A Day of Definitions	
7. 547 57 557 111115115	
Basic Building Blocks	
	1
Segments, Lines and Polygons	
Given two points A and B∃! line containing	
them, AB. Why?	
We can identify A with the number 0 and B with any positive real number. Why?	
Why are there infinitely many points	
on AB?	
31-Aug-2011 MA 341 001 2	
	1
Distance	
$d(P,Q) = x_P - x_Q $ Where do we get this definition? Can there be two different distances associated	
with two points? Why not?	
Notation: $d(P,Q) \equiv PQ$	
31-Aug-2011 MA 341 001 3	
3 mn 341 001 3	

Betweenness
C lies between A and B if A,B,C distinct points on the same line and $AC + CB = AB$.
Notation: $A*C*B$ means C lies between A and B
Given two points A and B the line segment \overline{AB} consists of A, B, and all points that lie between A and B.
A, B = endpoints all other points = interior AB = length of segment
31-Aug-2011 MA 341 001 4
Plane Figures
A figure in the plane is a set of points in the plane.
Convex: it contains all interior points of all lines segments joining any two points.
Non convex = concave
31-Aug-2011 MA 341 001 5
Rays and Angles
For $A \neq B$, the ray \overline{AB} is
$\overrightarrow{AB} = \overrightarrow{AB} \cup \{D \in \overrightarrow{AB} \mid A * B * D\}$
\overline{BA} and \overline{BC} are opposite if $A*B*C$.
••

MA 341 001

31-Aug-2011

Rays and Angles
Rays and ringle

Two rays emanating from the same point form two angles.

Common endpoint = vertex

Rays = sides

If the rays coincide we have one angle of measure 0 and another of measure 360.

31-Aug-2011

MA 341 001

Rays and Angles

If union of the rays is a straight line, each angle has measure 180. Called a straight angle.

For all others, one angle has a unique measure between 0 and 180.

If \overrightarrow{BA} and \overrightarrow{BC} are the rays the angle is $\angle ABC$ and it measure is $m\angle ABC$

31-Aug-2011

MA 341 001

Rays and Angles

Rays divide plane into 2 sets

Interior:

Exterior:

Are the sides of the angle in either set?

31-Aug-2011

Rays and Angles	
Acute	
Obtuse	
Right	
Complimentary	
Supplementary	
31-Aug-2011 MA 341 001	10
Rays and Angles	
What is difference between supplementary angles and angles that	
form a linear pair?	
31-Aug-2011 MA 341 001	11
Polygons	
Let A_1 , A_2 ,, A_n be distinct points in plane so that no three consecutive	
points are collinear	
Suppose that no two of the segments $\overline{A_1A_2}, \overline{A_2A_3},, \overline{A_{n-1}A_n}, \overline{A_nA_1}$	
share an interior point The n-gon is $P_n = \overline{A_1} A_2 \cup \overline{A_2} A_3 \cup \cup \overline{A_{n-1}} A_n \cup \overline{A_n}$	$\overline{A_{1}}$
Points = vertices segments = sides	-
31-Aug-2011 MA 341 001	12

Polygons

Polygon divides plane into two sets: interior and exterior
How do we define the interior?

If interior is convex, polygon is called convex.

Regular - all sides are congruent and all angles are congruent

31-Aug-2011

MA 341 001

Polygons

3-gon = triangle

4-gon = quadrilateral

5-gon = pentagon

6-gon = hexagon

heptagon, octagon, nonagon, decagon, undecagon, dodecagon, etcagon

31-Aug-2011

MA 341 001

Examples

01 1

14

Statement

Every polygon can be written as a union of triangles that share only vertices and sides.

True or False

31-Aug-2011

MA 341 001

Examples

Similarity

MA 341 001

17

- 1. Definition: Two triangles are similar if their corresponding angles are equal.
- 2. Definition: Triangles are similar if they have the same shape, but can be different sizes.
- 3. Definition: Two geometric shapes are similar if there is a rigid motion of the plane that maps one onto the other.

31-Aug-2011

31-Aug-2011

MA 341 001

Definition

We need to be more precise, more inclusive. Working Definition: Two figures, P and P', are $\underline{similar}$ if there exists a positive real number k and an onto function $f\colon P\to P'$ so that for all A,B in P f(A)f(B)=A'B'=k AB.

k = coefficient of similarity

If k = 1, we say that the figures are congruent.

