-free and its support does not contain any vertex of valence 1. Let
Σ′ be a tropical linear series contained in Σ1 ∩ Σ2. By Lemma 6.7, the local matroid MΣ′ is well-
defined. The lattice of flats of MΣ′ is contained in the intersection of the lattices of flats of MΣ1

and MΣ2 . As in the proof of Theorem 1.18, the local matroids are MΣ1 = Q1 and MΣ2 = Q2.
Corollary 4.8 says that the local matroid MΣ′ is a common quotient of Q1 and Q2. However, by
[Wan24, Example 6.14], there is no corank 2 quotient of V −

8 which is a common quotient of Q1 and
Q2. Therefore, Σ

′ cannot have codimension 2.

Remark 6.9. In Example 6.8, it is crucial that we can define the local matroid MΣ′ and prove its
basic properties, such as being a quotient of MΣ, when D is not necessarily contained in |Σ′|.

7. Cartwright divisors and matroid adjoints

In [Car15], Cartwright studied a rank 2 divisor on the Levi graph of a rank 3 matroid, and showed
that it is the tropicalization of a rank 2 divisor on an algebraic curve if and only if the matroid
is realizable. In this subsection, we revisit these Cartwright divisors and relate the associated
2-dimensional tropical linear series to matroid adjoints.

7.1. Cartwright divisors on Levi graphs. We begin by briefly reviewing Cartwright’s construc-
tion. Let M be a simple rank 3 matroid on a finite set E. The Levi graph ΓM is the bipartite
incidence graph between the ground set E and the set of rank 2 flats H. We write [e, F ] for the
edge of ΓM connecting e ∈ E to F ∈ H, when e ∈ F . Cartwright studied the case where all edge
lengths are 1. Here, we consider ΓM as a metric graph with arbitrary positive edge lengths.
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Figure 10. The affine diagrams depicting the non-spanning circuits of V −
8 and its

elementary quotients Q1 and Q2.

The Cartwright divisor of the simple rank 3 matroid M is

DM :=
∑
e∈E

e.

It has rank rBN(DM ) = 2. This was proved by Cartwright when all edge lengths are equal to 1
[Car15, Proposition 2.2]. To extend this to arbitrary edge lengths, note that the Levi graph of a
rank 3 matroid has girth 6 and apply [Jen16, Corollary 2.2]. In this section, we study the tropical
linear series Σ ⊆ R(DM ) of dimension 2 and relate their local matroids at DM to adjoints of M .

7.2. Matroid adjoints. Let H = {H1, . . . ,Hs} be the set of corank 1 flats of a simple rank r
matroid M . An adjoint of M is a rank r matroid W on H such that, for each rank k flat F of M ,

(8) {Hi : F ⊆ Hi}
is a corank k flat of W . Any realization of M gives rise to an adjoint (and a realization of this
adjoint), by viewing the realization as a point configuration spanning Pr and interpreting the corank
1 flats of the realization as a point configuration in the dual projective space. Conversely, if M has
a realizable adjoint, then M is realizable [BK86, Corollary 3.2].

In general, a nonrealizable matroid may or may not have an adjoint. Moreover, when an adjoint
exists, it is typically not unique. See [FTW24] for further details on matroid adjoints.

We recall that every rank 3 matroid M has an adjoint. One of these, called the free adjoint, is
maximal in the sense that any basis of any adjoint is a basis of the free adjoint. The rank 2 flats of
the free adjoint are those of the form (8), together with the disjoint pairs {Hi, Hj}.

7.3. Local matroids at Cartwright divisors. Let M be a simple rank 3 matroid, let DM be the
Cartwright divisor on the Levi graph ΓM , and let Σ ⊆ R(DM ) be a rank 2 tropical linear series. By
Lemma 6.7, any tropical linear series Σ ⊂ R(DM ) has big minimizers, so the local matroid MΣ is
well-defined. The connected components of ΓM ∖ supp(DM ) are the open subgraphs γF consisting
of a vertex F ∈ H together with the interiors of its adjacent edges. When no confusion seems
possible, we identify {γF : F ∈ H}, i.e., the ground set of the local matroid MΣ, with H. Thus, it
makes sense to ask whether or not MΣ is an adjoint of M .

Theorem 7.1. Let M be a simple rank 3 matroid and let Σ ⊆ R(DM ) be a tropical linear series of
dimension 2. Then DM ∈ |Σ| and MΣ is an adjoint of M .

Since any adjoint of a nonrealizable matroid is nonrealizable, combining Theorems 1.16 and 7.1
recovers Cartwright’s non-realizability result in the case where all edge lengths are 1 and extends
this to the case of arbitrary edge lengths.

