
\qquad
\qquad

Segments, Lines and Polygons

Given two points A and $B \exists$! line containing
\qquad them, $\widehat{A B}$. Why?

We can identify A with the number 0 and
\qquad B with any positive real number. Why?

Why are there infinitely many points on $\overrightarrow{A B}$? \qquad

31-Aug-2011
MA 341001 2 \qquad

Distance		
$d(P, Q)=\left\|x_{P}-x_{Q}\right\|$ Where do we get this definition?		
Can there be two different distances associated with two points? Why not?		
Notation: $d(P, Q) \equiv P Q$		
${ }^{31.14972011}$	mesatuon	3

Betweenness

C lies between A and B if A, B, C distinct points on the same line and $A C+C B=A B$.

Notation: $A^{*} C^{\star} B$ means C lies between A and B
Given two points A and B the line segment $\overline{A B}$ consists of A, B, and all points that lie between A and B.
$A, B=$ endpoints all other points = interior $A B=$ length of segment

Plane Figures

\qquad
A figure in the plane is a set of points in \qquad the plane.

Convex: it contains all interior points of all lines segments joining any two points.

Non convex $=$ concave

31-Aug-2011
MA 341001
\qquad
\qquad
\qquad
\qquad
\qquad

Rays and Angles

For $A \neq B$, the ray $\overrightarrow{A B}$ is \qquad

$$
\overrightarrow{A B}=\overrightarrow{A B} \cup\{D \in \overrightarrow{A B} \mid A * B * D\}
$$

$\overrightarrow{B A}$ and $\overrightarrow{B C}$ are opposite if $A^{*} B^{\star} C$. \qquad
\qquad
\qquad

Rays and Angles

Two rays emanating from the same point \qquad form two angles.
Common endpoint = vertex
Rays $=$ sides
If the rays coincide we have one angle of measure 0 and another of measure 360 .

31-Aug-2011
MA 341001

Rays and Angles

\qquad
If union of the rays is a straight line, \qquad each angle has measure 180. Called a straight angle. \qquad

For all others, one angle has a unique measure between 0 and 180.
If $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are the rays the angle is $\angle A B C$ and it measure is $m \angle A B C$
\qquad
\qquad
\qquad
\qquad

Rays and Angles		
Rays divide plane into 2 sets		
Interior:		
Exterior:		
Are the sides of the angle in either set?		
201	M 3 341091	,

Rays and Angles	
Acute	
Obtuse	
Right	
Complimentary	
Supplementary	
	${ }^{\text {M } 341001}$

Rays and Angles
What is difference between
supplementary angles and angles that
form a linear pair?

Polygons

Let $A_{1}, A_{2}, \ldots, A_{n}$ be distinct points in \qquad plane so that no three consecutive points are collinear \qquad
Suppose that no two of the segments

$$
\overline{A_{1} A_{2}}, \overline{A_{2} A_{3}}, \ldots, A_{h-1} A_{n}, \overline{A_{n} A_{1}}
$$

share an interior point
The n-gon is $P_{n}=\overline{A_{1} A_{2}} \cup \overline{A_{2} A_{3}} \cup \ldots \cup \overline{A_{n-1} A_{n}} \cup \overline{A_{n} A_{1}}$ Points $=$ vertices segments $=$ sides

31-Aug-2011
MA 341001 12

Polygons

\qquad
Polygon divides plane into two sets: \qquad interior and exterior
How do we define the interior?

If interior is convex, polygon is called convex.
Regular - all sides are congruent and all angles are congruent
\qquad
\qquad
\qquad
\qquad

Polygons

\qquad
3-gon $=$ triangle \qquad
4-gon = quadrilateral
$5-$ gon $=$ pentagon
6-gon = hexagon
\qquad
\qquad
heptagon, octagon, nonagon, decagon, undecagon, dodecagon, etcagon

31-Aug-2011
MA 341001
\qquad
\qquad
\qquad

Statement

Every polygon can be written as a union of triangles that share only vertices and sides.

True or False

Similarity

1. Definition: Two triangles are similar if their corresponding angles are equal.
2. Definition: Triangles are similar if they have the same shape, but can be different sizes.
3. Definition: Two geometric shapes are similar \qquad if there is a rigid motion of the plane that maps one onto the other.

Definition

We need to be more precise, more inclusive.
Working Definition: Two figures, P and P^{\prime}, are similar if there exists a positive real number k and an onto function $f: P \rightarrow P^{\prime}$ so that for all A, B $\operatorname{in} P f(A) f(B)=A^{\prime} B^{\prime}=k A B$.
$k=$ coefficient of similarity
If $k=1$, we say that the figures are congruent.