31-Aug-2011

MA 341 001

19

Similarity Facts

- · Two lines are congruent
- Two rays are congruent
- Any two segments are similar
- Two segments are congruent iff they have the same length
- Any two circles are similar.
- Two circles are congruent iff they have equal radii
- Two angles are congruent iff they have equal measures.

31-Aug-2011

MA 341 001

20

Vertical Angles

If two distinct lines intersect they form 4 angles having a common vertex.

MA 341 001

Which are vertical angles?

31-Aug-2011

T	Ъ	F	0	D	F	٨	I
	Г	LL'	J	◥	ட	/1	,

<u>Theorem 1</u>: Vertical angles are congruent.

Proof:

31-Aug-2011

MA 341 001

Lines

Two lines are parallel if they do not intersect.

Do we want a line to be parallel to itself?

If two lines are not parallel they intersect in a unique point. Why? Does your answer above affect this?

31-Aug-2011

MA 341 001

23

Transversals

5
6
7
8

Corresponding angles:

Alternate interior angles:

Alternate exterior angles:

Same side interior angles:

31-Aug-2011

_			

THEOREM

<u>Theorem 2:</u> Let I and m be distinct lines and let t be a transversal. The following are equivalent. (TFAE)

- (1) I and m are parallel.
- (2) Any two corresponding angles are congruent.
- (3) Any two alternate interior angles are congruent.
- (4) Any two alternate exterior angles are congruent.
- (5) Any two same side interior angles are supplementary.

31-Aug-2011

MA 341 001

26

Proof

We will show that $1 \Rightarrow 3$ and $3 \Rightarrow 1$.

To complete this proof we could show either: $1 \Leftrightarrow 2$, $1 \Leftrightarrow 3$, $1 \Leftrightarrow 4$, $1 \Leftrightarrow 5$

OR:
$$1 \Leftrightarrow 2 \Leftrightarrow 3 \Leftrightarrow 4 \Leftrightarrow 5$$

OR:
$$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$$

OR:
$$1 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$$

31-Aug-2011

MA 341 001

(Set up proof by contradiction). Assume | || m and $\angle 1 \neq \angle 4$. We know

$$m\angle 1 + m\angle 2 = 180$$

and
 $m\angle 3 + m\angle 4 = 180$.

31-Aug-2011

Since $\angle 1 \neq \angle 4$, we may assume $m\angle 1 > m\angle 4$. (Why?)

 \exists ray AC on opposite side of t from $\angle 4$ so that $m\angle CAB = m\angle ABE$.

Let $m \cap AC = D$.

 \exists E in m on opposite side of t from D so that AD = BE.

31-Aug-2011

MA 341 001

Then, AD = BE, $m\angle DAB = m\angle EBA$, and AB = AB.

Therefore by SAS $\triangle DAB \cong \triangle EBA$

- \Rightarrow m \angle DBA = m \angle 3 = m \angle BAE
- \Rightarrow \angle DAB and \angle BAE form linear pair
- \Rightarrow A, D, E collinear
- \Rightarrow A lies on m
- \Rightarrow I and m not parallel.

31-Aug-2011

MA 341 001

29

Thus we now have that I and m not parallel AND we are given that I and m are parallel. In other words we have R \wedge ~R, a contradiction. Thus, 1 \wedge ~3 leads to a contradiction so 1 \Rightarrow 3

31-Aug-2011

(Proof by Contrapositive). [Assume ~1 and we need to deduce ~3.] Assume I and m not parallel. Let A and B be intersection of t with I and m.

31-Aug-2011 MA 341 001

P,Q on I so that P * A * QLet R be on m on same side of t as P Let 5 be on m on same side of t as Q ∃ line n through A parallel to m Choose X,Y on n so that X * A * Y $n \neq 1$, so we may assume n is interior to ∠PAB.

31-Aug-2011 MA 341 001 32

Thus, m∠PAX >0. By first part of proof, $m\angle BAX = m\angle UBA = m\angle 4$ Thus, $m\angle 1 = m\angle PAB = m\angle PAX + m\angle XAB >$ $m\angle UBA = m\angle 4$. Thus, $m \angle 1 \neq m \angle 4$

31-Aug-2011 MA 341 001

	ow have that $\sim 1 \Rightarrow \sim 3$ quivalent to $3 \Rightarrow 1$.	which is		
31-Aug-2011	MA 341 001	34		