Corollary 7.2. If M is not realizable, then R(DM ) does not contain any realizable tropical linear
series of dimension 2.

We also prove the following partial converse to Theorem 7.1.
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Theorem 7.3. Suppose that all edges of ΓM have length 1. If W is an adjoint of M , then there is
a matroidal linear series Σ ⊆ R(DM ) such that MΣ =W .

Remark 7.4. When the edges of ΓM do not all have equal length, we do not know whether there
exists a tropical linear series Σ ⊆ R(DM ) of dimension 2.

In the arguments below, we use the notion of reduced divisors and the burning algorithm for
metric graphs, following [Luo11, BS13]. Let v ∈ Γ be any point. An effective divisor D is v-reduced
if for every closed subgraph A ⊆ Γ∖ {v}, there is a point x ∈ A such that

D(x) < outdegA(x).

Here, outdegA(x) is the degree of x in Γ minus the degree of x in A. The following lemma relates
reduced divisors to the minimizers of functions in R(D).

Lemma 7.5. Let D be an effective divisor on Γ. Then

{v ∈ Γ : D is v-reduced} =
⋂

φ∈R(D)

φmin.

Proof. Suppose D is v-reduced. Let φ ∈ R(D). Since D + div(φ) is effective, φmin is a closed
subgraph satisfying D(x) ≥ outdegφmin

(x) for all x ∈ φmin. Therefore, v ∈ φmin.
Conversely, suppose D is not v-reduced. Then there is some closed subgraph A such that D(x) ≥

outdegA(x) for all x ∈ A. Let φ be the function that takes the value 0 on A, has slope 1 for
a sufficiently small distance ϵ on every tangent direction leaving A, and takes constant value ϵ
elsewhere. By construction, φ ∈ R(D) and v ̸∈ φmin. □

Proof of Theorem 7.1. We first show that DM ∈ |Σ|. By Theorem 4.5, it is enough to show that
the local matroid MΣ is loopless. Recall that the ground set of MΣ is the set of open subgraphs
{γF : F is a rank 2 flat of M}.

Let F be a rank 2 flat ofM . We will show that γF is not a loop ofMΣ. Let e1 ̸= e2 ∈ F . We claim
that D′ = DM − e1− e2 is v-reduced for all v ∈ γF . To see this, apply Dhar’s burning algorithm. A
fire started at v will burn through F, e1 and e2. Then it burns through all flats containing e1 or e2.
If e ∈ E is not contained in F , then there is a rank 2 flat G1 containing {e, e1} and a distinct rank
2 flat G2 containing {e, e2}, which the fire burns through. The fire thus burns through e, and then
all rank 2 flats containing e. Thus, the fire burns every element of E that is not contained in F ,
and every element of H. Finally, since every element of E is contained in at least two rank 2 flats,
the fire burns through all remaining elements of E. Since the whole graph burns, D′ is v-reduced.
This proves the claim.

Now, since rBN(Σ) = 2, there is some φ ∈ Σ such that D′ + div(φ) is effective. Applying
Lemma 7.5 for D′, it follows that γF ⊆ φmin. Hence γF is not contained in the flat Fφ and is not a
loop of the local matroid. It follows that MΣ is loopless and DM ∈ |Σ|.

It remains to show that MΣ is an adjoint of M , i.e., we must show that {γF : e ∈ F} is a flat of
MΣ, for each e ∈ E. To see this, fix an element e ∈ E. For each e′ ∈ E ∖ {e}, let F ′ ∈ H be the
unique rank 2 flat containing {e, e′}. Fix a positive real number c that is smaller than the length
of [e′, F ′] for all e′, and let φe,c be the function that takes the value 0 on ∪e/∈F γF , has slope 1 for
distance c on each edge [e′, F ′], and takes the value c outside. The divisor

(9) De,c := DM + div(φe,c)

is multiplicity free. Its support consists of e, together with the point in [e′, F ′] at distance c from
e′, whenever F ′ is a rank 2 flat containing the pair {e, e′}. It is enough to show that the function
φe,c is in Σ, because then Fφe,c

= {γF : e ∈ F}.
Let e′ ∈ F ∖ {e}. Let p be in the edge [e′, F ] at distance c from e′, with 0 < c < 1. Let

D′′ := De,c − e − p, with De,c as in (9). Note that D′′ is effective and multiplicity free. We then
observe that ΓM ∖ supp(D′′) is connected; the proof is straightforward and similar to the burning
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algorithm argument above. Since D′′ is multiplicity free and ΓM ∖ supp(D′′) is connected, the
divisor D′′ is v-reduced for all v. Therefore, by Lemma 7.5, D′′ is rigid. In other words, De,c is the
unique divisor in |DM | whose support contains e and p. Since rBN(Σ) = 2, it follows that De,c ∈ |Σ|
and φe,c ∈ Σ, as required. □

Proof of Theorem 7.3. Let W be an adjoint of M . We construct a homomorphism of tropical
modules Φ: Trop(W )→ R(DM ) whose image is a matroidal linear series Σ with MΣ =W .