MA 341001

Similarity Facts

\qquad

- Two lines are congruent
- Two rays are congruent
- Any two segments are similar
- Two segments are congruent iff they have the same length
- Any two circles are similar.
- Two circles are congruent iff they have equal radii
- Two angles are congruent iff they have equal measures.

31-Aug-2011
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Vertical Angles

If two distinct lines intersect they form \qquad 4 angles having a common vertex.

Which are vertical angles?
31-Aug-2011 MA 341001 21

THEOREM

Theorem 1: Vertical angles are congruent.

Proof:

Lines

\qquad
Two lines are parallel if they do not \qquad intersect.

Do we want a line to be parallel to itself?
\qquad
\qquad
If two lines are not parallel they intersect in a unique point. Why? Does your answer above affect this? \qquad

31-Aug-2011
MA 341001
23

THEOREM

Theorem 2: Let I and m be distinct lines and let \dagger be a transversal. The following are equivalent. (TFAE)
(1) I and m are parallel.
(2) Any two corresponding angles are congruent.
(3) Any two alternate interior angles are congruent.
(4) Any two alternate exterior angles are congruent.
(5) Any two same side interior angles are supplementary.

Proof

\qquad
We will show that $1 \Rightarrow 3$ and $3 \Rightarrow 1$.

To complete this proof we could show either: $1 \Leftrightarrow 2,1 \Leftrightarrow 3,1 \Leftrightarrow 4,1 \Leftrightarrow 5$
OR: $1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 5$
OR: $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$
OR: $1 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$

31-Aug-2011
MA 341001
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\frac{\text { Proof: } 1 \Rightarrow 3}{3^{1 / 2 / 2} 4^{2}}$
\qquad
\qquad
\qquad
(Set up proof by contradiction).
Assume $1 \| \mathrm{m}$ and $\angle 1 \neq \angle 4$. \qquad
We know 27

\qquad

Since $\angle 1 \neq \angle 4$, we may assume
$\mathrm{m} \angle 1>\mathrm{m} \angle 4$. (Why?)
\exists ray $A C$ on opposite side of t from $\angle 4$
\qquad so that $m \angle C A B=m \angle A B E$.
Let $m \cap A C=D$.
$\exists E$ in m on opposite side of t from D so that $A D=B E$. \qquad

31-Aug-2011
MA 341001

\qquad
\qquad
Then, $A D=B E, m \angle D A B=m \angle E B A$, and $A B=A B$.
Therefore by $S A S \triangle D A B \cong \triangle E B A$
$\Rightarrow \mathrm{m} \angle \mathrm{DBA}=\mathrm{m} \angle 3=\mathrm{m} \angle B A E$
$\Rightarrow \angle D A B$ and $\angle B A E$ form linear pair
$\Rightarrow A, D, E$ collinear
$\Rightarrow A$ lies on m
\Rightarrow I and m not parallel.
31-Aug-2011
MA 341001
\qquad
\qquad
\qquad
\qquad
\qquad

Thus we now have that
I and m not parallel
AND we are given that \qquad
I and m are parallel.
In other words we have $R \wedge \sim R, a$
\qquad contradiction. Thus, $1 \wedge \sim 3$ leads to a contradiction so $1 \Rightarrow 3$

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
Let R be on m on same side of t as P Let S be on m on same side of t as Q \qquad \exists line n through A parallel to m Choose X, Y on n so that X * A * Y $n \neq I$, so we may assume n is interior to $\angle P A B$.

31-Aug-2011
MA 341001
\qquad
\qquad
\qquad

\qquad
\qquad
Thus, $\mathrm{m} \angle \mathrm{PAX}>0$.
By first part of proof,
$m \angle B A X=m \angle U B A=m \angle 4$ \qquad
Thus,
$\mathrm{m} \angle 1=\mathrm{m} \angle \mathrm{PAB}=\mathrm{m} \angle \mathrm{PAX}+\mathrm{m} \angle \mathrm{XAB}>$
$\mathrm{m} \angle \mathrm{UBA}=\mathrm{m} \angle 4$.
Thus, $\mathrm{m} \angle 1 \neq \mathrm{m} \angle 4$
31-Aug-2011
MA 341001 33

Thus we now have that $\sim 1 \Rightarrow \sim 3$ which is logically equivalent to $3 \Rightarrow 1$. \qquad