For e ∈ E, let φe ∈ PL(ΓM ) be the function that is linear on each edge and takes the following
values at vertices:

(10) φe(e) = 2, φe(F ) = 1 if e ∈ F , and φ(v) = 0 otherwise.

Here, F denotes a rank 2 flat of M . If φe ∈ Σ, then the corresponding flat of the local matroid is

He := {F : e ∈ F}.
For each rank 2 flat G of W that is not of the form He, we define a function φG as follows. The

flat G is a collection of pairwise disjoint rank 2 flats of M . The function φG takes the following
values at vertices

φG(F ) =

{
1, if F ∈ G
0, otherwise,

and is linear on each edge.
Let Σ ⊆ R(DM ) be the submodule generated by

{φe : e ∈ E} ∪ {φG : G is a rank 2 flat of W not of the form He}.
Note that ΣM contains the constant functions, because mine φe = 0.

We claim that Σ is a matroidal linear series of dimension 2. To see that rBN(Σ) = 2, let
[e1, F1], [e2, F2] be edges in ΓM . It suffices to show that, for two arbitrary points v1 ∈ [e1, F1], v2 ∈
[e2, F2], there is a function φ ∈ Σ such that div(φ) +DM − v1 − v2 ≥ 0. We break this into cases:

• Suppose e1 = e2 and F1 = F2. Then φ can be chosen to be a tropical linear combination of
0, φe, and φe′ , where e

′ ̸= e1 is contained in the flat F1.
• Suppose e1 = e2 and F1 ̸= F2. Let e′1 be an element contained in F1 but not in F2, and
let e′2 be an element contained in F2 but not in F1. Then φ can be chosen to be a tropical
linear combination of 0, φe1 , φe′1 , and φe′2 .

• Suppose F1 = F2 and e1 ̸= e2. Then φ can be chosen to be a tropical linear combination of
0, φe1 , and φe2 .

• Finally, suppose e1 ̸= e2 and F1 ̸= F2, i.e., [e1, F1] and [e2, F2] are disjoint. If F1 and F2

share a common element e, then φ can be chosen to be a tropical linear combination of 0,
φe1 , φe2 , and φe. Otherwise, if F1 and F2 are disjoint, then there is some rank 2 flat G of
W that contains F1 and F2, and φ is a tropical linear combination of 0, φe1 , φe2 , and φG.

We now show that Σ is parametrized by Trop(W ) ⊆ RH . For each F ∈ H, let δF be the indicator
vector of {F}, i.e.,

δF (G) =

{
0, if G = F

∞, else.

Recall that γF is the subgraph whose edges are those containing F . Consider the function ψF ∈
PL(ΓM ) given by the distance function

ψF (p) := d(p, γF ).

Define a tropical linear map RH → PL(ΓM ), δF 7→ ψF which restricts to a tropical linear map

Φ: Trop(W )→ PL(ΓM ).

Under the map Φ, the covector H ∖He of W is sent to the function φe and the covector H ∖G is
sent to the function φG. Hence, Φ maps Trop(W ) onto Σ ⊆ R(DM ).
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Finally, we show that the local matroid at DM is the adjoint W . Recall that the ground set of
MΣ consists of the subgraphs γF for F ∈ H. For every element e ∈ E, the function φe obtains its
minimum on ∪F /∈He

γF , and for a rank 2 flat G of W not of the form He, the function φG obtains
its minimum on ∪F /∈GγF . Thus, every rank 2 flat of W is a flat of the local matroid. These are all
the rank 2 flats of MΣ, because they are the minimizers of the generators of Σ. The rank 1 flats of
W and the rank 1 flats of MΣ agree by definition. Hence, MΣ =W . □

8. Further examples

In this section we revisit examples from [LPP12, ABBR15, MUW21] that illustrate ways in which
the properties of tropical complete linear series |D| differ from well-known properties of linear series
on algebraic curves. In each of these examples, we explain how to understand the relevant tropical
linear series contained in R(D) and observe that their behavior more closely reflects the properties
of linear series on algebraic curves.

Recall that the canonical divisor KΓ on a metric graph Γ is

KΓ :=
∑
v∈Γ

(deg v − 2) · v.

Its rank is r(KΓ) = g − 1, where g is the genus, or loop order, of Γ. By Riemann–Roch and
specialization, R(KΓ) always contains the tropicalization of a linear series of rank g − 1.

Example 8.1. Let Γ be the genus 2 barbell graph shown in Figure 11, with canonical divisor
KΓ = v+w. Note that the complete linear system in this example is not pure dimensional. Divisors
in |KΓ| that are supported on the bridge have two degrees of freedom and so lie in a 2-dimensional
maximal face of |KΓ|, whereas divisors that are supported on either of the loops lie in a 1-dimensional
maximal face. In particular, R(KΓ) is not a tropical linear series.

v w

1 1

2 2

2 2

Figure 11. The barbell graph and the complete linear system of its canonical
divisor KΓ = v + w. The divisor corresponding to each vertex of the complete
linear system is depicted adjacent to that vertex.

We claim that R(KΓ) contains a unique tropical linear series Σ of dimension 1. Let x be the point
of Γ opposite v on the left loop. There is a unique divisor Dx ∈ |KΓ| such that supp(Dx) contains
x. Choose φx such that Dx = KΓ + divφx. Similarly, choose φy so that Dy := KΓ + div(φy) is
the unique divisor in |KΓ| whose support contains the point y on the right loop opposite w. Since
Σ has Baker-Norine rank 1, φx, φy ∈ Σ. Now, any tropical linear series of dimension 1 contained
in R(KΓ) must contain φx and φy. However, one readily checks that ⟨φx, φy⟩ is itself a tropical
linear series of dimension 1. By Corollary 4.9, it follows that ⟨φx, φy⟩ is the unique tropical linear
series of dimension 1 in R(KΓ). Note that |⟨φx, φy⟩| is the realizability locus for canonical divisors
determined in [MUW21, Example 6.4], and does not contain KΓ (cf. [ABBR15, Example 4.4]).



32 C.-W. CHANG, M. DUPRAZ, H. IRIARTE, D. JENSEN, D. KARP, S. PAYNE, AND J. WANG

We now consider another example of a divisor D with r(D) = 1 that is not the tropicalization
of any divisor of rank 1. We revisit an example, attributed to Ye Luo in [ABBR15, Example 5.13].
Here, we give a different proof for the non-realizability of D, by showing that R(D) does not contain
any tropical linear series of positive dimension.

Example 8.2. Consider the divisor D = p+ q + s on the graph Γ pictured in Figure 12, where all
edge lengths are equal. Note that this divisor has rank r(D) = 1. In [ABBR15, Example 5.13] it
was proven that D cannot be the tropicalization of a divisor of positive rank on an algebraic curve,
by showing that there is no degree 3 harmonic morphism from a modification of Γ to a tree.

p

x

s

z

q

y

Figure 12. Luo’s example of a non-realizable divisor of positive rank.

We claim that R(D) does not contain a tropical linear series of dimension 1. Note that |D|
contains unique divisors

Dx = D + div(φx), Dy = D + div(φy), and Dz = D = div(φz)

whose support contains x, y, and z, respectively. Thus, any tropical submodule of R(D) with rank
rBN(Σ) = 1 must contain {φx, φy, φz}, which is tropically independent because these three functions
have distinct slopes along [s, q].

The argument in Example 8.2 illustrates a general fact that we record here for future reference.

Proposition 8.3. Let Σ ⊆ R(D) be a tropical linear series of dimension r. For each tangent vector
ζ, the set of slopes sζ(Σ) has size exactly r + 1.

Proof. Suppose ζ is a tangent vector based at v ∈ Γ, and let I ⊆ Γ be a closed interval with one
endpoint at v that contains ζ. By choosing I sufficiently small, we may assume that I ∖ {v} does
not intersect the support of D, and each of the functions in a minimal generating set for Σ is linear
on I. Since Σ|I is a tropical linear series of dimension r, it follows that these generators have exactly
r + 1 distinct slopes on I, as required. □

We now revisit an example of a graph of genus 4 that is not hyperelliptic but has infinitely many
divisor classes of degree 3 and rank 1. This contrasts with the classical fact that a non-hyperelliptic
curve of genus 4 has either 1 or 2 divisor classes of degree 3 and rank 1.

Example 8.4. Consider the genus 4 loop of loops Γ, pictured in Figure 13. Let ℓi be the length
of the edge [vi, wi]. If ℓ1 > ℓ2 > ℓ3 and ℓ2 + ℓ3 > ℓ1, then Γ has infinitely many divisor classes of
degree 3 and rank 1, and no divisors of degree 2 and rank 1 [LPP12, Theorem 1.2]. However, we
claim that there is a unique divisor class [D] on Γ of rank 1 and degree 3 with the property that
R(D) contains a rank 1 tropical linear series and, moreover, this tropical linear series is unique.

Let D be a divisor of the form v1 + w3 + w, where w is a point on the edge [v2, w2]. Let x be
the distance from w to v2, and assume x ≥ ℓ1 − ℓ2. One can show using Dhar’s burning algorithm
that every divisor of degree 3 and rank 1 on Γ is equivalent to a divisor of this form. We omit the
cumbersome case analysis. Observe that |D| contains unique divisors

D1 = D + div(φ1), D2 = D + div(φ2), and D3 = D + div(φ3)
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v1

w1 v2

w2

v3w3

u3

u2 u1

u′3

u′2 u′1

Figure 13. The loop of loops of genus 4.

such that supp(Di) contains ui, as shown in Figure 14. Suppose Σ ⊆ R(D) is a tropical linear series
of rank 1. Then Σ must contain {φ1, φ2, φ3}, and there must be a tropical dependence

(11) θ = min{φ1 + a1, φ2 + a2, φ3 + a3}.

We claim that the existence of such a tropical dependence determines the point x in [v2, w2].
Consider the point on [v3, w3] in the support of D3, which has distance ℓ1−x from w3. No two of

the functions φi differ by a constant in a neighborhood of this point, so in the tropical dependence,
all three functions must achieve the minimum in (11) at this point. Similarly, the point on [v1, w1]
in the support of D1 has distance ℓ3 − ℓ2 + x from v1, and all three functions must achieve the
minimum in (11) at this point. The tropical dependence (11) is illustrated in Figure 15, with the
loops labeled by the functions that achieve the minimum on them. Since the function φ2 takes the
same value at these two points, it follows that ℓ1−x = ℓ3− ℓ2+x. Equivalently, x = 1

2 (ℓ1+ ℓ2− ℓ3).
Now, suppose x = 1

2 (ℓ1 + ℓ2− ℓ3). We show that R(D) contains a unique tropical linear series of
rank 1. Let φ1, φ2, and φ3 be as above. Note that there are unique divisors

D′
1 = D + div(φ′

1), D′
2 = D + div(φ′

2), and D′
3 = D + div(φ′

3)

such that the support of D′
i contains u

′
i. The tropical submodule Σ = ⟨φ1, φ

′
1, φ2, φ

′
2, φ3, φ

′
3⟩ has

Baker–Norine rank rBN(Σ) = 1. Moreover, any set of three functions from this generating set is
tropically dependent. By Lemma 3.2, it follows that rind(Σ) = 2, and hence Σ is a tropical linear
series of dimension 1. Any other tropical linear series of rank 1 in R(D) must contain Σ. By
Corollary 4.9, Σ is the unique tropical linear series inside of R(D).

1

2

D1

1

2

D2

1

2

D3

Figure 14. The divisors corresponding to the functions φ1, φ2, and φ3 of Exam-
ple 8.4.
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φ1, φ2

φ1, φ3 φ2, φ3

Figure 15. The dependence between φ1, φ2, and φ3.

9. Open problems and questions

In the introduction we posed Question 1.12, asking whether every tropical linear series is a
matroidal linear series. The answer is affirmative if Σ ⊆ R(D) is a tropical linear series of dimension
one where D is a divisor of degree two on an interval Γ = [v, w]. Even in this case, some nontrivial
calculation is already needed [FJP25, Example 6.10], and we can show that Σ arises in the manner
described in Theorem 6.3. We pose the following variant for tropical linear series on an interval.

Question 9.1. Does every tropical linear series on an interval or loop Γ arise from the constructions
in Theorem 6.3 and Theorem 6.5, respectively?

In Remark 1.6, we explained that any metric graph Γ of first Betti number g has a divisor D of
degree d with a tropical linear series Σ ⊆ R(D) of dimension r, whenever (r + 1)(g − d + r) ≤ g,
and how this follows from the Brill–Noether theorem. Similarly, it follows from the Riemann–Roch
inequality that there is a tropical linear series Σ ⊆ R(D) of dimension r, whenever r ≤ d − g, for
any divisor D of degree d. It would be interesting to find a proof of any such statement about the
existence of positive dimensional tropical linear series that does not depend on algebraic geometry.

Problem 9.2. Give a direct combinatorial proof of existence theorems for tropical linear series that
follow from the Riemann–Roch and Brill–Noether theorems.

An interesting special case would be to give a combinatorial proof of the existence of a tropical
linear series of dimension g − 1 contained in R(KΓ).

The Baker–Norine rank r(D) for a divisor on a graph famously satisfes the precise analog of
the Riemann–Roch theorem [BN07] as well as the specialization inequality [Bak08]. Subsequently,
other rank functions for divisors on graphs were discovered that satisfy their own Riemann–Roch
theorems and strengthen the specialization inequality [CLM15, BCM25].

Question 9.3. Is there a rank function defined in terms of tropical or matroidal linear series that
satisfies an analog of the Riemann–Roch theorem?

One might consider, for instance, the function taking a divisor D to the largest dimension of a
tropical or matroidal linear series contained in R(D), which is smaller than r(D) yet still satisfies
the specialization inequality.

As discussed in the introduction, many advances in this research area were spurred by relations to
the Brill–Noether theory of algebraic curves, following the program initiated by Baker in [Bak08]. In
Brill–Noether theory, one studies the moduli space Grd(X) of linear series of degree d and dimension
r on a general curve X, along with its image W r

d (X) in Picd(X). For metric graphs, a tropical
analog W r

d (Γ) ⊆ Picd(Γ) is studied in [LPP12]. It is, in particular, a polyhedral complex with a
well-defined dimension and a rank, analogous to the Baker–Norine rank. However, there is not yet
any tropical analog of Grd(X), because we did not previously have a suitable analog of incomplete
linear series, i.e., proper subspaces of H0(X,O(DX)).

Problem 9.4. Construct a moduli space of tropical or matroidal linear series on a metric graph Γ
and study its geometric properties, including dimension and analogs of the Baker–Norine rank.



TROPICAL LINEAR SERIES AND MATROIDS 35

The following special case is related to the Riemann–Roch questions, above.

Problem 9.5. Let Γ be a metric graph of genus at least 2 with no 1-valent vertices. Classify the
tropical linear series of rank g − 1 that are contained in R(KΓ).

It follows from Corollary 4.10 that R(KΓ) is the unique such tropical linear series whenever |KΓ|
has dimension g − 1. Example 4.6 is a first step towards such a classification in the remaining
cases, by determining the local matroid at KΓ. The ideas and results of Section 5 are also relevant,
but many subtleties remain. There may be tropical linear series that are realizable in residue
characteristic p > 0, but not in equicharacteristic zero, and these may or may not be contained
in the equicharacteristic zero realizable locus determined by Möller, Ulirsch, and Werner. Also,
aside from the local structure at KΓ, the possibilities are wide open when the realizable locus has
dimension greater than g − 1, as in Example 5.4.

Our interest in tropical linear series was partly motivated by the study of multiplication maps
via tropical independence in [JP14, JP16, JP17, FJP24, FJP25]. Here, the multiplication for linear
series (DX , V ) and (D′

X , V
′) is the linear map

V ⊗ V ′ → H0(X,O(DX +D′
X))

induced by tensor product of global sections or, equivalently, multiplication of rational functions.
Many fundamental questions about the geometry of algebraic curves can be expressed in terms

of ranks of maps between linear series, and one can give lower bounds on these ranks by proving
tropical independence of collections of functions in the image. Thus, there is significant interest in
understanding how multipliciation maps behave for tropical and matroidal linear series.

Question 9.6. Given tropical linear series Σ1 ⊆ R(D1) and Σ2 ⊆ R(D2) on a metric graph Γ,
define the multiplication map µ : Σ1×Σ2 → R(D1 +D2) by µ(φ1, φ2) = φ1 +φ2. Is there a tropical
linear series Σ ⊆ R(D1 +D2) that contains the image of µ?

When Σ1 and Σ2 are tropicalizations of linear series, the answer is affirmative, and the tropical
linear series can be chosen with dimension at most rind(Σ1)rind(Σ2) − 1, because the image of
the tropical multiplication map is contained in the tropicalization of the image of the classical
multiplication map. However, the answer is unclear when Σ1 or Σ2 is not realizable.

Question 9.6 is an important special case of the more general problem of finding a tropical linear
series that contains a given subset or tropical submodule of R(D).

Question 9.7. Is there a procedure that determines whether a tropical module Σ ⊆ R(D) is con-
tained in a tropical linear series of a given rank?

The main combinatorial results of [FJP25] include a classification of strongly recursive tropical
linear series on a chain of g loops with bridges Γ with edge lengths that satisfy a specified admissi-
bility condition and a proof that if g = 22 or 23 and Σ is a strongly recursive tropical linear series
of dimension 6 and degree 25 or 26, respectively, then the image of the multiplication map

µ : Σ× Σ→ PL(Γ)

contains a tropically independent subset of size 28. In particular, the image cannot be contained in
any tropical linear series of dimension less than 27. The corresponding cases of the strong maximal
rank conjecture of Aprodu and Farkas follow immediately, and this was an essential step in the proof
that the moduli spaces M22 and M23 are of general type.

Question 9.8. Let Γ be a chain of 22 or 23 loops with bridges with admissible edge lengths, and let
Σ ⊆ PL(Γ) be a tropical linear series of dimension 6 and degree 25 or 26 respectively. Does every
tropical linear series that contains the image of µ : Σ× Σ→ PL(Γ) have dimension at least 27?

We have seen that Star(D) is the Bergman fan of the local matroid MΣ when D ∈ |Σ| and
Σ ⊆ R(D) is nondegenerate.

Question 9.9. What are the possibilities for the local structure of |Σ| at a degenerate divisor?
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For any divisor D ∈ |Σ|, the set L = {Fφ : φ ∈ Σ} ∪ {E} is a lattice. If D is nondegenerate,
this is the lattice of flats of a matroid that controls the local structure of |Σ| at D. In general,
there is a surjective map from a small neighborhood of D in |Σ| to L, but essential information
may be lost if D is degenerate. For instance, let p be the midpoint of the interval Γ = [v, w] and
D = 2p. The tropical module R(D) contains the functions φ1 and φ2 where divφ1+D = p+w and
divφ2 +D = 2w. Then φ1 and φ2 attain their minimum at the same place, so they are mapped to
the same element in L. However, for any ϵ > 0, min{φ1, ϵ} ≠ min{φ2, ϵ}. They are not determined
by their image in L, in contrast to Theorem 1.14. If there is a nice way to describe the local structure
of Σ at a degenerate divisor, then one might hope to ‘glue’ all the local pictures together and get a
global parametrization and answer Question 9.1.

Question 9.10. Let Σ ⊆ R(D) be a matroidal linear series with parametrization V ↠ Σ, and let
π : V → |D| denote the composition with projectivization. What are the properties of the submodules
π−1(D) for D ∈ |Σ|, and how do they differ depending on whether or not D is degenerate?

Appendix A. Tropicalizations of linear series are matroidal

In this Appendix, we give a brief account of tropicalizations of linear series on algebraic curves.
In particular, we give a self-contained proof that tropicalizations of linear series are matroidal. This
argument first appeared in the proof that tropicalizations of linear series are finitely generated as
tropical modules [FJP25, Proposition 6.4]. The material in this appendix is not logically necessary
for the main results of this paper, but it is an essential motivation for investigating the relations
between tropical linear series and matroids.

A.1. Skeletons of semi-stable models. Let X be a smooth projective algebraic curve over a field
K with a nontrivial valuation val : K → R. For simplicity, we assume K is algebraically closed and
spherically complete, and val is surjective. With these assumptions, the Berkovich analytification
Xan is set-theoretically a disjoint union of two subsets:

• the type I points X(K), and
• the type II points, which are the extensions of val to valuations on the function field K(X).

LetR ⊆ K be the valuation ring. By the semistable reduction theorem, there are models X→ SpecR
with generic fiber Xη ∼= X and special fiber X a nodal curve. Formally locally near each node, the
total space of X looks like V(xy − t) ⊆ A2

R for some t in the maximal ideal of R, and val(f) is
independent of the choice of local coordinates. The corresponding skeleton ΓX is a metric graph
with vertices and edges corresponding to the irreducible components and nodes of X, respectively.
The length of the edge corresponding to a node with local defining equation xy − t is val(t).

There is a natural inclusion ΓX ⊆ Xan with image contained in the subset of type II points, and
a natural retraction Xan → ΓX. A formal blowup X′ → X induces a continuous, surjective map
ΓX′ → ΓX compatible with the retraction maps from Xan, and the induced map

Xan ∼−→ lim←−
X

ΓX

is a homeomorphism.
Let Γ = ΓX be such a skeleton. When the skeleton is fixed, the retraction Xan → Γ is called the

tropicalization map. Since each point in Γ represents a valuation on the function field K(X), for
any nonzero rational function f ∈ K(X) we obtain a function denoted trop(f) on Γ by evaluation.
The function trop(f) is continuous and piecewise-linear, with integer slope on each edge.

The bend-locus of such a piecewise-linear function is the analog of the zeros and poles of a rational
function, with the analog of order of vanishing given by the sum of the incoming slopes at a point.
These notions are compatible with tropicalization, i.e., the sum of the incoming slopes of trop(f)
at a point is the sum of the multiplicities of the zeros and poles of f that tropicalize to that point.
See, e.g., [BR15, Remark 5.4].
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A.2. Tropicalizations of linear series. With X and Γ = ΓX as above, consider a linear series
V ⊆ H0(X,O(DX)). We identify nonzero sections of O(DX) with rational functions f ∈ K(X)
such that div(f) +DX ≥ 0. Then DX tropicalizes to a divisor D on Γ, and V tropicalizes to

Σ = {trop(f) : f ∈ V ∖ {0}}.
Proposition A.1. Let (D,Σ) be the tropicalization of a linear series (DX , V ) of dimension r. Then
Σ is a tropical linear series and is the image of a surjective homomorphism of tropical modules
V ↠ Σ, where V is a realizable valuated matroid of rank r + 1.

This fact first appeared as a step in the proof that the tropicalization of a linear series is finitely
generated as a tropical module [FJP25, Proposition 6.4]. Since it was not stated as a separate
proposition in loc. cit., and since it is essential motivation for studying relations between tropical
linear series and valuated matroids, we present it here in this appendix with a self-contained proof.
Our proof will use the decomposition of Xan into nonarchimedean analytic balls and annuli induced
by the semistable model X.

A.3. Semistable decompositions. We now recall the decomposition of Xan into nonarchimedean
analytic discs and annuli induced by the semistable model X, following [BPR13, §3].

The skeleton Γ = ΓX comes with a distinguished vertex set W ⊆ Γ corresponding to the irre-
ducible components of the special fiber X. The complement Xan ∖WX is the disjoint union of its
connected components. These connected components consist of infinitely many nonarchimedean
analytic discs, one for each smooth closed point of X, and finitely many nonarchimedean analytic
annuli, one for each node of X. This decomposition is compatible with tropicalization, i.e., each
smooth closed point of X is contained in a unique irreducible component of X, and the correspond-
ing disc tropicalizes to that vertex in WX. Similarly, the nodes of X correspond to the edges of
Γ, and the annulus corresponding to a node of X is exactly the preimage under tropicalization of
the interior of the corresponding edge. We note also that the length of an edge is the logarithmic
modulus of the corresponding annulus.

Furthermore, any finite set of type II points that contains the vertex set WX is the vertex set of
some semistable model obtained as a formal blowup X′ → X. In particular, any subdivision of Γ is
the skeleton associated to a semistable model of X.

A.4. Proof of Proposition A.1. In the introduction, we have discussed the fact that the trop-
icalization of a linear series is a tropical linear series of the same dimension. It remains to show
that this tropical linear series is matroidal, i.e., there is a valuated matroid V of rank r + 1 and a
surjective homomorphism of tropical modules V ↠ Σ. We do so as follows.

First, since any subdivision of Γ is the skeleton of some formal model X′ → X, we may assume
that the vertex set W contains trop(supp(DX)). Next, by continuity, the tropicalization of any
nonzero rational function f ∈ K(X)× is determined by its restriction to Γ ∖W , i.e., the union of
the open edges of Γ.

Let e ⊆ Γ be an open edge of length ℓ. Then trop−1(e) is analytically isomorphic to the stan-
dard open annulus Uℓ of logarithmic modulus ℓ, i.e., the preimage of (0, ℓ) under the standard
tropicalization map Gan

m → R.
Since the vertex set W contains the tropicalization of supp(DX), any f ∈ H0(X,O(DX)) is

regular on trop−1(e) ∼= Uℓ. Let t be the coordinate on Uℓ ⊆ Gan
m . Then any regular function on Uℓ

has a Laurent series expansion

f =

∞∑
n=−∞

αnt
n,

with αi ∈ K. The convergence condition on Uℓ says that lim val(αn) = lim(ℓn+ val(αn)) =∞, i.e.,
for any N > 0, we have val(αn) > N and ℓn+ val(αn) > N for all but finitely many integers n.

In terms of this power series expansion, and the identification e ∼= (0, ℓ), we have

trop(f)|e(x) = min
n∈Z
{nx+ val(αn)}, for x ∈ (0, ℓ).
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This expresses trop(f)|e as the minimum of a countable collection of affine linear functions with
distinct integer slopes. However, the slope of any function in the complete tropical linear system
R(D) is bounded in absolute value by d = deg(D) [HMY12, Lemma 7]. Thus, we have

trop(f)|e(x) = min
|n|≤d

{nx+ val(αn)}.

We have shown that trop(f)|e is determined by the valuations of the 2d+1 coefficients α−d, . . . , αd
in the corresponding power series expansion of f on Uℓ, for ℓ = ℓ(e). Say Γ has s edges. Applying
this argument to each edge, we see that trop(f) is globally determined by the valuations of (2d+1)s
coefficients in the s corresponding Laurent series expansions. Altogether, these coefficients give a

linear embedding V ⊆ K(2d+1)s. Let V be the image of V under the tropicalization map to R(2d+1)s
.

By construction, V is a realizable valuated matroid of rank r + 1 and the tropicalization map on V
factors as

V V

Σ.
trop

The map V → Σ is a homomorphism of tropical modules, by construction, and the commutativity
of the diagram shows that it is surjective, as required. 2
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